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ABSTRACT

This paper presents the design and learning architecture
for a fully holonomic omnidirectional walk used by the UT
Austin Villa humanoid robot soccer agent acting in the
RoboCup 3D simulation environment. By “fully holonomic”
we mean the walk allows for movement in all directions with
equal velocity. The walk is based on a double linear inverted
pendulum model and was originally designed for the actual
physical Nao robot. Parameters for the walk are optimized
for maximum speed and stability while at the same time a
novel approach of reweighting rewards for walking speeds
in the cardinal directions of forwards, backwards, and side-
ways is utilized to promote equal walking velocities in all
directions. A variant of this walk which uses the same walk
engine, but is not fully holonomic as it employs three dif-
ferent sets of learned walk parameters biased toward max-
imizing forward walking speed, was the crucial component
in the UT Austin Villa team winning the 2011 RoboCup 3D
simulation competition. Detailed experiments reveal that
adaptively changing the weights of rewards over time is an
effective method for learning a fully holonomic walk. Addi-
tional data shows that a team of agents using this learned
fully holonomic walk is able to beat other teams, includ-
ing that of the 2011 RoboCup 3D simulation champion UT
Austin Villa team, that utilize non-fully holonomic walks.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Parameter learn-

ing ; I.2.9 [Artificial Intelligence]: Robotics—Kinematics

and Dynamics

General Terms

Algorithms, Design, Experimentation

Keywords

Bipedal walking, Robot soccer, Machine learning, CMA-ES

1. INTRODUCTION
In this paper, we investigate learning a fully holonomic

humanoid walk in the robot soccer domain. By “fully holo-
nomic” we mean a walk that allows for movement in all di-
rections with equal velocity. This is in contrast to the “non-
fully holonomic” learned walk used by the 2011 RoboCup1

3D simulation league champion team UT Austin Villa. The

1http://www.robocup.org/

2011 UT Austin Villa team’s walk employs three different
sets of learned walk parameters biased toward maximizing
forward walking speed as the kinematics of the simulated
robot model inherently allow for walking forwards faster
than walking sideways. Although the learned walk of the
2011 UT Austin Villa soccer agent was the key component
in the team winning the 3D simulation competition [9], its
heavy emphasis on forward walking speed causes in to be
significantly slower in other walking directions such as back-
ward and sideways. This lack of speed when not moving
forward slows the agent’s reaction time and does not allow
for quick changes of direction. In order to decrease this de-
lay in changing directions, we would like to learn a set of
walk parameters for the walk engine mentioned in Section 3
that allows for equal velocities in all walk directions.

The research reported in this paper is performed within
a complex simulation domain, with realistic physics, state
noise, multi-dimensional actions, and real-time control. In
this test domain, teams of nine autonomous humanoid robots
play soccer in a physically realistic environment. Though no
simulation perfectly reflects the real world, the physical re-
alism of the RoboCup domain enables pertinent research on
realistic robotic tasks such as humanoid locomotion. An
important advantage of working in simulation is that exten-
sive experimentation and learning is possible without risk of
mechanical wear and tear on any physical device.

As each robot is controlled through low-level commands
to its joint motors, getting the robot to walk without falling
over is a non-trivial challenge. In this paper, we describe
a parameterized omnidirectional walk engine, whose param-
eters directly affect the speed and stability of the robot’s
walk, such as step height, length, and timing. Optimal pa-
rameters would allow the robot to stably walk as fast as pos-
sible in all situations. However, the set of possible walking
directions is continuous, so it is infeasible to learn specific
parameters for each direction. Therefore, the robot learns a
general set of parameters with the goal for it to be able to
move equally well in all directions.

The primary contribution of this paper is a methodology
for adaptively changing the weights of rewards over time to
encourage fast yet close to equal speeds for movement in all
directions. There has been some related work in the area of
bipedal locomotion such as using dynamic shaping rewards
to integrate prior domain knowledge into the learning pro-
cess for faster walking speeds [8]. Our work differs in that
we are not incorporating domain knowledge into the learn-
ing process, but are instead trying to learn a walk with two
conflicting objectives: fast walking speed and equal walking



velocities in all directions. These objectives clash with each
other as an increase in speed in one direction often results
in a decrease in speed in the perpendicular direction due to
the robot’s kinematics and joint structure.

