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Abstract— Mobile robot localization, the ability of a robot to 1) When navigating to a point, the robot should be able to
determine its global position and orientation, continues to be stabilize quickly close to the target destination.

a major research focus in robotics. In most past cases, such 5y Thg ropot should be able to remain localized even when
localization has been studied on wheeled robots with range- - - . L .
colliding with other objects in its environment.

finding sensors such as sonar or lasers. In this paper, we consider . .
the more challenging scenario of a legged robot localizing with ~ 3) The robot should adjust quickly and robustly to sudden
a limited field-of-view camera as its primary sensory input. large movements (the kidnapped robot problem).

?.Ne begin with a baseline implementation adapted from the Ay of these properties must be achieved within the limits of
iterature that provides a reasonable level of competence, but ) .
that exhibits some weaknesses in real-world tests. We proposeth€ robot's on-board processing capabilities.

a series of practical enhancements designed to improve the In order to achieve these desiderata, we enhance our base-

robot's sensory and actuator models that enable our robots to line implementation with the following three additions.

achieve a50% improvement in localization accuracy over the S . s
baseline implementation. We go on to demonstrate how the 1) Maintaining a history of landmark sightings to produce

accuracy improvement is even more dramatic when the robot is more triangula.tilon estimates. _ .
subjected to large unmodeled movements. These enhancements 2) Using an empirically-computed unbiased landmark dis-
are each individually straightforward, but together they provide tance model in addition to heading for estimate updates.

a roadmap for avoiding potential pitfalls when implementing

Monte Carlo Localization on vision-based and/or legged robots. 3) Tuning and extending the motion model for improved

odometry calculation in a way that is particularly suited
. INTRODUCTION to improving localization.

One of the most fundamental tasks for a mobile robot is We empirically evaluate the effectiveness of these general
the ability to determine its location in its environmentrfro €nhancements individually and collectively, both in siatiain
sensory input. A significant amount of work has been done @Rd on a Sony Aibo ERS-7 robot. In combination, the methods
this so-calledocalization problem. we present improve the robot's localization ability ovee th

One common approach to this prob|en¢p2&rtic|e f||ter|ng base”ne me’[hOd b}BO% the I’ObOt’S aVerage error in |tS
or Monte Carlo Localization (MCL) [10], [11]. MCL has beenlocation and heading estimates are reduced to half of that
shown to be a robust solution for mobile robot localizatioVith the baseline implementation. The accuracy improveémen
particularly in the face of collisions and large, unexpdctés shown to be even more dramatic when the robot is subjected
movements (e.g. the “kidnapped robot” problem [5]). Alto large unmodeled movements.
though this method has a well-grounded theoretical founda-
tion, and has been demonstrated to be effective in a number
of real-world settings, there remain some practical chaks In Monte Carlo Localization, a robot estimates its posi-
to deploying it in a new robotic setting. tion using a set of samples callguhrticles Each particle,

This paper presents a case study demonstrating the ptacti¢a, y, 6) , p), represents a hypothesis about the robptse
steps needed to make particle filtering effective and ridiah  its global location(z, y) and orientationd). The probabilityp,

a legged robot with only vision-based sensors. Most previoaxpresses the robot’s confidence in this hypothesis. Thstglen
implementations have been on wheeled robots with sonarajrparticle probabilities represents a probability dimftion
laser sensors (e.g. [4], [5]). In comparison with our sgftinover the space of possible poses.

these previous settings have the advantages of relaticelya Each operating cycle, the robot updates its pose estimate
rate odometry models and 368ensory information. Although by incorporating information from its action commands and
MCL has been applied to legged, vision-based robots in teensors. Two different probabilistic models must be sepidtid
past [6], [7], [9], our work contributes novel enhancemeniserform these updates. The Motion Model attempts to capture
that make its implementation more practical. the robot's kinematics. Given the robot’s previous poseal an

We begin with a baseline implementation of Monte Carlan action command, such as "walk forward at 300 mm/s” or
Localization adapted from recent literature [9] that agbgea "turn at 0.6 rad/s”, the model predicts the robot's new pose.
reasonable level of competence. We then present a series@fmally, it defines the probability distributiom(?’|h,a),
innovations and adjustments required to improve the rebotivhererh is the old pose estimate,is the last action command
performance with respect to the following three desiderata executed, and’ is the new pose estimate.

