
In Autonomous Agents and Multiagent Systems, AAMAS 2017 Workshops, Best Papers, Lecture Notes in Artificial Intelligence,
pp. 168--186, Springer International Publishing, 2017.

Evaluating Ad Hoc Teamwork Performance in

Drop-In Player Challenges

Patrick MacAlpine and Peter Stone

Department of Computer Science, The University of Texas at Austin, USA
{patmac,pstone}@cs.utexas.edu

Abstract. Ad hoc teamwork has been introduced as a general challenge
for AI and especially multiagent systems [16]. The goal is to enable au-
tonomous agents to band together with previously unknown teammates
towards a common goal: collaboration without pre-coordination. A long-
term vision for ad hoc teamwork is to enable robots or other autonomous
agents to exhibit the sort of flexibility and adaptability on complex tasks
that people do, for example when they play games of “pick-up” basket-
ball or soccer. As a testbed for ad hoc teamwork, autonomous robots
have played in pick-up soccer games, called “drop-in player challenges”,
at the international RoboCup competition. An open question is how
best to evaluate ad hoc teamwork performance—how well agents are
able to coordinate and collaborate with unknown teammates—of agents
with different skill levels and abilities competing in drop-in player chal-
lenges. This paper presents new metrics for assessing ad hoc teamwork
performance, specifically attempting to isolate an agent’s coordination
and teamwork from its skill level, during drop-in player challenges. Ad-
ditionally, the paper considers how to account for only a relatively small
number of pick-up games being played when evaluating drop-in player
challenge participants.

Keywords: Ad Hoc Teams, Multiagent Systems, Teamwork, Robotics

1 Introduction

The increasing capabilities of robots and their decreasing costs is leading to in-
creased numbers of robots acting in the world. As the number of robots grows, so
will their need to cooperate with each other to accomplish shared tasks. There-
fore, a significant amount of research has focused on multiagent teams. However,
most existing techniques are inapplicable when the robots do not share a coor-
dination protocol, a case that becomes more likely as the number of companies
and research labs producing these robots grows. To deal with this variety of
previously unseen teammates, robots can reason about ad hoc teamwork [16].
When participating as part of an ad hoc team, agents need to cooperate with
previously unknown teammates in order to accomplish a shared goal. Reason-
ing about these settings allows robots to be robust to the teammates they may
encounter.

In [16], Stone et al. argue that ad hoc teamwork is “ultimately an empiri-
cal challenge.” Therefore, a series of “drop-in player challenges” [14, 5, 6] have
been held at the RoboCup competition,1 a well established multi-robot competi-
tion. These challenges bring together real and simulated robots from teams from
around the world to investigate the current ability of robots to cooperate with
a variety of unknown teammates.

In each game of the challenges, robots are drawn from the participating
teams and combined to form a new team. These robots are not informed of the
identities of any of their teammates, but they are able to share a small amount of
information using a limited standard communication protocol that is published
in advance. These robots then have to quickly adapt to their teammates over
the course of a single game and discover how to intelligently share the ball and
select which roles to play.

Currently in drop-in player challenges, a metric used to evaluate participants
is the average goal difference received by an agent across all games that an agent
plays in. An agent’s average goal difference is strongly correlated with how skilled
an agent is, however, and is not necessarily a good way of evaluating an agent’s
ad hoc teamwork performance—how well agents are able to coordinate and col-
laborate with unknown teammates. Additionally, who an agent’s teammates and
opponents are during a particular drop-in player game strongly affects the game’s
result, and it may not be feasible to play enough games containing all possible
combinations of agents on different ad hoc teams, thus the agent assignments to
the ad hoc teams of the games that are played may bias an agent’s average goal
difference.

This paper presents new metrics for assessing ad hoc teamwork performance,
specifically attempting to isolate an agent’s coordination and teamwork from its
skill level, during drop-in player challenges. Additionally, the paper considers
how to account for only a relatively small number of games being played when
evaluating drop-in player challenge participants.

The rest of the paper is structured as follows. A description of the the
RoboCup 3D simulation domain used for this research is provided in Section 2.
Section 3 explains the drop-in player challenge. Section 4 details our metric for
evaluating ad hoc teamwork performance, and analysis of this metric is provided
in Section 5. Section 6 discusses an extension to this metric when one can add
agents with different skill levels, but the same level of teamwork, to a drop-in
player challenge. How to account for a limited number of drop-in player games
being played when evaluating ad hoc teamwork performance is presented in Sec-
tion 7. A case study of the 2015 RoboCup 3D simulation drop-in player challenge
demonstrating our work is analyzed in Section 8. Section 9 situates this work in
literature, and Section 10 concludes.