The rest of the paper is structured as follows. Section 2
gives a domain description. Sections 3 and 4 describe our
agent’s omnidirectional walk engine and associated param-
eters for optimization respectively. Section 5 details the
non-fully holonomic multiple parameter set walk optimiza-
tion framework used by the 2011 champion UT Austin Villa
agent. In Section 6 we discuss a fully holonomic walk op-
timization framework using dynamic rewards. Game per-
formance results of agents with different learned walks are
given in Section 7, and Section 8 summarizes.

2. DOMAIN DESCRIPTION
Robot soccer has served as an excellent platform for test-

ing learning scenarios in which multiple skills, decisions, and
controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. There is a rich
literature based on this domain addressing a wide spectrum
of topics from low-level concerns, such as perception and mo-
tor control [4, 10], to high-level decision-making problems [7,
11].

The RoboCup 3D simulation environment is based on
SimSpark [3], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine [2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending torque commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the torque and di-
rection in which to move a joint. Although there is no in-
tentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within
a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on the sole of each foot. Ad-
ditionally, agents can communicate with each other every
other simulation cycle (40ms) by sending messages limited
to 20 bytes. Figure 1 shows a visualization of the Nao robot
and the soccer field during a game.

3. WALK ENGINE
The UT Austin Villa 2011 team used an omnidirectional

walk engine based on one that was originally designed for
the real Nao robot [5]. The omnidirectional walk is cru-
cial for allowing the robot to request continuous velocities

in the forward, side, and turn directions, permitting it to
approach continually changing destinations (often the ball)
more smoothly and quickly than the team’s previous year’s
set of unidirectional walks [12].

We began by re-implementing the walk for use on physi-
cal Nao robots before transferring it into simulation to com-
pete in the RoboCup 3D simulation league. Many people in
the past have used simulation environments for the purpose
of prototyping real robot behaviors; but to the best of our
knowledge, ours is the first work to use a real robot to proto-
type a behavior that was ultimately deployed in a simulator.
Working first on the real robots lead to some important dis-
coveries. For example, we found that decreasing step sizes
when the robot is unstable increases its chances of catching
its balance. Similarly, on the robots we discovered that the
delay between commands and sensed changes is significant,
and this realization helped us develop a more stable walk in
simulation.

The walk engine, though based closely on that of Graf
et al. [5], differs in some of the details. Specifically, unlike
Graf et al., we use a sigmoid function for the forward com-
ponent and use proportional control to adjust the desired
step sizes. Our work also differs from Graf et al. in that
we optimize parameters for a walk in simulation while they
do not. For the sake of completeness and to fully specify
the semantics of the learned parameters, we present the full
technical details of the walk in this section. Readers most
interested in the optimization procedure can safely skip to
Section 4. The walk engine uses a simple set of sinusoidal
functions to create the motions of the limbs with limited
feedback control. The walk engine processes desired walk
velocities chosen by the behavior, chooses destinations for
the feet and torso, and then uses inverse kinematics to de-
termine the joint positions required. Finally, PID controllers
for each joint convert these positions into torque commands
that are sent to the simulator.

The walk first selects a trajectory for the torso to follow,
and then determines where the feet should be with respect
to the torso location. We use x as the forwards dimension,
y as the sideways dimension, z as the vertical dimension,
and θ as rotating about the z axis. The trajectory is chosen
using a double linear inverted pendulum, where the center
of mass is swinging over the stance foot. In addition, as in
Graf et al.’s work [5], we use the simplifying assumption that
there is no double support phase, so that the velocities and
positions of the center of mass must match when switching
between the inverted pendulums formed by the respective

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 9 versus
9 game (right).



stance feet.

Notation Description

maxStep∗
i Maximum step sizes allowed for x, y, and θ

y∗
shift Side to side shift amount with no side velocity

z∗
torso Height of the torso from the ground
z∗

step Maximum height of the foot from the ground

f∗
g

Fraction of a phase that the swing
foot spends on the ground before lifting

fa Fraction that the swing foot spends in the air
f∗

s Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

φ∗
length Duration of a single step
δ∗ Factors of how fast the step sizes change

ysep Separation between the feet
x∗

offset Constant offset between the torso and feet

x∗
factor

Factor of the step size applied to
the forwards position of the torso

err∗norm Maximum COM error before the steps are slowed
err∗max Maximum COM error before all velocity reach 0

Table 1: Parameters of the walk engine with the
optimized parameters starred.

We now describe the mathematical formulas that calculate
the positions of the feet with respect to the torso. More than
40 parameters were used but only the most important ones
are described in Table 1. Note that many, but not all of these
parameters’ values were optimized as described in Section 4.