Il. BACKGROUND



The Sensor Model is a model of the robot’s perceptors ardis the set of landmarks seen in the current frame. The
environment. It predicts what observations will be made hyosterior probability for a single observation is thenrastied
the robot's sensors, given its current pose. The probwbiliby the following equation representing the degree to whieh t
distribution that it defines ig(o|h), whereo is an observation observed landmark bearingqs matcheSaélm)p:

such as “landmark X is 1200mm away and 20 degrees to my e~ 50w} if w <1
- : . " s(a(l) a® ) = 4)
right”, and h is again the old pose estimate. meas> Yexp e—502—w)?  Gtherwise

Given these two models, we seek to compute o o
p(hrlor,ar—1,0r—1,ar—2,...,a0), WhereT is the current wherew, = w The probability,p, of a particle
cycle andh:, o; and a; are the pose estimate, observatiois then the product of these similarities:
and action command, respectively, for tirhe p= H s(alqe ) (5)

. . . leL
A. Basic Monte Carlo Localization Lastly, the following efiltering function is applied to updat
The basic MCL algorithm proceeds as follows. At thenhe particle’s probability [9]:
beginning of each cycle, the motion model is used to update Pora + 0.1 if p> porg + 0.1
the position of each of the: particles,(h, p()) based on

) Prnew = § Pold — 0.05 if P < Pold — 0.05 (6)
the current action command. The new posé, is sampled » otherwise
from the d|str|but|}§)n: RTC) 1 An important aspect of this sensor model is that distances
v~ p(hrlhy”y, ar—1) 1) to landmarks are completely ignored. The motivation for

Next, the probability of each particle is updated by thghis restriction is that vision-based distance estimates a
sensor model, based on the current sensory data. The sefggitally quite noisy and the distribution is not easy to rabd
model computes the likelihood of the robot's observationgalytically. Worse yet, there can be a strong non-lineas bi
given the particle’s pose, and adjusts the particle’s @iy in the distance estimation process which makes the inglusio
accordingly. To prevent occasional bad sensory data frasp distance estimates actively harmful, causing locatizat
having too drastic an effect, a particle’s change in pralighs  accuracy to degrade (see Section 1V). In this paper, we show
typically limited by some filtering functionf"(poia, pdaesired)-  that the bias in distance estimates can be empirically neodel
The sensor model update is given by the following equationsuch that they can be incorporated to improve sensor model

P = P plor|hi),)) (2) updates. |

Finally, particles are resampled in proportion to theirpro N the baseline approach, to address the frequently-aogurr

abilities. High probability particles are duplicated amgplace <idnapped robot problerh,a few of the particles with low

particles with low probability. The expected number of fesu Probability are replaced by estimates obtained by trizaig
ing copies of partic|e<h(i) p(i)> is: from the landmarks seen in the current frame. This process,

called reseeding is based upon the idea of Sensor Resetting
=m0 (3) localization [7].
_ o Zj_:l p _ - A shortcoming of previous reseeding approaches is that they
This description of the basic MCL algorithm specifies howequire at least two or three landmarks to be seen in the same
we maintain a prObab”iStiC model of the robot’s locatiorepov camera frame to enable triangu|a’[ion_ In this paper, Wms
time, but it omits several details. For instance, how do wg concrete mechanism that enables us to use reseeding even
Obtain the motion and sensor modeIS? And hOW many partickﬁﬁen two landmarks are never seen Concurrenﬂy_
do we need? Some previous answers to these questions agnother significant challenge to achieving MCL on legged
surveyed in the following section. robots is that of obtaining a proper motion model. In our
B. MCL for Vision-based Legged Robots initial implementation, we u_sed a motlon model that prodide
reasonably accurate velocity estimates when the robot was

A large body of research has been performed on rohgl ing at near maximum speed. However, when the robot
localization, mostly using wheeled robots with laser anglaso was close to its desired location, moving at full speed aduse
as the sensors [4], [5], [3]. Here, we focus on the few exaE

p
m .