1 http://www.robocup.org/

2 RoboCup Domain Description

Robot soccer has served as an excellent research domain for autonomous agents
and multiagent systems over the past decade and a half. In this domain, teams of
autonomous robots compete with each other in a complex, real-time, noisy and
dynamic environment, in a setting that is both collaborative and adversarial.
RoboCup includes several different leagues, each emphasizing different research
challenges. For example, the humanoid robot league emphasizes hardware de-
velopment and low-level skills, while the 2D simulation league emphasizes more
high-level team strategy. In all cases, the agents are all fully autonomous.

The RoboCup 3D simulation environment—the setting for our work—is based
on SimSpark,2 a generic physical multiagent systems simulator. SimSpark uses
the Open Dynamics Engine3 (ODE) library for its realistic simulation of rigid
body dynamics with collision detection and friction. ODE also provides sup-
port for the modeling of advanced motorized hinge joints used in the humanoid
agents.

The robot agents in the simulation are homogeneous and are modeled af-
ter the Aldebaran Nao robot. The agents interact with the simulator by sending
torque commands and receiving perceptual information. Each robot has 22 de-
grees of freedom, each equipped with a perceptor and an effector. Joint percep-
tors provide the agent with noise-free angular measurements every simulation
cycle (20ms), while joint effectors allow the agent to specify the torque and direc-
tion in which to move a joint. Although there is no intentional noise in actuation,
there is slight actuation noise that results from approximations in the physics
engine and the need to constrain computations to be performed in real-time.
Abstract visual information about the environment is given to an agent every
third simulation cycle (60ms) through noisy measurements of the distance and
angle to objects within a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can communicate with
each other every other simulation cycle (40ms) by sending 20 byte messages.

Games consist of two 5 minute halves of 11 versus 11 agents on a field size
of 20 meters in width by 30 meters in length. Figure 1 shows a visualization of
the simulated robot and the soccer field during a game.

3 Drop-In Player Challenge

For RoboCup 3D drop-in player challenges4 each participating team contributes
two drop-in field players to a game. Each drop-in player competes in full 10

2 http://simspark.sourceforge.net/
3 http://www.ode.org/
4 Full rules of the challenges can be found at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/2015_dropin_

challenge/

Fig. 1: A screenshot of the Nao-based humanoid robot (left), and a view of the soccer
field during a 11 versus 11 game (right).

minute games (two 5 minute halves) with both teammates and opponents con-
sisting of other drop-in field players. No goalies are used during the challenge to
increase the probability of goals being scored.

Ad hoc teams are chosen by a greedy algorithm given in Algorithm 1 that
attempts to even out the number of times agents from different participants
in a challenge play with and against each other. In lines 6 and 7 of the algo-
rithm agents are iteratively added to teams by getNextAgent() which uses the
following ordered preferences to select agents that have:

1. Played fewer games.
2. Played against fewer of the opponents.
3. Played with fewer of the teammates.
4. Played a lower maximum number of games against any one opponent or with

any one teammate.
5. Played a lower maximum number of games against any one opponent.
6. Played a lower maximum number of games with any one teammate.
7. Random.

Algorithm 1 terminates when all agents have played at least one game with and
against all other agents.

Each drop-in player can communicate with its teammates using a simple pro-
tocol, — the use of the protocol is purely optional. The protocol communicates
the following information:

– player’s team
– player’s uniform number
– player’s current (x,y) position on the field
– (x,y) position of the ball
– time ball was last seen
– if player is currently fallen over

Algorithm 1 Drop-In Team Agent Selection

Input: Agents

1: games = ∅

2: while not allAgentsHavePlayedWithAndAgainstEachOther() do

3: team1 := ∅

4: team2 := ∅

5: for i := 1 to AGENTS PER TEAM do

6: team1← getNextAgent(Agents \ {team1 ∪ team2})
7: team2← getNextAgent(Agents \ {team1 ∪ team2})

8: games← {team1, team2}

9: return games

A C++ implementation of the protocol is provided to all participants.
All normal game rules apply in this challenge. Each player is randomly as-

signed a uniform number from 2-11 at the start of a game. The challenge is
scored by the average goal difference received by an agent across all games that
an agent plays in.

4 Ad Hoc Teamwork Performance Metric

Since 2013 drop-in player challenges have been held at RoboCup in multiple
robot soccer leagues including 3D simulation, 2D simulation, and the physical
Nao robot Standard Platform League (SPL) [14, 13, 15, 5, 6]. Across these chal-
lenges there has been a high correlation between how well a team does in the
challenge and how well a team performs in the main soccer competition. This
correlation suggests it may be the case that better individual skills and abil-
ity—as opposed to teamwork—is a dominating factor when using average goal
difference to rank challenge participants.

As drop-in player challenges are designed as a test bed for ad hoc teamwork,
and the ability of an agent to interact with teammates without pre-coordination,
ideally we would like to evaluate ad hoc teamwork performance—how well agents
are able to coordinate and collaborate with unknown teammates. To measure
this performance we need a way of isolating agents’ ad hoc teamwork from their
skill levels.

