
In The IEEE International Conference on Robotics and Automation (ICRA 05),
Barcelona, Spain, April 2005.

Practical Vision-Based Monte Carlo Localization
on a Legged Robot

Mohan Sridharan and Gregory Kuhlmann and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas 78712-1188
{smohan,kuhlmann,pstone}@cs.utexas.edu

Abstract— Mobile robot localization, the ability of a robot to
determine its global position and orientation, continues to be
a major research focus in robotics. In most past cases, such
localization has been studied on wheeled robots with range-
finding sensors such as sonar or lasers. In this paper, we consider
the more challenging scenario of a legged robot localizing with
a limited field-of-view camera as its primary sensory input.
We begin with a baseline implementation adapted from the
literature that provides a reasonable level of competence, but
that exhibits some weaknesses in real-world tests. We propose
a series of practical enhancements designed to improve the
robot’s sensory and actuator models that enable our robots to
achieve a 50% improvement in localization accuracy over the
baseline implementation. We go on to demonstrate how the
accuracy improvement is even more dramatic when the robot is
subjected to large unmodeled movements. These enhancements
are each individually straightforward, but together they provide
a roadmap for avoiding potential pitfalls when implementing
Monte Carlo Localization on vision-based and/or legged robots.

I. I NTRODUCTION

One of the most fundamental tasks for a mobile robot is
the ability to determine its location in its environment from
sensory input. A significant amount of work has been done on
this so-calledlocalizationproblem.

One common approach to this problem isparticle filtering
or Monte Carlo Localization (MCL) [10], [11]. MCL has been
shown to be a robust solution for mobile robot localization,
particularly in the face of collisions and large, unexpected
movements (e.g. the “kidnapped robot” problem [5]). Al-
though this method has a well-grounded theoretical founda-
tion, and has been demonstrated to be effective in a number
of real-world settings, there remain some practical challenges
to deploying it in a new robotic setting.

This paper presents a case study demonstrating the practical
steps needed to make particle filtering effective and reliable on
a legged robot with only vision-based sensors. Most previous
implementations have been on wheeled robots with sonar or
laser sensors (e.g. [4], [5]). In comparison with our setting,
these previous settings have the advantages of relatively accu-
rate odometry models and 360o sensory information. Although
MCL has been applied to legged, vision-based robots in the
past [6], [7], [9], our work contributes novel enhancements
that make its implementation more practical.

We begin with a baseline implementation of Monte Carlo
Localization adapted from recent literature [9] that achieves a
reasonable level of competence. We then present a series of
innovations and adjustments required to improve the robot’s
performance with respect to the following three desiderata:

1) When navigating to a point, the robot should be able to
stabilize quickly close to the target destination.

2) The robot should be able to remain localized even when
colliding with other objects in its environment.

3) The robot should adjust quickly and robustly to sudden
large movements (the kidnapped robot problem).

All of these properties must be achieved within the limits of
the robot’s on-board processing capabilities.

In order to achieve these desiderata, we enhance our base-
line implementation with the following three additions.

1) Maintaining a history of landmark sightings to produce
more triangulation estimates.

2) Using an empirically-computed unbiased landmark dis-
tance model in addition to heading for estimate updates.

3) Tuning and extending the motion model for improved
odometry calculation in a way that is particularly suited
to improving localization.

We empirically evaluate the effectiveness of these general
enhancements individually and collectively, both in simulation
and on a Sony Aibo ERS-7 robot. In combination, the methods
we present improve the robot’s localization ability over the
baseline method by50%: the robot’s average error in its
location and heading estimates are reduced to half of that
with the baseline implementation. The accuracy improvement
is shown to be even more dramatic when the robot is subjected
to large unmodeled movements.

II. BACKGROUND

In Monte Carlo Localization, a robot estimates its posi-
tion using a set of samples calledparticles. Each particle,
〈〈x, y, θ〉 , p〉, represents a hypothesis about the robot’spose:
its global location(x, y) and orientation (θ). The probability,p,
expresses the robot’s confidence in this hypothesis. The density
of particle probabilities represents a probability distribution
over the space of possible poses.

Each operating cycle, the robot updates its pose estimate
by incorporating information from its action commands and
sensors. Two different probabilistic models must be supplied to
perform these updates. The Motion Model attempts to capture
the robot’s kinematics. Given the robot’s previous pose, and
an action command, such as ”walk forward at 300 mm/s” or
”turn at 0.6 rad/s”, the model predicts the robot’s new pose.
Formally, it defines the probability distribution,p(h′|h, a),
whereh is the old pose estimate,a is the last action command
executed, andh′ is the new pose estimate.