) = rky motion. The resulting “noise” in the motion model
ples of MCL implemented on vision-based legged robots. i, ,seq erroneous action model updates (Equation 1). The
particular, our approach to localization is built upon poers

) ) robot assumed that it was moving at full speed, but before
research done in the RoboCup legged soccer domain [8]. ji5 motion was completed, it received a pose estimate beyond
Our baseline approach is drawn mainly from one particulgle (5rqet. This estimate generated another motion command

system designed for this domain [9]. In this approach, the,qing to oscillation around the target position. In thiger,
sensor model updates for each particle are performed b examine the effect on this oscillation of improving the
on the sensed locations of landmarks with known locations +ion model with an extension to the robot's behatior.

in the environment (landmarks include visual markers and

line intersections in the problem domain - see Figure 13.1'” the RoboCup legged league, when a robot commits a foul, iicier
. L é) by the referee and replaced at a different point on the. field

Given the particle’s pose, the robot (l:alcu'ates the expect 2Note that the noisy motion model is not a property of MCL or artyeot

bearing for each observed Iandmariéa?p, I € L, where algorithm, but rather our own baseline implementation.



I1l. ENHANCEMENTS B. Distance-Based Updates

In this section we detail the three enhancements that weTo use distances to landmarks effectively in localizatian w
made to our baseline implementation to obtain significantust first account for the non-linear bias in their estinmatio
improvements in the robot’s localization accuracy. These elnitially, the estimation was performed as follows:
hancements are each individually straightforward, angltte  + The landmarks in the visual frame are used to arrive at
not change the basic particle filtering approach. But tagreth  displacements (in pixels) with respect to the image center.
they provide a roadmap for avoiding potential pitfalls when o Using similar triangles, along with knowledge of the
implementing it on vision-based and/or legged robots. camera parameters and the actual height of the landmark,
A. Landmark Histories these displacements are transformed into distance and

. , . . angle measurements relative to the robot.
To triangulate one’s pose from fixed landmarks, either two . .
. o Finally we transform these measurements, using the mea-
or three landmarks must be seen, depending on whether or not .
sured robot and camera (tilt, pan, roll) parameters to a

distance information is used. It is possible to reseed witho
frame of reference centered on the robot.

seeing enough landmarks simultaneously by maintaininig-a X hi i h found that the di
tory of previous observations. Observed distances and anglegJSIng t IS ana ytic approach, we tounc that the distances
e consistently underestimated. The bias was not cdnstan

to landmarks are stored over successive frames. The sto di he land K d he di inad
distances and angles are adjusted each frame based on¥} Istance to the landmarks, and as the distance inaigase

robot’s known motion. Successive observations of the salméa error increased to as much 2@%. This error actually

landmark are averaged, weighted by their confidence, th@"%‘_de distance (iit.imateslharmful ftotlogalizztion.. y
given as input for reseeding, as described in Section IlI. 0 overcome this problem, we introduced an intermediate

More precisely, for each of th& landmarks, letM; be correction function. We collected data corresponding ® th

the number of times the robot has recently observed landm&pgasured (by the robot) arattual (using a tape measure)
i. We represent thg'" observation of thei*" landmark as distances to landmarks at different positions on the fiekingy

Obs;; = (d;j, 015, i t:;), whered and o are the relative polynomial regression, we estimated the coefficients oftaccu

distance and orientation of the landmatkis the timestamp function that when given a measured estimate, provided a
of this observation, ang is the probability of the observation CO'TéSPondingcorrected estimate. That is, given measured
according to a vision-based confidence measure [2]. Also, ¥@luesX and actual valuey’, we estimated the coefficients,
pos;; be the two-dimensional Cartesian vector representatiéi ©f @ Polynomial QOthrhf ;95':‘;1 22 + 450 (11)

of the observation relative to the robot. Yilwey = G0 i 1 G2%; T 3% leieX

Given a 2-D velocity vector representing the robot’s cutren During normal operatlon, this polynomial was l.Jsed o com-
motion, T, the change in position of the robot is given by: pute thecorrecteddistance to landmarks. Once this correction