One way to infer an agent’s skill level, relative to another agent, is to evaluate
how agents perform in a drop-in player challenge when playing games with teams
consisting entirely of their own agent. By playing two different agent teams
against each other, and with each teams’ members being of the same agent, we
are able to directly measure the relative performance difference between the two
agents. Although agents’ skill levels may not be the only factor in the difference in
performance between two teams—factors such as team coordination dynamics
may affect performance as well—the teams’ relative performance is used as a
proxy for individual skills of its members. For agent team a playing agent team
b we denote their skill difference, measured as the expected number of goals

scored by agent team a minus the expected number of goals scored by agent
team b, to be relSkill(a, b).

Given the relSkill value for all agent pairs, which can be measured by
having all agents play each other in a round robin style tournament, we can
estimate the expected goal difference of any mixed agent team drop-in player
game by summing and then averaging the relSkill values of all agent pairs on
opposing teams. Equation 1 shows the estimated score between two mixed agent
teams A and B.

score(A,B) =
1

|A||B|

∑

a∈A,b∈B

relSkill(a, b) (1)

Next, to determine the overall skill of an agent relative to all other agents, we

compute the average goal difference across all possible
(

(

N
K

)

∗
(

N−K
K

)

)

/2 drop-

in player mixed team game permutations for an agent, where N is the total
number of agents and K is the number of agents per team, using the estimated
goal difference of each game from Equation 1. We denote this value measuring
the average goal difference (AGD) across all games for agent a as skillAGD(a).
Instead of explicitly computing the score for all game permutations, we can sim-
plify computation as shown in the following example to compute skillAGD(a)
for a drop-in player challenge with agents {a, b, c, d} and two agents on each team.

First determine the score of all drop-in game permutations involving agent
a (rS used as shorthand for relSkill):

score({a, b}, {c, d}) =
rS(a, c)+ rS(a, d)+ rS(b, c)+ rS(b, d)

4

score({a, c}, {b, d}) =
rS(a, b)+ rS(a, d)+ rS(c, b)+ rS(c, d)

4

score({a, d}, {b, c}) =
rS(a, b)+ rS(a, c)+ rS(d, b)+ rS(d, c)

4

Averaging all scores to get skillAGD(a), and as

rS(a, b) = −rS(b, a),

this simplifies to

skillAGD(a) =
rS(a, b)+ rS(a, c)+ rS(a, d)

6
.

Based on relSkill values canceling each other out when averaging over all
drop-in game permutations, as shown in the above example, Equation 2 provides
a simplified form for estimating an agent’s skill.

skillAGD(a) =
1

K(N − 1)

∑

b∈Agents\a

relSkill(a, b) (2)

To evaluate agents’ ad hoc teamwork we also need a measure of how well
they do when playing in mixed team drop-in player games. Let dropinAGD(a)
be the actual, measured average goal difference for agent a across all mixed team
permutations of drop-in player games. Given an agent’s skillAGD—estimated in-
directly from relSkill values—and dropinAGD—measured directly—values, we
compute a metric teamworkAGD for measuring an agent’s teamwork. An agent’s
teamworkAGD value is computed by subtracting an agent’s skill from it’s mea-
sured performance in drop-in player games as shown in Equation 3.

teamworkAGD(a) = dropinAGD(a)− skillAGD(a) (3)

The teamworkAGD value serves to help remove the bias of an agent’s skill
from its measured averaged goal difference during drop-in player challenges, and
in doing so provides a metric to isolate ad hoc teamwork performance.

5 Ad Hoc Teamwork Performance Metric Evaluation

To evaluate the teamworkAGD ad hoc teamwork performance metric presented in
Section 4, we need to be able to create agents with different known skill levels and
teamwork such that an agent’s skill level is independent of its teamwork. Once we
have agents with known differences in skill level and teamwork relative to each
other, it is possible to check if the teamworkAGD metric is able to isolate agents’
ad hoc teamwork from their skill levels during a drop-in player challenge. For
our analysis, we designed a RoboCup 3D simulation drop-in player challenge
with ten agents each having one of five skill levels and either poor or non-
poor teamwork—there is a single agent for every combination of skill level and
teamwork type—as follows.

We first created five drop-in player agents with different skill levels deter-
mined by how fast an agent is allowed to walk—the maximum walking speed is
the only difference between the agents. While walking speed is only one factor
for determining an agent’s skill level—other factors such as how far an agent
can kick the ball and how fast it can get up after falling are important too—by
varying their maximum walking speed we ensure agents’ overall skill levels differ
significantly. The five agents, from highest to lowest skill level, were allowed to
walk up to the following maximum walking speeds: 100%, 90%, 80%, 70%, 60%.
We then played a round robin tournament with each of the five agents playing
100 games against each other. During these games members of each team con-
sisted of all the same agent. Results from these games of the relSkill values of
agents with different skill levels are shown in Table 1.

