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Abstract— A major challenge in the path of widespread
use of mobile robots is the ability to function autonomously,
learning useful features from the environment and using them
to adapt to environmental changes. We propose an algorithm
for mobile robots equipped with color cameras that allows
for smooth operation under illumination changes. The robot
uses image statistics and the environmental structure to au-
tonomously detect and adapt to both major and minor illu-
mination changes. Furthermore, the robot autonomously plans
an action sequence that maximizes color learning opportunities
while minimizing localization errors. Our approach is fully
implemented and tested on the Sony AIBO robots.

Index Terms— Illumination invariance, Action sequence
learning, Color segmentation, Legged robots.

I. MOTIVATION

Mobile robots are being used in fields as diverse as

medicine, surveillance, rescue, and navigation [1]–[3] due

to the availability of high-performance sensors such as laser

and color cameras. Though color cameras are a rich source

of sensory information, mobile robot applications have pre-

dominantly used non-visual sensors because cameras require

manual calibration that needs to be repeated with environ-

mental changes. In order to make the widespread use of

color cameras more feasible, the robot needs to calibrate

itself and adapt to changes. We focus on the specific task

of color segmentation, i.e. the mapping from image pixels

to color labels. Sophisticated vision algorithms [4], [5] are

computationally expensive to implement on mobile robots

that require real-time operation under constrained resources.

In the context of robots equipped with color cameras, this

paper tackles two challenges to autonomous behavior: the

sensitivity to illumination, and the need for color calibration.

It makes two contributions:

1. The robot autonomously detects and adapts to

illumination changes using environmental structure and

autonomously-collected image statistics. Minor illumi-

nation changes are handled by merging new observa-

tions with existing models, and new models are learned

in response to major illumination changes. Prior work

has focused on tracking minor illumination changes [6]

or detecting major ones [7]. We show that it is essential

to adapt to both types of changes.

2. The robot autonomously generates an action se-

quence maximizing color learning opportunities while

minimizing localization errors. Color information is

needed for localization, which in turn is required to

reliably reach locations suitable for learning colors. The

robot learns a model to predict pose errors as a function

of desired motion commands, and a statistical model

on the feasibility of learning colors at various poses.

The models are used to search for the best sequence

of motion commands. Prior work has required labeled

training samples [8] or a human-generated heuristic

action sequence [7] for color learning.

All algorithms are implemented and tested on a physical

robot. We show that the robot is able to autonomously learn

colors and operate over a range of illuminations.

II. RELATED WORK

Segmentation and color constancy are well-researched

fields in computer vision. Several effective algorithms have

been introduced [4], [5], [9], [10], including methods for

learning colors and making segmentation robust to illumi-

nation changes [11], [12]. But most of the approaches are

computationally expensive to implement on mobile robots

with constrained resources.

On mobile robots the mapping from the pixels to color

labels is typically created by hand-labeling image regions

over a couple of hours [8]. In an attempt to learn this

mapping, Cameron and Barnes [13] construct closed figures

corresponding to known environmental features. The color

information from these regions is used to build classifiers,

but the approach requires human supervision and is time

consuming even with the use of offline processing. Jun-

gel [14] maintained layers of color maps with increasing

precision levels, colors being represented as cuboids. But

the segmentation is not as accurate as the hand-labeled

one and is not robust to illumination changes. Schulz and

Fox [15] estimate colors using a hierarchical Bayesian model

with Gaussian priors and a joint posterior on robot position

and illumination. The approach requires extensive prior

information even for testing under two illuminations. Anzani

et al. [16] model colors using a mixture of Gaussians and

compensate for minor illumination changes by modifying the

parameters. But prior knowledge of color distributions and

suitable initialization of parameters are required. Thrun et

al. [3] distinguish between two safe and unsafe road regions,

modeling colors as a mixture of Gaussians whose parameters

are updated using EM. Teams in the DARPA Learning Ap-

plied to Ground Robotics challenge detect safe regions using

3D color histograms [17]. These approaches to detecting safe

regions do not help distinguish between overlapping colors.