To smooth changes in the velocities, we use a simple pro-
portional controller to filter the requested velocities com-
ing from the behavior module. Specifically, we calculate
stepi,t+1 = stepi,t + δ(desiredi,t+1 − stepi,t)∀i ∈ {x, y, θ}.
In addition, the value is cropped within the maximum step
sizes so that −maxStepi ≤ stepi,t+1 ≤ maxStepi.

The phase is given by φstart ≤ φ ≤ φend, and t =
φ − φstart

φend − φstart
is the current fraction through the phase. At

each time step, φ is incremented by ∆seconds/φlength, un-
til φ ≥ φend. At this point, the stance and swing feet
change and φ is reset to φstart. Initially, φstart = −0.5 and
φend = 0.5. However, the start and end times will change to
match the previous pendulum, as given by the equations

k =
p

9806.65/ztorso

α = 6 − cosh(k − 0.5φ)

φstart =

8

<

:

cosh−1(α)

0.5k
if α ≥ 1.0

−0.5 otherwise

φend = 0.5(φend − φstart)

The stance foot remains fixed on the ground, and the
swing foot is smoothly lifted and placed down, based on
a cosine function. The current distance of the feet from the
torso is given by

zfrac =

8

<

:

0.5(1 − cos(2π
t − fg

fa
)) if fg ≤ t ≤ fa

0 otherwise

zstance = ztorso

zswing = ztorso − zstep ∗ zfrac

It is desirable for the robot’s center of mass to steadily shift
side to side, allowing it to stably lift its feet. The side to

side component when no side velocity is requested is given
by

ystance = 0.5ysep + yshift(−1.5 + 0.5 cosh(0.5kφ))

yswing = ysep − ystance

If a side velocity is requested, ystance is augmented by

yfrac =

8

<

:

0 if t < fs

0.5(1 + cos(π t−fs

fm

)) if fs ≤ t < fs + fm

1 otherwise

∆ystance = stepy ∗ yfrac

These equations allow the y component of the feet to smoothly
incorporate the desired sideways velocity while still shifting
enough to remain dynamically stable over the stance foot.

Next, the forwards component is given by

s = sigmoid(10(−0.5 +
t − fs

fm
))

xfrac =

8

<

:

(−0.5 − t + fs) if t < fs

(−0.5 + s) if fs ≤ t < fs + fm

(0.5 − t + fs + fm) otherwise

xstance = 0.5 − t + fs

xswing = stepx ∗ xfrac

These functions are designed to keep the robot’s center of
mass moving forwards steadily, while the feet quickly, but
smoothly approach their destinations. Furthermore, to keep
the robot’s center of mass centered between the feet, there
is an additional offset to the forward component of both the
stance and swing feet, given by

∆x = xoffset + −stepxxfactor

After these calculations, all of the x and y targets are cor-
rected for the current position of the center of mass. Finally,
the requested rotation is handled by opening and closing the
groin joints of the robot, rotating the foot targets. The de-
sired angle of the groin joint is calculated by

groin =

8

>

<

>

:

0 if t < fs

1

2
stepθ(1 − cos(π

t − fs

fm
)) if fs ≤ t < fs + fm

stepθ otherwise

After these targets are calculated for both the swing and
stance feet with respect to the robot’s torso, the inverse
kinematics module calculates the joint angles necessary to
place the feet at these targets. Further description of the
inverse kinematic calculations is given in [5].

To improve the stability of the walk, we track the desired
center of mass as calculated from the expected commands.
Then, we compare this value to the sensed center of mass
after handling the delay between sending commands and
sensing center of mass changes of approximately 80ms. If
this error is too large, it is expected that the robot is un-
stable, and action must be taken to prevent falling. As the
robot is more stable when walking in place, we immediately
reduce the step sizes by a factor of the error. In the extreme
case, the robot will attempt to walk in place until it is stable.
The exact calculations are given by

err = max
i

(abs(comexpected,i − comsensed,i))

stepFactor = max(0, min(1,
err − errnorm

errmax − errnorm
))

stepi = stepFactor ∗ stepi ∀i ∈ {x, y, θ}



This solution is less than ideal, but performed effectively
enough to stabilize the robot in many situations.

4. OPTIMIZATION OF WALK ENGINE

PARAMETERS
As described in Section 3, the walk engine is parameter-

ized using more than 40 parameters. We initialize these
parameters based on our understanding of the system and
by testing them on an actual Nao robot. We refer to the
agent that uses this walk as the Initial agent.