From the values in Table 1 we then compute the agents’ skills relative to each
other (skillAGD) using Equation 2. When doing so we model the drop-in player
challenge as being between ten participants consisting of two agents from each
of the five skill levels. We also assume that the average goal difference between
two agents of the same skill level is 0.5 Agents’ skill values are shown in Table 2.

5 Empirically we have found that the average goal difference when one team plays
itself approaches 0 across many games.

Table 1: Average goal difference of agents with different skill levels when playing 100
games against each other. A positive goal difference means that the row agent is win-
ning. The number at the end of the agents’ names refers to their maximum walk speed
percentages.

Agent60 Agent70 Agent80 Agent90

Agent100 1.73 1.36 0.78 0.24

Agent90 1.32 0.94 0.45
Agent80 0.71 0.52
Agent70 0.16

Table 2: Skill values (skillAGD) for agents with different skill levels. The number at
the end of the agents’ names refers to their maximum walk speed percentages.

Agent skillAGD

Agent100 0.183

Agent90 0.110

Agent80 0.000

Agent70 -0.118

Agent60 -0.174

The default strategy for each of our drop-in player agents is for an agent to
go to the ball if it is the closest member of its team to the ball. Once at the ball,
an agent then attempts to kick or dribble the ball toward the opponent’s goal. If
the agent is not the closest to the ball, it waits at a position two meters behind
the ball in a supporting position.

To create agents with poor teamwork, we made modified versions of each of
the five different skill level agents such that the modified versions will still go to
the ball if an unknown teammate—an agent that is not the exact same type—is
closer or even already at the ball. These modified agents, which we refer to as
“PT agents” for poor teamwork, can interfere with their unknown teammates
and impede progress of the team as a whole. The only teammates they will not
interfere with are known agent teammates—agents of the same type with the
same maximum walking speed and poor teamwork attribute.

We played a drop-in player challenge with all ten agent types. The total
number of possible drop-in team combinations is (

(

10
5

)

∗
(

5
5

)

)/2 = 126. Each com-
bination was played ten times, resulting in a total of 1260 games. Data from
these games showing each agent’s dropinAGD, as well as the agents’ skillAGD
and computed teamworkAGD, are shown in Table 3. Note that a poor teamwork
agent has the same skillAGD as the non-poor teamwork agents with the same
walking speed—both agents behave identically when playing on a team consist-
ing of all their own agents.

While the data in Table 3 shows a direct correlation of agents with higher skill
levels having higher dropinAGD values, the teamworkAGD values rank all normal

Table 3: Skill value, drop-in player tournament average goal difference, and ad hoc
teamwork performance metric for different agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent70 -0.118 0.017 0.135

Agent60 -0.174 -0.055 0.119

Agent80 0.000 0.087 0.087

Agent100 0.183 0.204 0.021

Agent90 0.110 0.123 0.013

PTAgent60 -0.174 -0.196 -0.022

PTAgent70 -0.118 -0.169 -0.051

PTAgent100 0.183 0.109 -0.074

PTAgent80 0.000 -0.101 -0.101

PTAgent90 0.110 -0.018 -0.128

agents above poor teamwork agents. As teamworkAGD is able to discern between
agents with different levels of teamwork, despite the agents having different levels
of skill, teamworkAGD is a viable metric for analyzing ad hoc teamwork perfor-
mance. However, there is a trend for agents with lower skillAGD values to have
higher teamworkAGD values. We discuss and account for this trend in the next
section.

6 Normalized Ad Hoc Teamwork Performance Metric

Part of the reason teamworkAGD in Table 3 is able to separate the agents with
poor teamwork independent of an agent’s skill level is due to agents with the same
teamwork having similar values of teamworkAGD. Empirically we have noticed
that is not always the case that teams with the same teamwork have similar
teamworkAGD values. When skill levels between agents are more spread out, there
is a trend for agents with lower skill levels to have higher values for teamworkAGD.
This trend can be seen in Table 4 containing data from a drop-in player challenge
with agents having maximum walking speeds between 100% and 40% of the
possible maximum walking speed.

With the trend of agents with lower skillAGD having higher values for
teamworkAGD, the poor teamwork PTAgent50 agent in Table 4 has a higher
teamworkAGD than several of the non-poor teamwork agents.

To account for agents with the same teamwork, but different skill levels,
we can normalize these agents’ teamworkAGD values to 0. We define the value
added to each of these agents’ teamworkAGD values to set them to 0 as the agents’
normOffset values. Thus for a set of multiple agents A with the same teamwork,
and for every agent a ∈ A, we let normOffset(a) = −teamworkAGD(a). This
normalization produces a normTeamworkAGD value as shown in Equation 4.

normTeamworkAGD(a) = teamworkAGD(a)+ normOffset(a) (4)

Table 4: Skill value, drop-in player tournament average goal difference, and ad hoc
teamwork performance metric for different agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent40 -0.710 -0.270 0.440