In recent work, Our prior work [7] presented a scheme

to learn colors and detect large illumination changes. But

it does not adapt smoothly to illumination changes, and



learns colors using an action sequence based on human-

specified heuristic functions. We extend the algorithm (and

other methods [6]) to enable a robot to generate motion

sequences most suitable for color learning, and to adapt

smoothly to illumination changes.

III. EXPERIMENTAL PLATFORM

The experiments reported here are run on the SONY

ERS-7 Aibo, a four-legged robot whose primary sensor is

a CMOS camera at the tip of its nose, with a limited field-

of-view (56.9o horz., 45.2o vert.). The images captured at

30Hz with a resolution of 208 × 160 pixels possess defects

such as noise and distortion. The robot has 20 degrees-of-

freedom, three in each leg, three in its head, and a five in

its tail, mouth, and ears. It has wireless LAN for inter-robot

communication. The legged motion results in jerky camera

motion. All processing for vision, localization, motion and

strategy is performed on-board using a 576MHz processor.

One major application

Fig. 1: An image of the Aibo and
the field.

domain for the Aibos

is the RoboCup Legged

League [18], a research

initiative where teams

of four robots play a

competitive game of

soccer on an indoor field

(4m × 6m). Applications

on mobile robots with

cameras typically involve an initial color calibration phase

that needs to be repeated when illumination changes. Our

approach enables the robot to autonomously generate a

motion sequence to learn colors, and to adapt to illumination

changes. Figure 1 shows the Aibo and the robot soccer

environment. The robot uses the distances and angles to the

detected objects to localize itself, using particle filtering.

IV. PROBLEM DESCRIPTION

In order to operate in a color coded environment, the robot

needs to recognize a discrete number of colors (N). A color

map provides a color label for each point in the color space:
ΠE : {m1,i,m2,j ,m3,k} 7→ l |l∈[0,N−1], (1)

∀i, j, k ∈ [0, 255]

where m1,m2,m3 are the values along the three color

channels (e.g. R, G, B), l refers to the numerical indices

of the color labels (blue, orange etc), and E represents the

dependence of the color map on illumination. Typically a

human observer labels specific image regions (for ≈ 30
images) over a period of an hour or more and the color map

is obtained by generalizing from the labeled samples [8].

The goals of this work are: (a) to autonomously generate a

motion sequence that maximizes color learning opportunities

while minimizing localization errors, and (b) to detect and

adapt smoothly to a range of illuminations.

V. ALGORITHM

We present two novel algorithms: (a) the overall algorithm

that learns colors, and detects and adapts to illumination

changes (Algorithm 1), and (b) the algorithm that learns

models and determines the best motion sequence for color

learning (Algorithm 2). Specific details are described below.

Algorithm 1 Illumination Adaptation Algorithm.

Require: For each known illumination Ei, i ∈ [0,M −
1], color map ΠEi

, (r, g) distributions rgHistEi
, and

distribution of JS-distances DEi
.

Require: Algorithm to plan motion (Algorithm 2) and learn

colors autonomously.

Require: Positions, shapes and color labels of the objects

of interest in the robot’s environment. Initial robot pose.

1: Initialize: M = 0, illum = 0, testT ime = 0 (no prior

illumination knowledge).

2: Plan motion and learn ΠEillum
.

3: Generate rgHistEillum
, N (r, g) space distributions,

and distribution of JS-distances, DEillum
, using images

captured at random during color learning.

4: Save image statistics, M = M + 1.

5: while true do

6: Get new image. Segment image and detect objects.

7: if minorChange( Color ) then

8: minorUpdate( Color ). Then get Π bE
from current

color distributions.

9: Revise current illumination representation to get

rgHist bE
and D bE

, to be used for subsequent oper-

ations.

10: end if

11: if currentT ime − testT ime ≥ timeth then

12: rgtest = (r, g) distribution of current image.