Shon — T x (£, — 1 7 was applied, the distance estimates proved to be much more
pos = U * (te — tiu) , () reliable, with a maximum error of 5%. This increased acoprac
wheret. andt,, represent the current time and the time ofjiowed us to include distance estimates for both protigbili
the last update. Then, observations eperectedas: updates and reseeding.

POSz‘,j| i€[1,N] = POSij — dpos .
jel1,M;) C. Extended Motion Model

Next, to merge the observations corresponding to any ongp, oyr haseline implementation, an inaccurate motion model
landmarki, we obtain the distance, heading, and probabilityreyented the robot from being able to precisely navigate to

of the aggregate landmark obser\%astll%ls as. a specific location on the field, a desirable goal. To overcome
psum; =Y _pij, Di= v (9) this obstacle, we modified the robot's behavior during lizeal

J ’ tion. When navigating to a point, the robot moves at full speed

d = > Pigdij o — Zp' on when it is more than a threshold distance away. When it comes
’ psum; ‘ - 0] closer to the target position, it progressively slows dowrat

) ) velocity almostf—O the normal speed. The distance threshold
Because the motion model is not very accurate and thgs chosen to b800mm based on experimentation to find a

robot can be picked up and moved to a different locatiqglog trade-off between accuracy and stabilization timee Th
frequently, the history estimates are deleted if they@der pors performance is not very sensitive to this value.

than a threshold in time or if the robot has undergone Sig”iﬁ'AIthough this is a minor contribution to our overall set of

cant movement (linear and/or rotational). That is, we reeno¥nnancements, a properly calibrated motion model can lead
observations from the history if any one of the followingeter o 5 considerable decrease in oscillation, which signiflgan

conditions are true: improves the localization accuracy. Also, as we shall show,
tij = tin, dij > din, 0ij > o (10) reduced oscillation leads to increased accuracy and smooth

In our current implementation, we usg, = 3sec, ds = motion while not increasing the time to stabilize.

15.0cm and oy, = 10.0°. These thresholds were found In the next section, we describe our experimental platform

through limited experimentation, though the algorithm @& n and the individual experiments we ran to measure the effect
particularly sensitive to their exact values. of these enhancements on localization performance.



IV. EXPERIMENTAL SETUP AND RESULTS The simulator does not attempt to simulate the camera input

The RoboCup competition [8] is an annual robot socc&@nd body physics of the actual Sony Aibo. Instead, it intisrac
event that provides researchers with challenging prdctiégrectly with the localization level of abstraction. Obgstions
and fundamental robotics problems. One of the compettiorfl€ presented as distances and angles to landmarks retative
divisions, the Legged League, provides especially intemgs the robot. In return, the simulator expects high-level acti
localization research challenges. Here, teams of four-foemmands to move the robot's head and body. The movement
legged robots, equipped with vision-based sensors, plageso and sensor models both add Gaussian noise to reflect real-
on a color-code@.9m x 4.4m field. Figure 1 shows one of theworld conditions. Details can be found in the Austin Villa
robots along with an overhead view of the playing field. Aam's technical report [2].
seen in the diagram, there are two goals, one at each end oftheExperimental Methodology

field and there are four visually distinct beacons (markensg According to the desiderata presented in Section I, we set

at each corner of the field. These objects serve as the robgl'tﬁ to evaluate the robot's localization performance based
primary visual landmarks for localization. The white fieilods Overall aceuracy;

and borders provide additional visual cues that the robnt ca i . . .
« Time taken to navigate to a series of points;

use to localize. « Ability to stabilize at a target point;

« Ability to recover from collisions and “kidnappings.”