The Sensor Model is a model of the robot’s perceptors and
environment. It predicts what observations will be made by
the robot’s sensors, given its current pose. The probability
distribution that it defines isp(o|h), whereo is an observation
such as “landmark X is 1200mm away and 20 degrees to my
right”, and h is again the old pose estimate.

Given these two models, we seek to compute
p(hT |oT , aT−1, oT−1, aT−2, . . . , a0), whereT is the current
cycle andht, ot and at are the pose estimate, observation
and action command, respectively, for timet.

A. Basic Monte Carlo Localization

The basic MCL algorithm proceeds as follows. At the
beginning of each cycle, the motion model is used to update
the position of each of them particles,

〈

h(i), p(i)
〉

based on
the current action command. The new pose,h

(i)
T is sampled

from the distribution:
hT ∼ p(hT |h

(i)
T−1, aT−1) (1)

Next, the probability of each particle is updated by the
sensor model, based on the current sensory data. The sensor
model computes the likelihood of the robot’s observations
given the particle’s pose, and adjusts the particle’s probability
accordingly. To prevent occasional bad sensory data from
having too drastic an effect, a particle’s change in probability is
typically limited by some filtering function,F (pold, pdesired).
The sensor model update is given by the following equation:

p
(i)
T := F (p

(i)
T−1, p(oT |h

(i)
T−1)) (2)

Finally, particles are resampled in proportion to their prob-
abilities. High probability particles are duplicated and replace
particles with low probability. The expected number of result-
ing copies of particle

〈

h(i), p(i)
〉

is:

m ·
p(i)

∑m

j=1 p(j)
(3)

This description of the basic MCL algorithm specifies how
we maintain a probabilistic model of the robot’s location over
time, but it omits several details. For instance, how do we
obtain the motion and sensor models? And how many particles
do we need? Some previous answers to these questions are
surveyed in the following section.

B. MCL for Vision-based Legged Robots

A large body of research has been performed on robot
localization, mostly using wheeled robots with laser and sonar
as the sensors [4], [5], [3]. Here, we focus on the few exam-
ples of MCL implemented on vision-based legged robots. In
particular, our approach to localization is built upon previous
research done in the RoboCup legged soccer domain [8].

Our baseline approach is drawn mainly from one particular
system designed for this domain [9]. In this approach, the
sensor model updates for each particle are performed based
on the sensed locations of landmarks with known locations
in the environment (landmarks include visual markers and
line intersections in the problem domain - see Figure 1).
Given the particle’s pose, the robot calculates the expected
bearing for each observed landmark,α

(l)
exp, l ∈ L, where

L is the set of landmarks seen in the current frame. The
posterior probability for a single observation is then estimated
by the following equation representing the degree to which the
observed landmark bearingα(l)

meas matchesα(l)
exp:

s(α(l)
meas, α

(l)
exp) =

{

e−50ω2
l , if ωl < 1

e−50(2−ωl)
2

otherwise
(4)

whereωl =
|α(l)(meas−α(l)

exp|
π

. The probability,p, of a particle
is then the product of these similarities:

p =
∏

l∈L

s(α(l)
meas, α

(l)
exp) (5)

Lastly, the following filtering function is applied to update
the particle’s probability [9]:

pnew =











pold + 0.1 if p > pold + 0.1

pold − 0.05 if p < pold − 0.05

p otherwise

(6)

An important aspect of this sensor model is that distances
to landmarks are completely ignored. The motivation for
this restriction is that vision-based distance estimates are
typically quite noisy and the distribution is not easy to model
analytically. Worse yet, there can be a strong non-linear bias
in the distance estimation process which makes the inclusion
of distance estimates actively harmful, causing localization
accuracy to degrade (see Section IV). In this paper, we show
that the bias in distance estimates can be empirically modeled
such that they can be incorporated to improve sensor model
updates.

In the baseline approach, to address the frequently-occurring
kidnapped robot problem,1 a few of the particles with low
probability are replaced by estimates obtained by triangulation
from the landmarks seen in the current frame. This process,
called reseeding, is based upon the idea of Sensor Resetting
localization [7].