The initial parameter values result in a very slow, but sta-
ble walk. Therefore, we optimize the parameters using the
CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) algorithm [6], which has been successfully applied pre-
viously to a similar problem in [12]. CMA-ES is a policy
search algorithm that successively generates and evaluates
sets of candidates sampled from a multivariate Gaussian dis-
tribution. Once CMA-ES generates a group of candidates,
each candidate is evaluated with respect to a fitness mea-
sure. When all the candidates in the group are evaluated,
the mean of the multivariate Gaussian distribution is recal-
culated as a weighted average of the candidates with the
highest fitnesses. The covariance matrix of the distribution
is also updated to bias the generation of the next set of
candidates toward directions of previously successful search
steps. As CMA-ES is a parallel search algorithm, we were
able to leverage the department’s large cluster of high-end
computers to automate and parallelize the learning. This
allowed us to complete optimization runs requiring 210,000
evaluations in less than a day. This is roughly a 150 times
speedup over not doing optimization runs in parallel which
would have taken over 100 days to complete.

As optimizing 40 real-valued parameters can be impracti-
cal, a carefully chosen subset of 14 parameters was selected
for optimization while fixing all other parameters. The cho-
sen parameters are those that seemed likely to have the high-
est potential impact on the speed and stability of the robot.
The 14 optimized parameters are starred in Table 1. Note
that maxStepi represents 3 parameters. Also, while fg and
fs where chosen to be optimized, their complements fa and
fm were just set to (1 − fg) and (1 − fm) respectively.

5. NON-FULLY HOLONOMIC WALK

MULTIPLE SUBTASKSOPTIMIZATION
This section details how a non-fully holonomic multiple

parameter set walk was optimized for use in the champion
2011 UT Austin Villa agent. This section serves to give both
context and contrast to that of the fully holonomic walk op-
timization, described in Section 6, which utilizes the goTo-

Target optimization task presented in Section 5.1. Before
describing the procedure for optimizing the walk parame-
ters, we provide some brief context for how the agent’s walk
is typically used. These details are important for motivating
the optimization procedure’s fitness functions.

During gameplay the agent is usually either moving to a
set target position on the field or dribbling the ball toward
the opponent’s goal and away from the opposing team’s play-
ers. Given that an omnidirectional walk engine can move in
any direction as well as turn at the same time, the agent
has multiple ways in which it can move toward a target. We
chose the approach of both moving and turning toward a tar-
get at the same time as this allows for both quick reactions

(the agent is immediately moving in the desired direction)
and speed (where the bipedal robot model is faster when
walking forward as opposed to strafing sideways). We val-
idated this design decision by playing our agent against a
version of itself which does not turn to face the target it is
moving toward, and found our agent that turns won by an
average of .7 goals across 100 games. Additionally we played
our agent against a version of itself that turns in place un-
til its orientation is such that it is able to move toward its
target at maximum forward velocity, and found our agent
that immediately starts moving toward its target won by an
average of .3 goals across 100 games. All agents we com-
pared used walks optimized by the process described in this
section.

Dribbling the ball is a little different in that the agent
needs to align behind the ball, without first running into the
ball, so that it can walk straight through the ball, moving
it in the desired dribble direction. When the agent circles
around the ball, it always turns to face the ball so that if an
opponent approaches, it can quickly walk forward to move
the ball and keep it out of reach of the opponent.

Similarly to a conclusion from [12], we have found that
optimization works better when the agent’s fitness measure
is its performance on tasks that are executed during a real

game. This stands in contrast to evaluating it on a general
task such as the speed walking straight. Therefore, we break
the agent’s in-game behavior into a set of smaller tasks and
sequentially optimize the parameters for each one of these
tasks. Videos of the agent performing optimization tasks
can be found online.2

5.1 Go to Target Parameter Set
In order to simulate common situations encountered in

gameplay, the walk engine parameters are optimized for
a goToTarget subtask.3 This task consists of an obstacle
course in which the agent tries to navigate to a variety of
target positions on the field. Each target is active, one at a
time for a fixed period of time, which varies from one target
to the next, and the agent is rewarded based on its distance
traveled toward the active target. If the agent reaches an
active target, the agent receives an extra reward based on
extrapolating the distance it could have traveled given the
remaining time on the target. In addition to the target po-
sitions, the agent has stop targets, where it is penalized for
any distance it travels. To promote stability, the agent is
given a penalty if it falls over during the optimization run.