Agent50 -0.226 -0.129 0.097

Agent55 -0.142 -0.081 0.061

Agent100 0.412 0.416 0.004

PTAgent50 -0.226 -0.230 -0.004

Agent90 0.296 0.259 -0.037

Agent70 0.028 -0.005 -0.033

Agent85 0.245 0.176 -0.069

PTAgent70 0.028 -0.179 -0.207

PTAgent90 0.296 0.043 -0.253

While normTeamworkAGD will give the same value of 0 for agents that we
know to have the same teamwork, we want to estimate normOffset, and then
compute normTeamworkAGD, for agents that we do not necessarily know about
their teamwork. To estimate normOffset values we first plot the normOffset

values relative to teamworkAGD values for the agents with the same teamwork,
and then fit a curve through these points. To intersect each point, we do a least
squares fit to a n− 1 degree polynomial, where n is the number of points we are
fitting the curve to. Then, to estimate any agent’s normOffset value, we choose
the point on this curve corresponding to the agent’s skillAGD. A curve generated
by the normOffset values normalizing teamworkAGD to 0 for Agent100, Agent85,
Agent70, Agent55, and Agent40 from Table 4 is shown in Figure 2.

Table 5 shows normOffset and normTeamworkAGD values for the agents in
Table 4. The normOffset values for agents with 50% and 90% speeds are es-
timated. Considering that normTeamworkAGD is able to discern between agents
with different levels of teamwork, it is a useful metric for analyzing ad hoc team-
work performance when agents with the same teamwork have larger differences
in their teamworkAGD values. To compute normTeamworkAGD, however, a set of
agents with the same teamwork, but different skill levels, must be included in a
drop-in player challenge.

7 Drop-In Player Game Prediction

Computing dropinAGD requires results from all possible agent to team assign-
ment permutations of drop-in player games. The number of games grows fac-

torially as this is
(

(

N
K

)

∗
(

N−K
K

)

)

/2 drop-in player games, where N is the total

number of agents and K is the number of agents per team. Playing all permuta-
tions of drop-in player games may not be tractable or feasible, especially when
drop-in player competitions involve physical robots [5, 6].

Fig. 2: Curve of normOffset vs skillAGD based on normOffset values normalizing
teamworkAGD to 0 for Agent100, Agent85, Agent70, Agent55, and Agent40 from Table 4.
Both data points used to generate the curve (blue dots) and points used to estimate
normOffset for agents walking at 50% and 90% speeds (red diamonds) are shown.

Table 5: teamworkAGD, normOffset, and normTeamworkAGD values for the agents in
Table 4 sorted by normTeamworkAGD.

Agent teamworkAGD normOffset normTeamworkAGD

Agent90 -0.037 0.057 0.020

Agent55 0.061 -0.061 0.000

Agent40 0.440 -0.440 0.000

Agent100 0.004 -0.004 0.000

Agent70 -0.033 0.033 0.000

Agent85 -0.069 0.069 0.000

Agent50 0.097 -0.121 -0.024

PTAgent50 -0.004 -0.121 -0.125

PTAgent70 -0.207 0.033 -0.174

PTAgent90 -0.253 0.057 -0.196

To account for fewer numbers of drop-in player games being played, a pre-
diction model can be built, based on data from previously played drop-in player
games, to predict the scores of games that have not been played. Combining
data from both the scores of games played and predicted games then allows for
dropinAGD to be estimated.

One way to predict the scores of drop-in player games is to model them
as a linear system of equations. More specifically, we can represent a drop-in
player game as a linear equation with strength coefficients for individual agents,
cooperative teammate coefficients for pairs of agents on the same team, and
adversarial opponent coefficients for pairs of agents on opposing teams.

Given two drop-in player teams A and B, score(A,B) is modeled as the
sum of strength coefficients S,

∑

a∈Agents

Sa ∗







1 if a ∈ A
−1 if a ∈ B
0 otherwise

teammate coefficients T ,

∑

a∈Agents,b∈Agents,a<b

Ta,b ∗







1 if a ∈ A and b ∈ A
−1 if a ∈ B and b ∈ B
0 otherwise

and opponent coefficients O,

∑

a∈Agents,b∈Agents,a<b

Oa,b ∗







1 if a ∈ A and b ∈ B
−1 if a ∈ B and b ∈ A.
0 otherwise

There are N strength coefficients, and
(

N
2

)

of both teammate and opponent

coefficients, for a total of N + 2
(

N
2

)

coefficients.

To solve for the coefficients in the system of linear equations least squares
regression is used. There needs to be enough data from games such that every
agent has played with and against every other agent, however, so that there is
at least one instance of every coefficient being multiplied by a non-zero number.
Using Algorithm 1, with 10 agents total and 5 agents per team, having every
coefficient multiplied by a non-zero number requires only 5 games. Figure 3
shows how the number of games required to create a prediction model increases
as the number of agents increase when using Algorithm 1. Although it is possible
to create a prediction model with a minimum number of games, such a system
will be very underdetermined and more games will result in better predictions.