13: for i = 0 to M − 1 do

14: dAvg[i] = 1
N

∑
j JSDist(rgtest, rgHistEi

[j])
15: end for

16: if Exists( Ê ) then

17: dAvg bE
= 1

N

∑
j JSDist(rgtest, rgHist bE

[j])
18: end if

19: if Exists(Ê) and withinRange(dAvg bE
, D bE

) then

20: Continue with Π bE
.

21: else if withinRange(dAvg[illum], DEillum
) then

22: Continue with ΠEillum
.

23: else if withinRange(dAvg[i], DEi
), i 6= illum

then

24: Use ΠEi
, illum = i.

25: else

26: New illumination, illum = M , M = M + 1.

27: Learn ΠEillum
autonomously.

28: Learn rgHistEillum
for new illumination.

29: Use ΠEillum
for subsequent operations.

30: end if

31: testT ime = currentT ime.

32: end if

33: end while

A. Illumination Adaptation

The robot initially has no prior information on colors or

illumination. It knows the positions, size and color labels of

objects in its environment (structure), and its starting pose.



The robot uses the structure to plan a motion sequence and

learn a representation for the color distributions of interest

(Algorithm 2), which are used to generate the color map

under the current illumination (ΠEillum
– line 2).

1) Color and Illumination Representation: Patterned after

prior work [7], we use a disjunctive representation that

models the a priori probability density function (pdf) for

each color l either as a 3D Gaussian, or as a 3D Histogram:

p(m|l) ∼ N(µl,Σl), or ≡
histl(b1, b2, b3)∑

histl
(2)

where (b1, b2, b3) are the histogram bin indices correspond-

ing to the color channel values m = (m1,m2,m3). The

histogram is normalized to obtain a pdf. Assuming all colors

are equally likely, i.e. P (l) = 1/N, ∀l ∈ [0, N − 1], each

color’s a posteriori pdf is proportional to the a priori pdfs.

The color space is discretized and each cell in the color

map is assigned the label of the most likely color pdf.

Depending on the test condition, one of the two models may

be more suitable for a color’s pdf, and the choice is made

autonomously using the bootstrap test [19]. Though other

color models are feasible, the disjunctive model provides a

balance between accuracy and computation.

Each illumination is represented by a color map and

autonomously-collected image statistics (line 3). Based on

the hypothesis that images from the same illumination have

measurably similar distributions of pixels in color space,

images captured by the robot are transformed into the

normalized RGB space (r, g, b), and the first statistic is a set

of pdfs (rgHistEillum
), each pdf being a color histogram

in (r, g) with 64 bins in each dimension. The distance

between every pair of pdfs is computed and the distribution

of distances (DEillum
), modeled as a Gaussian, constitutes

the second statistic. The Jensen-Shannon (JS) measure is

used for computing distance between distributions:

JS(a, b) =
KL(a,m) + KL(b,m)

2
(3)

KL(a, b) =
∑

i

∑

j

(ai,j · ln
ai,j

bi,j

), m =
a + b

2

The JS distance being a function of the log of the pdfs, is

robust to peaks in the observed distributions, i.e. large image

regions of a single color.

2) Adaptation To Changes: A mobile robot environment

is subjected to a range of illuminations. Major illumination

changes, for instance when the lamps are suddenly switched

on/off, cause large shifts in color distributions. The current

color map is no longer valid and the robot is soon lost.

Minor/slow changes such as the variation in natural light

during the day, cause the robot’s segmentation performance

to slowly deteriorate as the color distributions shift. We

present a combined strategy for handling both these changes.

During normal operation the robot recognizes objects to

localize and computes the following for each detected object:

numPixelsl

totalP ixels
≤ changeThreshold (4)

where numPixelsl represents the pixels of color l, the color

label of the detected object, while totalP ixels is the total

number of pixels within the object’s bounding rectangle.