In the following equations specifying the agent’s rewards
for targets, Fall is 5 if the robot fell and 0 otherwise, dtarget

is the distance traveled toward the target, and dmoved is the
total distance moved. Let ttotal be the full duration a target
is active and ttaken be the time taken to reach the target or
ttotal if the target is not reached.

rewardtarget = dtarget
ttotal

ttaken
− Fall (1)

rewardstop = −dmoved − Fall (2)

The goToTarget optimization includes quick changes of

2www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2011/html/walk.html
3Note that we use three types of notation for each of go-
ToTarget, GoToTarget, goToTarget, to distinguish between
an optimization task, an agent created by this optimization
task and a parameter set. Similarly for“sprint”and“initial”.



• Long walks forward/backwards/left/right

• Walk in a curve

• Quick direction changes

• Stop and go forward/backwards/left/right

• Switch between moving left-to-right and right-to-left

• Quick changes of target to simulate a noisy target

• Weave back and forth at 45 degree angles

• Extreme changes of direction to check for stability

• Quick movements combined with stopping

• Quick alternating between walking left and right

• Spiral walk both clockwise and counter-clockwise

Figure 2: GoToTarget Optimization walk trajectories

target/direction for focusing on the reaction speed of the
agent, as well as targets with longer durations to improve
the straight line speed of the agent. The stop targets en-
sure that the agent is able to stop quickly, while remaining
stable. The trajectories that the agent follows during the
optimization are described in Figure 2. After running this
optimization seeded with the initial walk engine parameter
values we saw a significant improvement in performance. Us-
ing the parameter set optimized for going to a target, the
GoToTarget agent was able to beat the Initial agent by an
average of 8.82 goals with a standard error of .11 across 100
games.

5.2 Sprint Parameter Set
To further improve the forward speed of the agent, we

optimized a parameter set for walking straight forwards for
ten seconds starting from a complete stop. The robot was
able to learn parameters for walking .78 m/s compared to
.64 m/s using the goToTarget parameter set. Unfortunately,
when the robot tried to switch between the forward walk and
goToTarget parameter sets it was unstable and usually fell
over. This instability is due to the parameter sets being
learned in isolation, resulting in them being incompatible.

To overcome this incompatibility, we ran the goToTarget

subtask optimization again, but this time we fixed the go-

ToTarget parameter set and learned a new parameter set.
We call these parameters the sprint parameter set, and the
agent uses them when its orientation is within 15◦ of its tar-
get. The sprint parameter set was seeded with the values
from the goToTarget parameter set. By learning the sprint

parameter set in conjunction with the goToTarget parame-
ter set, the new Sprint agent was stable switching between
the two parameter sets, and its speed was increased to .71
m/s. Adding the sprint parameter set also improved the
game performance of the agent slightly; over 100 games, the
Sprint agent was able to beat the GoToTarget agent by an
average of .09 goals with a standard error of .07.

5.3 Positioning Parameter Set
Although adding the goToTarget and sprint walk engine

parameter sets improved the stability, speed, and game per-
formance of the agent, the agent was still a little slow when
positioning to dribble the ball. This slowness is explained
by the fact that the goToTarget subtask optimization em-
phasizes quick turns and forward walking speed while posi-

tioning around the ball involves more side-stepping to circle
the ball. To account for this discrepancy, the agent learned
a third parameter set which we call the positioning param-
eter set. To learn this set, we created a driveBallToGoal24

optimization in which the agent is evaluated on how far it is
able to dribble the ball over 15 seconds when starting from
a variety of positions and orientations from the ball. The
positioning parameter set is used when the agent is .8 me-
ters from the ball and is seeded with the values from the
goToTarget parameter set. Both the goToTarget and sprint

parameter sets are fixed and the optimization naturally in-
cludes transitions between all three parameter sets, which
constrained them to be compatible with each other. Adding
the positioning parameter set further improved the agent’s
performance such that it, our Final agent, was able to beat
the Sprint agent by an average of .15 goals with a standard
error of .07 across 100 games. A summary of the progression
in optimizing the three different walk parameter sets can be
seen in Figure 3.

Figure 3: UT Austin Villa walk parameter optimiza-
tion progression. Circles represent the set(s) of pa-
rameters used by each agent during the optimization
progression while the arrows and associated labels
above them indicate the optimization tasks used in
learning. Parameter sets are the following: I = ini-

tial, T = goToTarget, S = sprint, P = positioning.