A shortcoming of previous reseeding approaches is that they
require at least two or three landmarks to be seen in the same
camera frame to enable triangulation. In this paper, we present
a concrete mechanism that enables us to use reseeding even
when two landmarks are never seen concurrently.

Another significant challenge to achieving MCL on legged
robots is that of obtaining a proper motion model. In our
initial implementation, we used a motion model that provided
reasonably accurate velocity estimates when the robot was
walking at near maximum speed. However, when the robot
was close to its desired location, moving at full speed caused
jerky motion. The resulting “noise” in the motion model
caused erroneous action model updates (Equation 1). The
robot assumed that it was moving at full speed, but before
its motion was completed, it received a pose estimate beyond
the target. This estimate generated another motion command,
leading to oscillation around the target position. In this paper,
we examine the effect on this oscillation of improving the
motion model with an extension to the robot’s behavior.2

1In the RoboCup legged league, when a robot commits a foul, it is picked
up by the referee and replaced at a different point on the field.

2Note that the noisy motion model is not a property of MCL or any other
algorithm, but rather our own baseline implementation.



III. E NHANCEMENTS

In this section we detail the three enhancements that we
made to our baseline implementation to obtain significant
improvements in the robot’s localization accuracy. These en-
hancements are each individually straightforward, and they do
not change the basic particle filtering approach. But together
they provide a roadmap for avoiding potential pitfalls when
implementing it on vision-based and/or legged robots.

A. Landmark Histories

To triangulate one’s pose from fixed landmarks, either two
or three landmarks must be seen, depending on whether or not
distance information is used. It is possible to reseed without
seeing enough landmarks simultaneously by maintaining ahis-
tory of previous observations. Observed distances and angles
to landmarks are stored over successive frames. The stored
distances and angles are adjusted each frame based on the
robot’s known motion. Successive observations of the same
landmark are averaged, weighted by their confidence, then
given as input for reseeding, as described in Section II.

More precisely, for each of theN landmarks, letMi be
the number of times the robot has recently observed landmark
i. We represent thejth observation of theith landmark as
Obsi,j = (di,j , oi,j , pi,j , ti,j), whered and o are the relative
distance and orientation of the landmark,t is the timestamp
of this observation, andp is the probability of the observation
according to a vision-based confidence measure [2]. Also, let
−−−→posi,j be the two-dimensional Cartesian vector representation
of the observation relative to the robot.

Given a 2-D velocity vector representing the robot’s current
motion,−→υ , the change in position of the robot is given by:

−−→
δpos = −→υ ∗ (tc − tlu) (7)

where tc and tlu represent the current time and the time of
the last update. Then, observations arecorrectedas:

−−−→posi,j | i∈[1,N ]
j∈[1,Mi]

= −−−→posi,j −
−−→
δpos (8)

Next, to merge the observations corresponding to any one
landmarki, we obtain the distance, heading, and probability
of the aggregate landmark observations as:

psumi =
∑

j

pi,j , pi =
psumi

Mi

(9)

di =

∑

j pi,jdi,j

psumi

, oi =
∑

j

pi,joi,j

Because the motion model is not very accurate and the
robot can be picked up and moved to a different location
frequently, the history estimates are deleted if they areolder
than a threshold in time or if the robot has undergone signifi-
cant movement (linear and/or rotational). That is, we remove
observations from the history if any one of the following three
conditions are true:

ti,j ≥ tth, di,j ≥ dth, oi,j ≥ oth (10)
In our current implementation, we usetth = 3sec, dth =
15.0cm and oth = 10.0o. These thresholds were found
through limited experimentation, though the algorithm is not
particularly sensitive to their exact values.

B. Distance-Based Updates

To use distances to landmarks effectively in localization we
must first account for the non-linear bias in their estimation.
Initially, the estimation was performed as follows:

• The landmarks in the visual frame are used to arrive at
displacements (in pixels) with respect to the image center.

• Using similar triangles, along with knowledge of the
camera parameters and the actual height of the landmark,
these displacements are transformed into distance and
angle measurements relative to the robot.

• Finally we transform these measurements, using the mea-
sured robot and camera (tilt, pan, roll) parameters to a
frame of reference centered on the robot.

Using this analytic approach, we found that the distances
were consistently underestimated. The bias was not constant
with distance to the landmarks, and as the distance increased,
the error increased to as much as20%. This error actually
made distance estimates harmful to localization.