Fig. 3: The number of games required to play all agents with and against every other
agent using Algorithm 1 as the number of agents increase. This data assumes there are
five agents on each team.

As an example of our prediction model, Tables 6 and 7 show predicted val-
ues of dropinADG created from game scores generated by prediction models built

from half the game data—data from 630 games—used to compute dropinADG

values in Tables 3 and 4 respectively. More specifically, data from games encom-
passing half of all possible agent to team assignment permutations of drop-in
player games—the first 63 out of 126 possible unique team permutations gen-
erated by letting Algorithm 1 continue to run even after all teams have played
with and against each other—was used to build the prediction models.

Table 6: The dropinAGD values from Table 3 (computed from all 1260 games) compared
to both dropinAGD values from half the games played used to compute the data in
Table 3 (1

2
dropinAGD with 630 games), and predicted dropinAGD values generated

from a prediction model built from the game data used to compute 1

2
dropinAGD (Pred.

dropinAGD with 630 games). The difference (error) from the true dropinAGD values for
both half the games played and predicted dropinAGD are shown in parentheses.

dropinAGD 1

2
dropinAGD Pred. dropinAGD

Agent 1260 games 630 games 630 games

Agent100 0.204 0.194 (0.010) 0.223 (0.019)

Agent90 0.123 0.133 (0.010) 0.122 (0.001)

PTAgent100 0.109 0.114 (0.005) 0.117 (0.008)

Agent80 0.087 0.121 (0.034) 0.095 (0.008)

Agent70 0.017 0.006 (0.011) 0.021 (0.004)

PTAgent90 -0.018 -0.022 (0.004) -0.019 (0.001)

Agent60 -0.055 -0.105 (0.050) -0.094 (0.039)

PTAgent80 -0.101 -0.060 (0.041) -0.073 (0.028)

PTAgent70 -0.169 -0.194 (0.025) -0.181 (0.012)

PTAgent60 -0.196 -0.187 (0.009) -0.212 (0.016)

The majority of the predicted dropinAGD values in Tables 6 and 7 are closer
to the true dropinAGD values than that of their counterpart 1

2
dropinAGD values

computed directly from the games used to build the prediction models. Further-
more, the predicted dropinAGD values reduce the mean squared error relative to
the 1

2
dropinAGD values: from 6.405×10−4 to 3.212×10−4 and from 3.076×10−3

to 9.068× 10−4 for Tables 6 and 7 respectively.

8 Case Study: RoboCup 2015 Drop-in Player Challenge

Table 8 shows the results of computing normTeamworkAGD values for the ten re-
leased binaries of the 2015 RoboCup 3D simulation drop-in player challenge [15]
participants. In doing so we added five agents with different skill levels but the
same teamwork to the challenge: Agent100, Agent80, Agent65, Agent50, and
Agent30. These agents, chosen specifically to have skillAGD values that span
across the range of the 2015 RoboCup 3D simulation drop-in player challenge
participants, are the same as the drop-in player agents used in our previous ex-
periments—with the number at the end of the agents’ names referring to their

Table 7: The dropinAGD values from Table 4 (computed from all 1260 games) compared
to both dropinAGD values from half the games played used to compute the data in
Table 4 (1

2
dropinAGD with 630 games), and predicted dropinAGD values generated

from a prediction model built from the game data used to compute 1

2
dropinAGD (Pred.

dropinAGD with 630 games). The difference (error) from the true dropinAGD values for
both half the games played and predicted dropinAGD are shown in parentheses.

dropinAGD 1

2
dropinAGD Pred. dropinAGD

Agent 1260 games 630 games 630 games

Agent100 0.416 0.454 (0.038) 0.436 (0.020)

Agent90 0.259 0.356 (0.097) 0.296 (0.037)

Agent85 0.176 0.203 (0.027) 0.201 (0.025)

PTAgent90 0.043 0.105 (0.062) 0.048 (0.005)

Agent70 -0.005 -0.019 (0.014) -0.016 (0.011)

Agent55 -0.081 -0.168 (0.087) -0.132 (0.051)

Agent50 -0.129 -0.121 (0.008) -0.098 (0.031)

PTAgent70 -0.179 -0.241 (0.062) -0.173 (0.006)

PTAgent50 -0.230 -0.238 (0.008) -0.241 (0.011)

Agent40 -0.270 -0.330 (0.060) -0.323 (0.053)

maximum walk speed percentages—except now the agents are made slightly
more competitive by having them communicate to their known teammates (those
of the exact same agent type) where they are kicking the ball. Once an agent
hears from a teammate the location its teammate is kicking the ball to, the agent
then runs toward that location in anticipation of the ball being kicked there.