6. FULLY HOLONOMIC WALK

OPTIMIZATION
One weakness of the non-fully holonomic walk learned in

Section 5 is that the optimization process’s heavy empha-
sis on forward walking speed results in significantly slower
speeds in other walking directions such as backward and
sideways. While this is somewhat mitigated by having an
agent always turn to face the direction it is moving, and
thereby quickly switch to walking at full speed in the for-
ward direction, the turning process slows down the agent
and does not allow for quick changes of direction.

In order to decrease this delay in changing directions we
would like to learn a set of walk parameters for the walk
engine mentioned in Section 3 that allows for equal velocities
in all walk directions. With such a fully holonomic walk
there will be no need, and resulting delay, for the robot
to change its orientation as it changes direction. As the
kinematics of the simulated robot model inherently allow for
walking forwards faster than walking sideways, attempting
to maximize walking speeds in all direction is likely to learn
a walk engine parameter set biased toward a faster forward
walk at the expense of slower speed in the sideways direction.

4The ’2’ at the end of the name driveBallToGoal2 is used to
differentiate it from a driveBallToGoal optimization that was
used in [12].



To account for the potential of the speed for any direction
of the walk to dominate over the speed of other directions
during the optimization process, we propose individually tal-
lying the amount of reward given to walking in the three
cardinal directions of forwards, backwards, and sideways,
and then reweighting the rewards accumulated for these di-
rections during the next iteration of CMA-ES so as to give
more influence to directions in which the agent is walking
slower. We implemented this idea by modifying the goTo-

Target optimization task mentioned in Section 5.1 to only
count the positive reward from Equation 1 for three differ-
ent walk targets that are part of the walk trajectories of the
first item in Figure 2: long walks in the forward, backward,
and sideways directions with each walk having a duration of
7 seconds. The positive rewards for these three walk targets
are then all multiplied by weights whose values we adjust
across iterations of CMA-ES, but whose sum is always nor-
malized to 1, to calculate the overall positive portion of the
fitness given to an agent (shown in Equation 4 for iteration
i). During the first iteration of CMA-ES the values of these
weights are all initialized to be 1/3 (Equation 3).

wgti=1{fw/bw/sw} = 1/3 (3)

rewi{fw} ∗ wgti{fw}

fiti{positive} = +rewi{bw} ∗ wgti{bw} (4)

+rewi{sw} ∗ wgti{sw}

After every iteration of CMA-ES the three cardinal direc-
tion walk rewards (speeds) of the member of the population
with the highest fitness are examined and used to calculate
new reward weights for the next iteration of CMA-ES based
on the following equations:

rewi{fw/bw/sw} = max(rewi{fw/bw/sw}, .1) (5)

rewi{max} = max(rewi{fw,bw,sw})

wgti+1{fw/bw/sw} = rewi{max}/rewi{fw/bw/sw} (6)

wgti+1{tot} = sum(wgti+1{fw,bw,sw})

wgti+1{fw/bw/sw} = wgti+1{fw/bw/sw}/wgti+1{tot} (7)

Equation 5 first ensures that all direction rewards are posi-
tive which is necessary for the computation of reward weights.
Reward weights are computed in Equation 6 and are equal
to the factor that a directional reward needs to be multiplied
by in order to be equal to that of the maximum directional
reward. Finally Equation 7 normalizes all reward weights to
sum to 1. We refer to the agent that uses this formulation
for updating reward weights as the DynamicRewards agent.

Note that in addition to the positive portion of the fitness
for an agent computed in Equation 4, the agent also still re-
ceives negative rewards for falling and movement when told
to stop for all walk targets as described in Equations 1 and 2
in Section 5.1. This is done to ensure that the agent learns a
walk that can quickly stop and is stable in the same way as
the walk produced by the goToTarget parameter set in Sec-
tion 5.1. As the agent no longer receives positive rewards for
moving to all targets as in the original goToTarget optimiza-
tion, and instead only receives a positive reward for moving
to targets for a weighted total of 7 seconds, we need to reduce
the value of the negative rewards so as to preserve the ratio
between possible attainable positive and negative rewards
present in the original goToTarget optimization. We found
that not reducing the value of negative rewards causes the
agent to learn walking parameters that keep it stationary.