If the ratio falls below a threshold consistently (more than

60% of N consecutive frames) it indicates a minor change

in illumination, denoted by Detectminor (minorChange() –

line 7). The new illumination is denoted by Ê and the pixels

within the corresponding image region are used to build a

model and merge it with the current model, i.e. a histogram

or a Gaussian (minorUpdate() – line 8). For Gaussians, we

use the measurement update of a Kalman Filter [20]:

GainKl = Σlold
(Σlold

+ Σlnew
)−1 (5)

µlup
= µlold

+ Kl(µlnew
− µlold

)

Σlup
= (I − Kl)Σlold

where the subscripts old, new and up represent the current

model, new observation and updated model respectively for

color l. For histograms, a similar update scheme is used:

plold
=

histlold∑
histlold

, plnew
=

histlnew∑
histlnew

(6)

plavg
= woldplold

+ wnewplnew
, wold + wnew = 1

plup
=

plavg∑
plavg

, histup = plup

∑
(histlold

+ histlnew
)

The histograms are normalized to obtain pdfs, which are

merged by weighted averaging (based on the ratio of the

number of samples) and the updated histogram is deter-

mined. The color map and the current illumination model

are modified and used in subsequent operations (line 9). This

adaptation scheme is called Adaptminor.

In order to detect sudden/large illumination changes, the

robot periodically (timeth = 0.5sec) generates a test image

histogram in the (r, g) space (line 12). The average distance

(dAvg) is computed between this test histogram and the set

of histograms corresponding to each illumination for which

the robot has learned a representation (lines 13-15), using

the JS distance – line 14. Any illumination representation

obtained by tracking minor illumination changes is included

in this computation (lines 16-18).

If dAvg lies within the threshold range (95%) of the

distance distribution corresponding to the current illumina-

tion (withinRange() – lines 19, 21), the robot continues to

use the current color map. If dAvg lies outside the range

of the distance distribution of the current illumination, but

within the range of the distance distribution corresponding

to an illumination for which the robot has learned a model,

the robot transitions to using the corresponding color and

illumination models. But if dAvg lies outside the range of

all known illuminations, the robot detects a new illumination

(Detectmajor) and learns models for color and illumination

(lines 25-30). If this adaptation scheme (Adaptmajor) is

used with a reduced threshold to handle minor illumination

changes, it would result in a large number of color maps

for minor changes in a few distributions. We will show

experimentally that both Adaptminor and Adaptmajor are

necessary for smooth operation under illumination changes.

B. Planned Color Learning

Our motion planning algorithm is described in Algo-

rithm 2. In previous work [7], the known positions, size and



color labels of the objects along a sequence of heuristically

generated poses were used to extract image regions to be

used as labeled samples. We enable the robot to determine a

motion sequence that maximizes color learning opportunities

while minimizing localization errors – the robot may obtain

more training samples by moving a larger distance, but this

motion may cause larger localization errors. We introduce

three components: a motion error model, a statistical feasi-

bility model, and a search routine.

Algorithm 2 Motion Sequence Generation.

Require: Ability to learn color models [7].

Require: Positions, shapes and color labels of the objects

of interest in the robot’s environment. Initial robot pose.

1: Move between randomly selected target poses.

2: CollectMEMData() – collect data for motion error

model.

3: CollectColLearnStats() – collect color learning statistics.

4: NNetTrain() – Train the Neural network for the MEM,

Equation 7.

5: UpdateFM() – Generate the statistical feasibility model,

Equation 8.

6: GenCandidateSeq() – Generate candidate sequences,

Equation 9.

7: EvalCandidateSeq() – Evaluate candidate sequences.

8: SelectMotionSeq() – Select final motion sequence.

9: Execute motion sequence and learn colors – Algorithm

described in [7].