To overcome this problem, we introduced an intermediate
correction function. We collected data corresponding to the
measured (by the robot) andactual (using a tape measure)
distances to landmarks at different positions on the field. Using
polynomial regression, we estimated the coefficients of a cubic
function that when given a measured estimate, provided a
correspondingcorrected estimate. That is, given measured
valuesX and actual valuesY , we estimated the coefficients,
ai, of a polynomial of the form:

yi|yi∈Y = a0 + a1xi + a2x
2
i + a3x

3
i |xi∈X (11)

During normal operation, this polynomial was used to com-
pute thecorrecteddistance to landmarks. Once this correction
was applied, the distance estimates proved to be much more
reliable, with a maximum error of 5%. This increased accuracy
allowed us to include distance estimates for both probability
updates and reseeding.

C. Extended Motion Model

In our baseline implementation, an inaccurate motion model
prevented the robot from being able to precisely navigate to
a specific location on the field, a desirable goal. To overcome
this obstacle, we modified the robot’s behavior during localiza-
tion. When navigating to a point, the robot moves at full speed
when it is more than a threshold distance away. When it comes
closer to the target position, it progressively slows down to a
velocity almost 1

10 the normal speed. The distance threshold
was chosen to be300mm based on experimentation to find a
good trade-off between accuracy and stabilization time. The
robot’s performance is not very sensitive to this value.

Although this is a minor contribution to our overall set of
enhancements, a properly calibrated motion model can lead
to a considerable decrease in oscillation, which significantly
improves the localization accuracy. Also, as we shall show,
reduced oscillation leads to increased accuracy and smoother
motion while not increasing the time to stabilize.

In the next section, we describe our experimental platform
and the individual experiments we ran to measure the effect
of these enhancements on localization performance.



IV. EXPERIMENTAL SETUP AND RESULTS

The RoboCup competition [8] is an annual robot soccer
event that provides researchers with challenging practical
and fundamental robotics problems. One of the competition’s
divisions, the Legged League, provides especially interesting
localization research challenges. Here, teams of four four-
legged robots, equipped with vision-based sensors, play soccer
on a color-coded2.9m×4.4m field. Figure 1 shows one of the
robots along with an overhead view of the playing field. As
seen in the diagram, there are two goals, one at each end of the
field and there are four visually distinct beacons (markers), one
at each corner of the field. These objects serve as the robot’s
primary visual landmarks for localization. The white field lines
and borders provide additional visual cues that the robot can
use to localize.

Fig. 1. An Image of the Aibo and the field. The robot has a field-of-view of
56.9

o (hor) and45.2
o (ver), by which it can use the 2 goals and 4 visually

distinct beacons at the field corners for the purposes of localization.

A. Test-bed Robot
In our experiments, we used the standard Legged League

robot, the Sony Aibo ERS-7 [1]. It is roughly280mm tall
(head to toe) and320mm long (nose to tail). It has20 degrees
of freedom: 3 in its head, 3 in each leg, and 5 more in its
mouth, ears and tail. It is equipped with a CMOS color camera
at the tip of its nose with a horizontal field-of-view of56.9o

and a vertical field-of-view of45.2o. Images are captured at
30 frames per second in the YCbCr image format.

The robot also has a wireless LAN card that allows for
communication with other robots or an off-board computer.
An important point to note is that all processing is performed
on-board the robot, using a576MHz processor.

B. Simulator
Debugging code and tuning parameters are often cumber-

some tasks to perform on a physical robot. Particle filtering
implementations require many parameters to be tuned. In
addition, the robustness of the algorithm often masks bugs,
making them difficult to track down. To assist us in the devel-
opment of our localization code, we constructed a simulator.
Conveniently, the simulator has also proven to be useful for
running experiments like the ones presented in this paper.

The simulator does not attempt to simulate the camera input
and body physics of the actual Sony Aibo. Instead, it interacts
directly with the localization level of abstraction. Observations
are presented as distances and angles to landmarks relativeto
the robot. In return, the simulator expects high-level action
commands to move the robot’s head and body. The movement
and sensor models both add Gaussian noise to reflect real-
world conditions. Details can be found in the Austin Villa
team’s technical report [2].