This is because the negative rewards incurred by moving
when told to stop, and also potentially falling, dominate the
possible rewards gained in just 7 seconds of measured pos-
itive movement toward walk targets. Our solution to this
was to weight negative rewards by the ratio of current time
moving to targets for which positive rewards are recorded
to that of the same time as in the original goToTarget opti-
mization (7/124.1).

An alternative to calculating new reward weights using
the directional rewards of the member of the population with
the highest fitness is to instead use a weighted average of the
directional rewards of the top half of the population with the
highest fitness. This weighted averaging is what CMA-ES
does at the end of every iteration to update the mean of the
multivariate Gaussian distribution it is sampling parameters
from. This weighted averaging is computed by the following
equations for which members of a population are first ranked
and sorted in descending order of fitness (i = 1 for highest
fitness member):

weighti = log(popsize/2 + 1/2) − log(i)

weightssum =

popsize/2
X

i=1

weighti

weighti = weighti/weightssum

rewavg{fw/bw/sw} =

popsize/2
X

i=1

rewi{fw/bw/sw} ∗ weighti

We call the agent that uses weighted averages of distance
rewards to update reward weights the DynamicAvgRewards

agent.
In addition to the two agents that change the weight of

rewards over time (the DynamicRewards and DynamicAv-

gRewards agents), for comparison purposes we also ran op-
timizations on the modified goToTarget task for a couple of
agents that do not modify rewards. The first of these is the
StaticRewards agent which is optimized in the same way as
the DynamicRewards agent except that it holds each of the
directional reward weights constant at 1/3. Unlike the Fi-

nal agent used by UT Austin Villa in the 2011 competition,
which controls its orientation differently for different tasks
as described in Section 5, the DynamicRewards, Dynami-

cAvgRewards, and StaticRewards agents all directly move in
the direction of their targets without purposely modifying
their orientations in any way. The second agent which does
not modify directional reward weights is the FaceForward

agent. This agent always turns to face whatever target it is
moving to and is similar to the the GoToTarget agent except
that it was optimized using the modified version of the go-

ToTarget task. All optimizations were done using CMA-ES
with a population size of 150 across 200 generations.

Figure 5 shows how the directional weights for the
DynamicRewards, DynamicAvgRewards, and StaticRewards

agents vary across iterations of CMA-ES. Note that the
weights used by the StaticRewards agent are fixed and that
the weights shown in this figure are only computed and dis-
played for comparison purposes to show what the weights
chosen would be if the agent was dynamically adjusting its
weights. The DynamicRewards and DynamicAvgRewards

agents’ weights are very close together with a slightly higher
weight for the forward direction (meaning that the forward
direction is producing a slightly lower reward than the other
directions). The fluctuation in weights is a little smoother



Table 2: Directional walking speeds of learned walks
for different agents described in Section 6 as well
as the Final agent used by UT Austin Villa in the
2011 RoboCup competition. All speeds are in m/s
and were measured by recording the distance the
agent traveled in ten seconds when starting from a
complete stop.

Agent Forward Backward Sideways

DynamicRewards .42 .53 .48
DynamicAvgRewards .45 .53 .51

StaticRewards .58 .52 .37
FaceForward .74 .35 .03

Final .71 .40 .21

for the DynamicAvgRewards agent than that of the Dynami-

cRewards agent as it is using averaging. The StaticRewards

agents shows a considerable difference in weights, however,
with a much higher weight (and thus lower reward) com-
ing from the sideways direction. This is an indicator of the
optimization finding it easier to optimize for speed in the
forward direction than that of the sideways direction.

In Figure 4 the best agent fitnesses across iterations of
CMA-ES are shown for the agents described in this section.
Here we see that all agents’ fitnesses start to plateau around
iteration 100. The static and dynamic rewards agents all
have similar fitnesses while the FaceForward agent has a
higher fitness. The probable cause for this is because the
lengthy long walks of 7 seconds in each direction allow the
FaceForward agent plenty of time to turn and walk in the
forward direction for which it is being optimized for.