We devised a group of experiments to measure the effects of
our enhancements with regard to these metrics. Though we ran
as many experiments as possible on the actual robot, we found
it necessary to use the simulator for the recovery expetisnen
because it allowed us to consistently reproduce collisan
kidnappings while accurately tracking the robot’s true gos
over time.

D. Test for Accuracy and Time

To test the effect of the incorporated enhancements on
overall accuracy and time, we designed a task in which the
robot was required to visit a sequenceldfpoints on the field
as depicted in Figure 2. The robot was allowed to repeatedly
scan the environmenRtFor each run, we measured the time

Fig. 1. An Image of the Aibo and the field. The robot has a fieltiefv of ~taken and the error in position and angle at each point.
56.9° (hor) and45.2° (ver), by which it can use the 2 goals and 4 visually

distinct beacons at the field corners for the purposes ofif@tsn.
A. Test-bed Robot 2 28 s 12
In our experiments, we used the standard Legged League 3 14, Z
robot, the Sony Aibo ERS-7 [1]. It is roughl80mm tall g ° - <> Ny S
(head to toe) and20mm long (nose to tail). It hag0 degrees o 8 v =
. . . . . 11
of freedom: 3 in its head, 3 in each leg, and 5 more in its a, . L
mouth, ears and tail. It is equipped with a CMOS color camera 1 2 °
at the tip of its nose with a horizontal field-of-view 66.9°

and a vertical field-of-view ofl5.2°. Images are captured atFig. 2.  Points, numbered in sequence, that the robot walksutingl
30 frames per second in the YCbCr image format. experimentation; arrows indicate the robot’s target headin

The robot also has a wireless LAN card that allows for To measure the individual effects of the added enhance-
communication with other robots or an off-board computefents, we performed this task over six different conditions
An important point to note is that all processing is perfoime ;) Baseline Implementation (None).

_ ; ) Baseline + Landmark Histories (HST).
on-board the robot, using &6MHz processor. 3) Baseline + Distance based probability updates (DST).

B. Simulator 4) Baseline + Function approximation of distances (FA).
Debugging code and tuning parameters are often Cumber.S) Baseline + Function approx. of distances and distance-based
. : e probability updates (DST+FA).
some tasks to perform on a physical robot. Particle filtering 6) Baseline + All enhancements (All).
implementations require many parameters to be tuned. In_l_h diti h o test h enh ;
addition, the robustness of the algorithm often masks bu?s ese conditions were chosen 1o test each enhancemen

making them difficult to track down. To assist us in the devel" |solatt|or: atr;]dtln .comlbmguon.k I;gr;cher, 5 a"OV\t’)S l;]S tof |
opment of our localization code, we constructed a simula’tcﬂemons fate that using fandmark distances can be harmiu
Conveniently, the simulator has also proven to be useful fors, general, the robot is not able to scan the field constantg allow it

running experiments like the ones presented in this paper. to do so in these experiments for the purposes of consistency



if the distance estimates are not properly corrected. In dlhough the average time taken is the lowestD&T+FA this
six conditions, we used the behavior-based motion model emas not significant (p-value betwe&8T+FAandAll is 0.51).
hancement (Section I1I-C). The impact of the extended moti¢c . Test for Stability

model was tested separately on a task requiring especially, addition to being able to localize precisely, once theotob
accurate positioning (See Section IV-F). has arrived at the target location, it should stay localized
The results of these experiments, averaged across ten Ihpsherty we refer to astability. To test stability, we developed
each, are shown in Tables | and Il. The localization errofge following experiment. The robot is placed at each one
were computed as the distance between the robot’s center gpghe points shown in Figure 2 and is given ten seconds to
the target location when the robot indicated that it believgy.gjize. Subsequently, for twenty seconds, the robot iesna

it had r?ached the target. Significance is established wsingationary and records its pose estimates, at the end ohwhic
Student’s t-testThe p-values measure the likelihood that eac[ﬁbriod the robot calculates the deviation in its pose estima

entry differs from the baseline algorithm (labelbidng. We  gjnce the robot does not actually move during this period,
follow the convention of using a p-value ef 0.05 (> 95%  changing pose estimates reflect erroneous oscillation.