1) Motion Error Model (MEM): The MEM predicts the

error in the robot pose (position and orientation) in response

to a motion command, target (x, y, θ), as a function of

the colors used for localization (the locations of color-

coded markers are known). Assuming an even distribution

of objects in the environment, the inputs are the difference

between the starting pose and target pose, and the list of

colors the robot has learned. The output is the pose error

that would be incurred during this motion. The MEM is

represented as a back-propagation neural network [21] with

N+3 inputs, three outputs and one hidden layer of 15 nodes:

{∆x,∆y,∆θ, c1, c2, . . . , cN} 7→ {errx, erry, errθ} (7)

where {∆x,∆y,∆θ} represent the desired difference in

pose, and {c1, c2, . . . , cN} are binary variables that represent

the colors in the environment. If the robot knows all the col-

ors it can recognize all the markers and localize well. With

only some colors known, some markers aren’t recognizable

and localization suffers. During training the robot moves

between poses running two localization routines, one with

all colors known (provides ground truth) and another with

only a subset of colors known. The difference in the two pose

estimates provides the outputs for the training samples.

2) Statistical Feasibility Model (FM): For each robot

pose, the FM provides the probability of learning each of the

desired colors given that a certain set of colors have been

learned previously. The possible robot poses are discretized

into cells. Since the robot’s joint angles and camera field-of-

view are known, a feasibility check is performed to eliminate

a lot of cells – if the robot’s camera is not pointing towards

any known object it cannot learn colors. This computation

is performed once for each object configuration. Each cell

of the FM also stores a probability measure:

FM(d, e, f, vi) = p, ∀{d, e, f} ∈ [0,K − 1] (8)

where d, e, f are cell indices corresponding to the K discrete

poses (x, y, θ), and vi, i ∈ [0,M − 1] represents all possible

combinations of colors. As the robot moves during training,

its pose maps into one of the cells. Assuming prior knowl-

edge of a set of colors, it attempts to learn other colors and

stores a count of successes. At the end of the training phase

Gaussian-smoothing is used to smooth out the noise, and the

normalized cell counts provide the probability.

3) Search for Motion Sequence: In the training phase, the

robot moves between randomly generated target poses and

collects the data to build the MEM (CollectMEMData() –

line 2) and the statistics for the FM (CollectColLearnStats()

– line 3). The FM has to be re-learned when the object

configurations change, but even with just the geometric con-

straints the robot is able to provide motion sequences leading

to successful color learning. The robot uses the collected

data to estimate the parameters of MEM (NNetTrain() – line

4) and the probability values in the FM (UpdateFM() – line

5). Then it iterates through all candidate motion sequences

(GenCandidateSeq() – line 6), i.e. all possible paths along

the discretized pose cells. The depth of the search is equal

to the number of colors to be learned.1 If the robot is to

learn N colors, the motion sequence is a path:

path : {xi, yi, θi, colori} ∀i ∈ [0, N − 1] (9)

This formulation results in a large number of paths (≈ 109).

But only a smaller subset of paths (≈ 104) are evaluated

completely. The MEM provides the expected pose error if

the robot travels from the starting pose to the first pose.

The vector sum of the error and the target pose provides the

actual pose. If the desired color can be learned at this pose,

the move to the next pose in the path is evaluated. If the

whole path is evaluated, the net pose error and probability of

success are computed (EvalCandidateSeq() – line 7). Of the

paths that provide a high probability of success, the one with

the least pose error is used by the robot (SelectMotionSeq()

– line 8) to learn the colors [7].

VI. EXPERIMENTAL RESULTS

We need to test the robot’s ability to: (a) plan a motion

sequence and learn a color map for different configurations,

and (b) use the color map and image statistics to detect and

adapt to a range of illuminations.

A. Motion Planning Experiments

Segmentation accuracy is not a good performance mea-

sure in the presence of background noise. Instead, we

measure the localization accuracy. Of the colors needed for

localization (pink, yellow, blue, white, green), the ground

1We assume that the robot learns one color at each pose.



colors (green, white) are learned by scanning in place, i.e.

the depth of the search process is three. The range of poses

was divided into (6×9×12) cells, i.e. divisions of 600mm,

600mm, and 30o along x, y, amd θ. The back-propagation

network was learned using the MATLAB Neural Network

toolbox [22] (≤ 1 min for ≈ 2000 training samples). The

final search process takes ≤ 4 mins.