As there are 15 agents in the challenge, which would require
((

15
5

)

∗
(

10
5

))

/2 =
378,378 possible agent assignments for drop-in player games, we only played 1000
games—the first 1000 team permutations generated by letting Algorithm 1 con-
tinue to run even after all teams have played with and against each other—and
then built a prediction model from the results of these games to compute pre-
dicted dropinAGD values for all agents. Using a prediction model is the only way
for us to compute dropinAGD, and in turn normTeamworkAGD, given the large
increase in the number of games needed to compute dropinAGD when adding
five extra agents. The curve used to estimate normOffset values, and generated
by the normOffset values normalizing teamworkAGD to 0 for Agent100, Agent80,
Agent65, Agent50, and Agent30 from Table 8, is shown in Figure 4.

When analyzing the data in Table 8 we empirically find that most of the
agents with lower teamworkAGD values interfere with their teammates when going
to the ball. On the other hand, UTAustinVilla—the agent with the highest
teamworkAGD value—purposely avoids running into teammates, and also checks
to ensure it will not collide with other agents before attempting to kick the ball
on its team’s kickoffs [14].

Table 8: Computed values from released binaries of the 2015 RoboCup 3D simula-
tion drop-in player challenge sorted by normTeamworkAGD. Values for skillAGD were
computed from every agent playing 100 games against each of the other agents with
teams consisting of all the same agent. Predicted dropinAGD (Pred. dropinAGD) values
were computed using a prediction model built from the results of playing 1000 drop-in
player games—only a very small partial amount of all 378,378 possible agent assign-
ments for drop-in player games. These predicted dropinAGD values were then used in
the computation of teamworkAGD, normOffset, and normTeamworkAGD values.

dropinAGD Pred. dropinAGD
Agent skillAGD 1000 games 1000 games teamworkAGD normOffset normTeamworkAGD

UTAustinVilla 0.932 1.184 1.178 0.246 0.129 0.375

FCPortugal 0.384 0.228 0.262 -0.122 0.267 0.145

magmaOffenburg 0.038 -0.069 -0.047 -0.085 0.139 0.054

Agent100 1.095 1.004 1.031 -0.064 0.064 0

Agent80 0.772 0.586 0.577 -0.195 0.195 0

Agent65 0.355 0.085 0.091 -0.264 0.264 0

Agent50 -0.278 -0.151 -0.129 0.149 -0.149 0

Agent30 -1.456 -0.432 -0.437 1.019 -1.019 0

BahiaRT 0.328 0.044 -0.029 -0.357 0.260 -0.097

RoboCanes 0.178 -0.207 -0.199 -0.377 0.216 -0.161

FUT-K 0.520 -0.027 0.029 -0.491 0.263 -0.228

Apollo3D -0.533 -0.486 -0.506 0.027 -0.465 -0.438

HfutEngine3D -1.124 -0.468 -0.470 0.654 -1.100 -0.446

CIT3D -0.574 -0.581 -0.589 -0.015 -0.519 -0.534

Nexus3D -0.676 -0.713 -0.763 -0.087 -0.653 -0.740

9 Related Work

Multiagent teamwork is a well studied topic, with most work tackling the prob-
lem of creating standards for coordinating and communicating. One such algo-
rithm is STEAM [17], in which team members build up a partial hierarchy of joint
actions and monitor the progress of their plans. STEAM is designed to commu-
nicate selectively, reducing the amount of communication required to coordinate
the team. In [7], Grosz and Kraus present a reformulation of the SharedPlans, in
which agents communicate their intents and beliefs and use this information to
reason about how to coordinate joint actions. In addition, SharedPlans provides
a process for revising agents’ intents and beliefs to adapt to changing conditions.
In the TAEMS framework [9], the focus is on how the task environment affects
agents and their interactions with one another. Specifically, agents reason about
what information is available for updating their mental state. While these algo-
rithms have been shown to be effective, they require that the teammates share
their coordination framework.

On the other hand, ad hoc teamwork focuses on the case where the agents
do not share a coordination algorithm. In [12], Liemhetcharat and Veloso rea-
son about selecting agents to form ad hoc teams. Barrett et al. [2] empirically
evaluate an MCTS-based ad hoc team agent in the pursuit domain, and Barrett
and Stone [1] analyze existing research on ad hoc teams and propose one way to
categorize ad hoc teamwork problems. Other approaches include Jones et al.’s
work [10] on ad hoc teams in a treasure hunt domain. A more theoretical ap-

Fig. 4: Curve of normOffset vs skillAGD based on normOffset values normalizing
teamworkAGD to 0 for Agent100, Agent80, Agent65, Agent50, and Agent30 from Table 8.
Both data points used to generate the curve (blue dots) and points used to estimate
normOffset (red diamonds) are shown.

proach is Wu et al.’s work [18] into ad hoc teams using stage games and biased
adaptive play.

In the domain of robot soccer, Bowling and McCracken [3] measure the per-
formance of a few ad hoc agents, where each ad hoc agent is given a playbook
that differs from that of its teammates. In this domain, the teammates implicitly
assign the ad hoc agent a role, and then react to it as they would any teammate.
The ad hoc agent analyzes which plays work best over hundreds of games and
predicts the roles that its teammates will play.