Directional walking speeds of the different agents de-
scribed in this section, as well as the Final agent used by
UT Austin Villa in the 2011 RoboCup competition, and de-
scribed in Section 5, are shown in Table 2. Here we see
fairly close values across all directions for both the dynamic
rewards agents. This gives proof that either method of ad-
justing the weights of rewards across iterations is a viable
solution for learning a walk that is close to fully holonomic.
The StaticRewards agent has a forward walk speed over 50%
faster than it’s side walk speed which shows evidence of the
forward walk speed being easier to increase at the expense
of the sideways walk speed. The FaceForward agent has the
highest speed for the forward walk which is not surprising as
this is the direction it is walking in for most of the time dur-
ing optimization. Despite never walking backwards during
optimization the agent still has a backward speed close to
half its forward speed. This suggests a correlation in move-
ment between walking forward and backward as they both
lie in the sagittal plane. Walking sideways (movement in the
opposite coronal plane) on the other hand never occurs dur-
ing optimization which results in a speed in this direction of
nearly 0. The Final agent from the 2011 competition has
very good forward speed similar to the FaceForward agent,
which it was generally optimized for, but also has much bet-
ter sideways speed than the FaceForward agent due to using
multiple learned parameter sets including the positioning pa-
rameter set for which sideways movement was included as
part of the optimization.
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Figure 4: Best agent fitness across iterations of
CMA-ES.

7. AGENT GAME PERFORMANCE

RESULTS
In Table 3 we present game results of the agents with dif-

ferent walk parameter sets described in Section 6 as well
as the Final agent used in the 2011 competition and de-
scribed in Section 5. Both the StaticRewards and FaceFor-

ward agents do very poorly against the other agents. Em-
pirical evidence shows that the StaticRewards agent is too
slow when trying to move sideways, which happens roughly
half the time, allowing other agents to easily get around or
steal the ball from the agent. The FaceForward agent, on
the other hand, gets mired down in constantly turning and
trying to adjust its position when around the ball as it is
unable to move sideways.

The DynamicRewards and DynamicAvgRewards agents
perform very similarly which isn’t surprising considering how
close their walk speeds are in Table 2. What is surprising is
that they are both able to beat the champion Final agent
from the 2011 competition which uses three learned walk
parameter sets instead of just one. Despite the Final agent
having a significantly faster top walking speed than both
of the dynamic reward agents, the dynamic reward agents
are much faster positioning around the ball due to the Final

agents slow sideways speed and need for turning to adjust
its orientation while circling the ball. While the average
goal difference that the DynamicRewards agent beat the Fi-

nal agent by across 100 games was only .20 goals, this still
translated to 29 goals for with 9 against and a record of 23
wins with only 7 losses and 70 ties.

8. SUMMARY AND DISCUSSION
We have presented the design and learning architecture

for a fully holonomic omnidirectional walk used by the UT
Austin Villa humanoid robot soccer agent acting in the
RoboCup 3D simulation environment. The key to our op-
timization method is using a novel approach of reweight-
ing rewards for walking speeds in the cardinal directions of
forwards, backwards, and sideways to promote equal walk-
ing velocities in all directions. A team of agents using this
learned fully holonomic walk, which consists of just a single
learned parameter set, is able to beat the UT Austin Villa
2011 RoboCup 3D simulation champion team that uses a



Figure 5: Directional reward weights during the course of optimization for the the DynamicRewards agent
(left), DynamicAvgRewards agent (center), and StaticRewards agent (right). Note that the weights used by
the StaticRewards agents are fixed and that the weights shown in this figure are only computed and displayed
for comparison purposes to show what the weights chosen would be if the agent was dynamically adjusting
its weights. Higher weights correlate to lower relative rewards.

Table 3: Game results of agents with different walk parameter sets described in Section 6 as well as the Final

agent used in the 2011 competition and described in Section 5. Entries show the average goal difference (row
− column) from 100 ten minute games. Values in parentheses are the standard error.

Final FaceForward StaticRewards DynamicAvgRewards
DynamicRewards 0.20(.08) 3.27(.09) 3.18(.11) -0.06(.07)

DynamicAvgRewards 0.10(.07) 3.49(.11) 2.88(.11)
StaticRewards -2.77(.13) 0.22(.06)
FaceForward -2.99(.12)

non-fully holonomic walk employing multiple walk parame-
ter sets. This is a significant accomplishment as the 2011
UT Austin Villa team won all 24 games it played during the
RoboCup competition while scoring 136 goals and conceding
none.

Our ongoing research agenda includes applying what we
have learned in simulation to the actual Nao robots which we
use to compete in the Standard Platform league of RoboCup.
Additionally, we would like to learn multiple parameter sets
for the fully holonomic walk, specialized for walking in each
of the different cardinal directions, in a similar fashion to
how the sprint parameter set was learned in Section 5.2.

More information about the UT Austin Villa team, as well
as video highlights from the 2011 competition, can be found
online at the team’s website.5
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