C. Experimental Methodology

According to the desiderata presented in Section I, we set
out to evaluate the robot’s localization performance basedon:

• Overall accuracy;
• Time taken to navigate to a series of points;
• Ability to stabilize at a target point;
• Ability to recover from collisions and “kidnappings.”
We devised a group of experiments to measure the effects of

our enhancements with regard to these metrics. Though we ran
as many experiments as possible on the actual robot, we found
it necessary to use the simulator for the recovery experiments
because it allowed us to consistently reproduce collisionsand
kidnappings while accurately tracking the robot’s true pose
over time.

D. Test for Accuracy and Time

To test the effect of the incorporated enhancements on
overall accuracy and time, we designed a task in which the
robot was required to visit a sequence of14 points on the field
as depicted in Figure 2. The robot was allowed to repeatedly
scan the environment.3 For each run, we measured the time
taken and the error in position and angle at each point.

B
LU

E
 G

O
A

L

Y
E

LL
O

W
 G

O
A

L

10

13

5

4

3

6

14

11

8 12

92

17

Fig. 2. Points, numbered in sequence, that the robot walks to during
experimentation; arrows indicate the robot’s target heading.

To measure the individual effects of the added enhance-
ments, we performed this task over six different conditions:

1) Baseline Implementation (None).
2) Baseline + Landmark Histories (HST).
3) Baseline + Distance based probability updates (DST).
4) Baseline + Function approximation of distances (FA).
5) Baseline + Function approx. of distances and distance-based

probability updates (DST+FA).
6) Baseline + All enhancements (All).

These conditions were chosen to test each enhancement
in isolation and in combination. Further, it allows us to
demonstrate that using landmark distances can be harmful

3In general, the robot is not able to scan the field constantly -we allow it
to do so in these experiments for the purposes of consistency



if the distance estimates are not properly corrected. In all
six conditions, we used the behavior-based motion model en-
hancement (Section III-C). The impact of the extended motion
model was tested separately on a task requiring especially
accurate positioning (See Section IV-F).

The results of these experiments, averaged across ten runs
each, are shown in Tables I and II. The localization errors
were computed as the distance between the robot’s center and
the target location when the robot indicated that it believed
it had reached the target. Significance is established usinga
Student’s t-test. The p-values measure the likelihood that each
entry differs from the baseline algorithm (labeledNone). We
follow the convention of using a p-value of< 0.05 (> 95%
confidence) to establish statistical significance.

Enhan. Distance Angle
Error (cm) p-value Error (deg) p-value

None 19.75±12.0 − 17.75±11.48 −

HST 17.92±9.88 0.16 10.68±5.97 10
−10

DST 25.07±13.73 10
−4 9.14±5.46 10

−13

FA 15.19±8.59 10
−4 10.21±6.11 10

−11

DST+FA 13.72±8.07 10
−6 9.5±5.27 10

−13

All 9.65±7.69 10
−15 3.43±4.49 < 10

−15

TABLE I

ERRORS INPOSITION AND ORIENTATION

Enhan. Time (sec) p-value

None 161.25.75±3.43 −

HST 161.26±5.96 0.75
DST 196.18±12.18 10

−6

FA 171.85±15.19 0.04
DST + FA 151.28±48.06 0.56

All 162.54±4.38 0.43
TABLE II

AVERAGE TIME TAKEN PER RUN

From Table I it is evident that the error in pose is consider-
ably reduced after the addition of all the enhancements. There
is a50% reduction in position error with respect to the baseline
implementation. The improvement in orientation accuracy is
even more dramatic.

Though the addition of observation histories alone (HST)
does not significantly improve accuracy, when combined with
the other enhancements, there is a significant improvement
(p − value betweenDST+FA andAll =< 10−15).

The general reluctance to utilize distance-based probability
updates in localization is explained by the fact that when
they are used without accounting for the non-linear bias
through function approximation, the error is more than even
the baseline implementation. By itself,FA produces a good
reduction in error because the improved distance estimates
lead to better reseed values, even if they are not used for
probability updates. Using both, i.e.DST+FA, results in the
biggest improvement (p-value= 10−15 w.r.t DST) afterAll.

From Table II, we see that the addition of all of the
enhancements does not significantly increase the time taken
to reach the target locations. However, usingDST without
incorporatingFA or HSTdoes lead to worse time performance
because the robot has trouble settling at a point. Since the
oscillation happens even with the extended motion model in
place, it can be attributed solely to bad probability updates.

Though the average time taken is the lowest forDST+FA, this
was not significant (p-value betweenDST+FAandAll is 0.51).