confidence) to establish statistical significance. Table Ill summarizes the results. The values shown in the
Enhan. Distance Angle table are the average deviation in pose estimates over ten
Error (cm) [ p-value | Error (deg) [ p-value runs at each point. These 140 data points reflect the average
None | 19.75:12.0 — [ 1r.75k1148 - deviation obtained from roughly 600 samples each
HST 17.92+9.88 0.16 10.68£5.97 10~ 10 ghly P )
DST 25.0413.73 | 10~ % 9.1445.46 10-13 [ Enhan. [ Dist Error (cm) [ p-value | Ang Error (deg)| p-value |
FA 15.19+8.59 102 10.2146.11 10— 11 None 2.63 - 0.678 -
DST+FA | 13.7248.07 10—° 9.5+5.27 10~ 13 HST 1.97 10—° 0.345 <1015
All 9.65+7.69 10-1° 343449 | <1015 DST 9.26 <10°15 3.05 <1013
TABLET FA 1.46 10~ 10 0.338 <10
ERRORS INPOSITION AND ORIENTATION DST+FA 4.07 108 1.30 <10-1%
i All 1.32 1012 0.332 <1015
[ Enhan. | Time (sec) [ p-value] TABLE TN
IN-|OSr1|? 12(15123&735?;?3 0—75 AVERAGE DEVIATION IN POSITION AND ORIENTATION
DST 19618019 18 15=F Based on these results,_we can .conplude .that the addltllon
EA 171.85515.19 0.04 of all enhancements provides a significant improvement in
DST + FA | 151.28E48.06 0.56 stability. The use oDST without the other two enhancements
Al 16254438 | 043 (HST, FA) once again performs the worst. It is surprising that

TABLE T
AVERAGE TIME TAKEN PER RUN

FA does as well af\Ml (pg;s: = 0.413, pang = 0.743). Then
again, because the distances are being estimated welbtibe r

From Table I it is evident that the error in pose is considefets better reseed estimates. This confirms our hypotHesis t
ably reduced aftel’ the addition Of a” the enhancements[e-rh%ndmark distances can be usefu| enhancements'

is a50% reduction in position error with respect to the baselinlg_ Extended Motion Model
implementation. The improvement in orientation accuraxy |
even more dramatic.

Though the addition of observation histories alohST)
does not significantly improve accuracy, when combined wi
the other enhancements, there is a significant improvem

We performed an additional experiment to determine the
importance of a well-calibrated and extended motion model.
{ﬁ the robot soccer domain, one of the robots typically plays
? role of keeper and must stay well-localized within thalgo
n . g : . .
Box (points 1 and 5 in Figure 2). Doing so requires precise and

(p — value betweenDST+FAandAll =< 10719). . : .
The general reluctance to utilize distance-based rdl;abilcontm"ed movements. We performed an experiment in which
g b the robot, playing the role of a keeper, tries to stay loealiz

updates in Iocallz_atlon IS explal_ned by the fact _that Wh.ea its base position. We repeatedly moved the robot out of its
they are used without accounting for the non-linear bias . ) . .

. L . osition to the center of the field and let it move back to its
through function approximation, the error is more than even

the baseline implementation. By itseFA produces a good ase position. We then measured the error in the pose estimat

T . ; . ver ten runs of this test both with and without an extended
reduction in error because the improved distance estimates.. .

. otion model. The results are shown in Table IV.
lead to better reseed values, even if they are not used for

probability updates. Using both, i.ddST+FA results in the Enhan. DRT(E) AnE"(zfe T (S50
biggest improvementptvalue= 10~'> w.r.t DST) afterAll. [_Ang (deg) |
- None 12.89F2.48 | 15.04£9.72 | 17.2H1.25
From Table I, we see that the addition of all of the Extended MM | 74965106 | 555497 | 18145295
enhancements does not significantly increase the time taken TABLE TV
to reach the target locations. However, usiD§T without ERRORS WITH AND WITHOUT THE EXTENDED MOTION MODEL

incorporatingFA or HST does lead to worse time performance From the results in Table IV, we see that incorporating an
because the robot has trouble settling at a point. Since #wended motion model significantly boosts the localizatio

oscillation happens even with the extended motion model jirerformance. The corresponding increase in time is noelarg
place, it can be attributed solely to bad probability upslateenough to be disruptive.