We tested the planning under different object configura-

tions – there are six objects that can be placed anywhere

along the outside of the field, but the robot knows their

positions. As described in [7], we asked a group of graduate

students to suggest challenging configurations and robot

starting poses. The planning accuracy averaged over 5
different object configurations, each with 15 different robot

starting poses, is shown in Table I. We also had the robot

move through a set of poses using the learned color map

and measured localization errors (15 trials of 10 poses) – a

tape measure and protractor provided ground truth.

Config Plan (%) Localization error
X (cm) Y (cm) θ (deg)

Learned 100 9.6 ± 3.7 11.1 ± 4.8 9 ± 7.7

Hand-labeled – 6.9 ± 4.1 9.2 ± 5.3 7.1 ± 5.9

TABLE I: Planning and Localization Accuracies in challenging
configurations. Planned motion sequence always succeeds in learn-
ing colors. Localization comparable to hand-labeled color map.

The robot is able to generate a valid plan over all

the trials, unlike human-generated heuristic planning (90%
success [7]). The localization accuracy is comparable to that

obtained from a hand-labeled color map.
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Fig. 2: Sample motion plans generated by the algorithm. All plans
lead to successful color learning on the robot.

Figure 2 shows some planning results, where the starting

position is denoted by number ’0’ while the direction of the

arrows show the orientation. We observe the following:

1. The robot never attempts to learn the color pink

first. Since all objects with the color pink have another

colored blob of the same size, it is better to learn pink

after one of the other two colors (blue, yellow) have

been learned (see field description [23]).

2. Among the other two colors (blue, yellow) the

robot first learns the color which requires the execution

of a motion command that is least likely to cause error.

3. For colors which exist in several objects the robot

makes a trade-off between a larger object that provides

more training samples but is farther, and a smaller object

that is closer.

In addition to the ’best’ motion-plan, several of the top

sequences lead to successful color learning. Over a set

of 20 images, the average segmentation accuracy of

the learned and hand-labeled color map are 94.9 ± 3.9
and 96.7 ± 4.3 respectively (no difference at 95%
significance). Ground truth is provided by a human

observer. The color learning and motion planning takes

around 7 minutes in comparison to the heuristic motion

planning or hand-labeling that takes more than an hour

of human effort. The motion planning is particularly

useful where object configurations change less frequently

than illumination. Sample planning results, images

and a video of the learning algorithm can be viewed at:

www.cs.utexas.edu/∼AustinVilla/?p=research/autoplan illum

B. Illumination Adaptation Experiments

The main hypothesis to test is that it is essential to include

schemes for both major and minor illumination changes.

In these experiments, using AdaptX implies the use of

DetectX as well.

To show that Adaptminor is needed, we let the robot

use Adaptmajor but slowly changed the illumination (over

20secs) between two conditions that are not significantly

different to be detected by Detectmajor. The robot stood

in place and moved its head from left to right, averaging

the measured distance and angle to an object over the

20sec interval. Table II shows the errors in measurements

compared to the ground truth values obtained with a tape

measure and protractor, both with and without Adaptminor.

Results are averaged over four different objects and three

different illumination sources (different color temperatures)

with ≈ 15 trials under each case.

Illum + Alg Dist error (mm) Ang error (deg)

Slow + NoAdapt 191.31 ± 105.61 12.37 ± 2.85

Slow + Adaptmin 25.53 ± 19.14 2.11 ± 0.83

TABLE II: Error in distance measurements with and without
Adaptminor . Adaptation results in much smaller errors.