E. Test for Stability
In addition to being able to localize precisely, once the robot

has arrived at the target location, it should stay localized, a
property we refer to asstability. To test stability, we developed
the following experiment. The robot is placed at each one
of the points shown in Figure 2 and is given ten seconds to
localize. Subsequently, for twenty seconds, the robot remains
stationary and records its pose estimates, at the end of which
period the robot calculates the deviation in its pose estimates.
Since the robot does not actually move during this period,
changing pose estimates reflect erroneous oscillation.

Table III summarizes the results. The values shown in the
table are the average deviation in pose estimates over ten
runs at each point. These 140 data points reflect the average
deviation obtained from roughly 600 samples each.

Enhan. Dist Error (cm) p-value Ang Error (deg) p-value

None 2.63 − 0.678 −

HST 1.97 10
−5 0.345 < 10

−15

DST 9.26 < 10
−15 3.05 < 10

−15

FA 1.46 10
−10 0.338 < 10

−15

DST+FA 4.07 10
−8 1.30 < 10

−15

All 1.32 10
−12 0.332 < 10

−15

TABLE III

AVERAGE DEVIATION IN POSITION AND ORIENTATION

Based on these results, we can conclude that the addition
of all enhancements provides a significant improvement in
stability. The use ofDST without the other two enhancements
(HST, FA) once again performs the worst. It is surprising that
FA does as well asAll (pdist = 0.413, pang = 0.743). Then
again, because the distances are being estimated well, the robot
gets better reseed estimates. This confirms our hypothesis that
landmark distances can be useful enhancements.

F. Extended Motion Model
We performed an additional experiment to determine the

importance of a well-calibrated and extended motion model.
In the robot soccer domain, one of the robots typically plays
the role of keeper and must stay well-localized within the goal
box (points 1 and 5 in Figure 2). Doing so requires precise and
controlled movements. We performed an experiment in which
the robot, playing the role of a keeper, tries to stay localized
at its base position. We repeatedly moved the robot out of its
position to the center of the field and let it move back to its
base position. We then measured the error in the pose estimate
over ten runs of this test both with and without an extended
motion model. The results are shown in Table IV.

Enhan. Error
Dist (cm) Ang (deg) Time (sec)

None 12.89±2.48 15.0.±9.72 17.21±1.25

Extended MM 7.496±1.96 5.5±4.97 18.14±2.25

TABLE IV

ERRORS WITH AND WITHOUT THE EXTENDED MOTION MODEL

From the results in Table IV, we see that incorporating an
extended motion model significantly boosts the localization
performance. The corresponding increase in time is not large
enough to be disruptive.



G. Recovery
Finally, we performed a set of experiments using our

simulator to test the effect of our enhancements on the robot’s
ability to recover from unmodeled movements. We tested our
localization algorithm against two types of interference that
are commonly encountered in RoboCup soccer: collisions and
kidnappings. In both cases, we disrupt the robot once every
30 (simulated) seconds while it attempts to walk a figure-
8 path around the field and scan with its head. Collisions
are simulated by preventing the robot’s body from moving
(unbeknownst to it so it continues to perform motion updates)
for 5 seconds. The robot’s head is permitted to continue
moving. In the kidnapping experiments, the robot is instantly
transported to a random spot on the field, 1200mm from its
previous location and given a random orientation. We test our
enhancements by comparing these scenarios to the case in
which the robot simply walks a figure-8 pattern undisturbed.
Twice per second, we record the absolute error in robot’s pose
estimate. We compare average errors for 2 hours of simulated
time, corresponding to roughly 50 laps around the field. The
results are summarized in Tables V and VI.

Enhan. Distance Error (cm)
Undisturbed Colliding Kidnapped

None 8.03 ± 4.92 27.7 ± 22.4 74.3 ± 55.2

HST 17.6 ± 16.2 25.3 ± 21.5 27.3 ± 36.4

DST+FA 7.83 ± 5.35 16.2 ± 16.9 31.5 ± 41.6

All 8.67 ± 9.68 14.4 ± 15.6 13.5 ± 23.4

TABLE V

ERRORS FOR VARIOUS PERTURBATIONS.

Enhan. Angle Error (deg)
Undisturbed Colliding Kidnapped

None 2.74 ± 2.20 7.15 ± 9.33 15.3 ± 22.7

HST 3.69 ± 3.15 10.7 ± 21.4 6.66 ± 15.3

DST+FA 2.91 ± 2.36 7.07 ± 11.0 9.81 ± 21.2

All 2.38 ± 2.31 5.57 ± 11.1 4.38 ± 13.5

TABLE VI

ERRORS FOR VARIOUS PERTURBATIONS.