G. Recovery effect in the absence of interference. It would seem that thi
Finally, we performed a set of experiments using odinding is incompatible with the accuracy results reported i
simulator to test the effect of our enhancements on the ®wbotable I. However, the experimental conditions in the two
ability to recover from unmodeled movements. We tested os¢enarios were significantly different. In particular, inet
localization algorithm against two types of interferenbatt recovery experiments, we did not wait for the robot’s estéma
are commonly encountered in RoboCup soccer: collisions atedstabilize before measuring the error. This metric not/onl
kidnappings. In both cases, we disrupt the robot once evengasures how well the robot localizes when it has good
30 (simulated) seconds while it attempts to walk a figurdaformation, but also how poorly it does when it is lost, whic
8 path around the field and scan with its head. Collisios why this metric is appropriate for testing recovery.
are simulated by preventing the robot's body from moving Although the distance error fd#STis quite high, in theAll
(unbeknownst to it so it continues to perform motion updatesase we do only slightly worse than originally. Thus, alttjou
for 5 seconds. The robot's head is permitted to contindlee algorithm has been tuned to work well in game situations
moving. In the kidnapping experiments, the robot is ingyantwhere collisions and kidnappings are common, we don't give
transported to a random spot on the field, 12200mm from it much accuracy when those disturbances do not occur.
previous location and given a random orientation. We test ou V. CONCLUSION
enhancements by comparing these scenarios to the case im this paper, we addressed the task of performing accurate
which the robot simply walks a figure-8 pattern undisturbetbcalization on a legged robot with vision as the primary
Twice per second, we record the absolute error in robot's pasensor. This task presents new challenges in terms of sensor
estimate. We compare average errors for 2 hours of simulatesti motion modeling in comparison with previous approaches
time, corresponding to roughly 50 laps around the field. Tl wheeled robots witl860° range sensors. Starting with

results are summarized in Tables V and VI. a baselineimplementation adapted from the literature, we
Enhan. Distance Error (cm) presented several novel enhancements. We presented@&hpiri
Undisturbed [ Colliding [ Kidnapped results, both on a physical robot and in simulation that demo
None | 8.03+£4.92 | 27.7+22.4 | 74.3£55.2 strate that these enhancements improve the robot’s overall
HST | 17.6+£16.2 | 253 £21.5 | 27.3 £ 36.4 its stability wh ati qit
DST+EA | 7831535 1 1621169 [ 315 1416 accuracy, its stability when stationary, and its recoveqnf
Al 867 £9.68 | 144+ 15.6 | 13.5 £ 23.4 disturbances. Our main contribution is a detailed catalpgif
TABLE V some potential pitfalls and their solutions when implerirent
ERRORS FOR VARIOUS PERTURBATIONS particle filtering on legged robots with limited-range o$ian.
Enhan. Angle IrErrror (deg) ACKNOWLEDGMENTS
Undisturbed| Co |d|n9 | ch‘inapped The authors would like to thank the UT Austin Villa team foethefforts
None | 2.74+2.20 | 7.15+£9.33 | 15.3£22.7 in developing the software used as a basis for the work regoirt this
HST 3.69+3.15 | 10.7£21.4 | 6.66+15.3 paper. Special thanks to Daniel Stronger for his specifidritmrions to the
DST+FA | 2.914+2.36 | 7.074+11.0 | 9.81 4+ 21.2 landmark-distance calibration process. This researchppasted in part by
Al 2.38+£231 | 557 £11.1 | 438 £ 13.5 NSF CAREER award 11S-0237699, ONR YIP award N00014-04-48)&nd
TABLE VI DARPA grant HR0011-04-1-0035.
ERRORS FOR VARIOUS PERTURBATIONS REFERENCES
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