In the absence of Adaptminor, as the illumination is

slowly changed, the segmentation performance slowly de-

teriorates until the object is no longer recognizable. There

are instances where the robot detects an object incorrectly,

leading to the errors in distance and angle measurements,

and hence localization errors. Using Adaptminor leads to

segmentation accuracy (95.1 ± 4.3), and hence localization

errors (≈ 10cm, 12cm and 10deg) similar to those under

constant illumination.

The results show that using Adaptmajor without

Adaptminor can lead to segmentation and localization er-

rors, affecting the robot’s performance. Next, to show that

Adaptmajor is essential we had the robot find-and-walk-to-

object and measured the time taken to perform the task.



The robot started out near the center of the field with

the object placed near the penalty box of the opponent’s

goal. Table III tabulates the results under six different cases,

averaged over three illumination sources, with 15 trials in

each test condition.

Illum + Alg Time (sec) Fail

Constant + NoAdapt 6.18 ± 0.24 0

Slow + Adaptmaj 31.73 ± 13.88 9

Slow + Adaptmaj,min 6.24 ± 0.31 0

Sudden + Adaptmin 45.11 ± 11.13 13

Sudden + Adaptmaj,min 9.72 ± 0.51 0

Sudden + Slow + Adaptmaj,min 10.32 ± 0.83 0

TABLE III: Time taken to find-and-walk-to-object.

When the illumination does not change, the robot can

find-and-walk-to-object in 6.18 ± 0.24 seconds. When the

illumination is slowly changed as the robot performs the

task, using just Adaptmajor does not help – large variance

in second row. With Adaptminor the results are as good

as before (6.24 ± 0.31secs). Next, when the illumination

is suddenly changed as the robot starts walking towards the

seen object, using just Adaptminor does not help. The robot

totally fails to perform the task most of the time, as seen

by the large number of failures (fourth row, third column).

With the combined strategy, i.e. with both Adaptmajor

and Adaptminor, the robot can perform the task efficiently,

the additional time being used to ensure that a change in

illumination did occur (9.72 ± 0.51secs). We infer that the

improvement is primarily due to Adaptmajor. In all these

experiments, when the illumination changes significantly, the

robot is put in conditions similar to the ones for which it

has already learned color and illumination models. Once

Detectmajor is triggered, Adaptmajor consists of transi-

tioning to the suitable representation.

Finally the robot is made to find-and-walk-to-object

while the illumination is changed significantly initially,

and after 3sec is changed slowly over the next 5sec.

The robot is able to do the task in 10.32 ± 0.83sec iff

both Adaptmajor and Adaptminor are used. Therefore, a

combination of the schemes (Algorithm 1) is essential to

operate under a range of illumination intensities (≈ 400Lux
to ≈ 1600Lux) and color temperatures (2300K – 4000K).

Images and videos of the robot’s performance in response to

minor and major illumination changes are available online:

www.cs.utexas.edu/∼AustinVilla/?p=research/autoplan illum

VII. CONCLUSIONS AND FUTURE WORK

Mobile robots are being used extensively in real-world

applications. But their full potential can be exploited only

if they function autonomously. For mobile robots equipped

with color cameras, two major challenges are the manual

calibration and the sensitivity to illumination. Prior work has

managed to learn a few distinct colors [3], model known

illuminations [10], and use heuristic action sequences to

facilitate learning and detect sudden changes [7].

We propose an algorithm that enables a mobile robot to

learn functions that maximize color learning opportunities

while minimizing localization errors – robot learns color

autonomously. Furthermore, the robot is able to detect and

adapt to a range of illuminations. The resulting color seg-

mentation and localization are comparable to that obtained

by a hand-labeled color map. The algorithm requires the

environmental structure as input, but the structure is much

easier to provide than hand-labeling several images.

A future direction of research is to address motion-

planning in a rigorous linear programming framework

with suitable constraints. Another challenge is to com-

bine this work with autonomous vision-based map build-

ing (SLAM) [24]. Ultimately we aim to develop efficient

algorithms for autonomous mobile robot operation under

completely uncontrolled natural conditions.
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