From the distance error table, we can see that for every test
condition, the collision and kidnapping disturbances caused an
increase in average error when compared to the undisturbed
scenario, as we would expect. However, the increase in erroris
much smaller when our enhancements were used. For instance,
with all enhancements turned off, the kidnapped robot problem
causes almost a 10-fold increase in error. But when we include
our enhancements, the error is only increased by 56%. There
is a corresponding improvement in angle accuracy.

When we look at the individual contributions of the en-
hancements, we see that for both disturbance scenarios, the
individual enhancements are better than no enhancements.
Also, in both cases, they have a larger effect when combined
than when they are used individually. This implies that both
enhancements contribute to the improved recovery. Only in
the case ofDST+FA, when comparing angle accuracy to the
baseline for collisions, do we not see a significant improve-
ment. This is most likely explained by the limited effect of
distance updates on orientation accuracy in general.

Finally, looking at the “Undisturbed” column, we notice
that the enhancements, if anything, have a somewhat negative

effect in the absence of interference. It would seem that this
finding is incompatible with the accuracy results reported in
Table I. However, the experimental conditions in the two
scenarios were significantly different. In particular, in the
recovery experiments, we did not wait for the robot’s estimate
to stabilize before measuring the error. This metric not only
measures how well the robot localizes when it has good
information, but also how poorly it does when it is lost, which
is why this metric is appropriate for testing recovery.

Although the distance error forHST is quite high, in theAll
case we do only slightly worse than originally. Thus, although
the algorithm has been tuned to work well in game situations
where collisions and kidnappings are common, we don’t give
up much accuracy when those disturbances do not occur.

V. CONCLUSION

In this paper, we addressed the task of performing accurate
localization on a legged robot with vision as the primary
sensor. This task presents new challenges in terms of sensor
and motion modeling in comparison with previous approaches
on wheeled robots with360o range sensors. Starting with
a baseline implementation adapted from the literature, we
presented several novel enhancements. We presented empirical
results, both on a physical robot and in simulation that demon-
strate that these enhancements improve the robot’s overall
accuracy, its stability when stationary, and its recovery from
disturbances. Our main contribution is a detailed cataloging of
some potential pitfalls and their solutions when implementing
particle filtering on legged robots with limited-range of vision.

ACKNOWLEDGMENTS

The authors would like to thank the UT Austin Villa team for their efforts
in developing the software used as a basis for the work reported in this
paper. Special thanks to Daniel Stronger for his specific contributions to the
landmark-distance calibration process. This research is supported in part by
NSF CAREER award IIS-0237699, ONR YIP award N00014-04-1-0545, and
DARPA grant HR0011-04-1-0035.

REFERENCES

[1] The Sony Aibo robots.http://www.us.aibo.com.
[2] P. Stone et al. UT Austin Villa 2004: Coming of Age, AI Technical

Report 04-313. Technical report, Department of Computer Sciences,
University of Texas at Austin, October 2004.

[3] S. Thrun et al. Probabilistic algorithms and the interactive museum
tour-guide robot minerva.International Journal of Robotics Research,
19(11):972–999, 2000.

[4] D. Fox. Adapting the sample size in particle filters through kld-sampling.
International Journal of Robotics Research, 2003.

[5] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Markov localization
for mobile robots in dynamic environments.Journal of Artificial
Intelligence, 11, 1999.

[6] C. Kwok and D. Fox. Map-based multiple model tracking of a moving
object. InThe International RoboCup Symposium, Lisbon, 2004.

[7] Scott Lenser and Manuela Veloso. Sensor resetting localization for
poorly modelled mobile robots. InThe International Conference on
Robotics and Automation, April 2000.

[8] Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida,
editors.RoboCup-2003: Robot Soccer World Cup VII. Springer Verlag,
Berlin, 2004.

[9] T. Rofer and M. Jungel. Vision-based fast and reactive monte-carlo
localization. In The IEEE International Conference on Robotics and
Automation, pages 856–861, Taipei, Taiwan, 2003.

[10] S. Thrun. Particle filters in robotics. InThe 17th Annual Conference on
Uncertainty in AI (UAI), 2002.

[11] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots.Journal of Artificial Intelligence, 2001.