A popular way of ranking players based on relative skill is the Elo [4] rating
system originally designed to rank chess players. While Elo only works in two
player games, the TrueSkill [8] rating system allows for ranking players in games
with multiple player teams. These ranking systems do not attempt to decou-
ple a player’s skill from its teamwork performance, and we are unaware of any
such previously existing metrics that decouple skill and teamwork in an ad hoc
teamwork setting.

An alternative and potentially promising way of estimating scores of drop-in
player games is Liemhetcharat and Luo’s adversarial synergy graph model [11]
which has been used to estimate the scores of basketball games based on player
lineups.

10 Conclusions

Drop-in player challenges serve as an exciting testbed for ad hoc teamwork, in
which agents must adapt to a variety of new teammates without pre-coordination.
These challenges provided an opportunity to evaluate agents’ abilities to cooper-
ate with new teammates to accomplish goals in complex tasks. They also served
to encourage the participants in the challenges to reason about teamwork and
what is actually necessary to coordinate a team.

This paper presents new metrics for assessing ad hoc teamwork performance,
specifically attempting to isolate an agent’s coordination and teamwork from
its skill level, during drop-in player challenges. Additionally, the paper offers a
prediction model for the scores of drop-in player games. This prediction model
allows for smaller numbers of drop-in games being played when evaluating drop-
in player challenge participants. When combined these contributions make it
easier to study and perform research on ad hoc teamwork.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at
UT Austin. LARG research is supported in part by NSF (CNS-1330072, CNS-
1305287, IIS-1637736, IIS-1651089), ONR (21C184-01), AFOSR (FA9550-14-1-
0087), Raytheon, Toyota, AT&T, and Lockheed Martin. Peter Stone serves on
the Board of Directors of, Cogitai, Inc. The terms of this arrangement have been
reviewed and approved by the University of Texas at Austin in accordance with
its policy on objectivity in research.

References

1. Barrett, S., Stone, P.: An analysis framework for ad hoc teamwork tasks. In:
AAMAS ’12. (June 2012)

2. Barrett, S., Stone, P., Kraus, S.: Empirical evaluation of ad hoc teamwork in the
pursuit domain. In: AAMAS ’11. (May 2011)

3. Bowling, M., McCracken, P.: Coordination and adaptation in impromptu teams.
In: AAAI. (2005)

4. Elo, A.: The rating of chess players, past and present (arco, new york). (1978)

5. Genter, K., Laue, T., Stone, P.: Benchmarking robot cooperation without pre-
coordination in the robocup standard platform league drop-in player competition.
In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-15). (September 2015)

6. Genter, K., Laue, T., Stone, P.: Three years of the robocup standard platform
league drop-in player competition: Creating and maintaining a large scale ad hoc
teamwork robotics competition. Autonomous Agents and Multi-Agent Systems
(JAAMAS) 31(4) (July 2017) 790–820

7. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artificial
Intelligence 86 (1996) 269–368

8. Herbrich, R., Minka, T., Graepel, T.: TrueskillTM: a bayesian skill rating sys-
tem. In: Proceedings of the 19th International Conference on Neural Information
Processing Systems, MIT Press (2006) 569–576

9. Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K.,
Garvey, A.: The TAEMS White Paper (January 1999)

10. Jones, E., Browning, B., Dias, M.B., Argall, B., Veloso, M.M., Stentz, A.T.: Dy-
namically formed heterogeneous robot teams performing tightly-coordinated tasks.
In: ICRA. (May 2006) 570 – 575

11. Liemhetcharat, S., Luo, Y.: Applying the synergy graph model to human basket-
ball. In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems. (2015) 1695–1696

12. Liemhetcharat, S., Veloso, M.: Modeling mutual capabilities in heterogeneous
teams for role assignment. In: IROS ’11. (2011) 3638 –3644

13. MacAlpine, P., Depinet, M., Liang, J., Stone, P.: UT Austin Villa: RoboCup
2014 3D simulation league competition and technical challenge champions. In:
RoboCup-2014: Robot Soccer World Cup XVIII. Lecture Notes in Artificial Intel-
ligence. Springer Verlag, Berlin (2015)

14. MacAlpine, P., Genter, K., Barrett, S., Stone, P.: The RoboCup 2013 drop-in player
challenges: Experiments in ad hoc teamwork. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). (September
2014)

15. MacAlpine, P., Hanna, J., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2015 3D
simulation league competition and technical challenges champions. In: RoboCup-
2015: Robot Soccer World Cup XIX. Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin (2016)

16. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In: AAAI ’10. (July 2010)

17. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research
7 (1997) 81–124

18. Wu, F., Zilberstein, S., Chen, X.: Online planning for ad hoc autonomous agent
teams. In: IJCAI. (2011)

