
In RoboCup-2017: Robot Soccer World Cup XXI, (RoboCup 2017), Nagoya,

Japan, July 2017

Fast and Precise Black and White Ball
Detection for RoboCup Soccer

Jacob Menashe, Josh Kelle, Katie Genter, Josiah Hanna, Elad Liebman,

Sanmit Narvekar, Ruohan Zhang, and Peter Stone

{jmenashe,jkelle,katie,jphanna,eladlieb,sanmit,zharucs,pstone}@cs.utexas.edu

The University of Texas at Austin

Abstract. In 2016, UT Austin Villa claimed the Standard Platform
League’s second place position at the RoboCup International Robot Soc-
cer Competition in Leipzig, Germany as well as first place at both the
RoboCup US Open in Brunswick, USA and the World RoboCup Confer-
ence in Beijing, China. This paper describes some of the key contributions
that led to the team’s victories with a primary focus on our techniques
for identifying and tracking black and white soccer balls. UT Austin
Villa’s ball detection system was overhauled in order to transition from
the league’s bright orange ball, used every year of the competition prior
to 2016, to the truncated icosahedral pattern commonly associated with
soccer balls.

We evaluated and applied a series of heuristic region-of-interest identifi-
cation techniques and supervised machine learning methods to produce
a ball detector capable of reliably detecting the ball’s position with no
prior knowledge of the ball’s position. In 2016, UT Austin Villa suffered
only a single loss which occurred after regulation time during a penalty
kick shootout. We attribute much of UT Austin Villa’s success in 2016 to
our robots’ effectiveness at quickly and consistently localizing the ball.

In this work we discuss the specifics of UT Austin Villa’s ball detec-
tor implementation which are applicable to the specific problem of ball
detection in RoboCup, as well as to the more general problem of fast
and precise object detection in computationally constrained domains.
Furthermore we provide empirical analyses of our approach to support
the conclusion that modern deep learning techniques can enhance visual
recognition tasks even in the face of these computational constraints.

Keywords: Machine Learning, Deep Learning, Classification, Ball De-
tection

1 Introduction

RoboCup, or the International Robot Soccer World Cup, is an international
robotics competition introduced in 1997 as a research initiative to advance the
fields of robotics and artificial intelligence using soccer as a motivating challenge
domain [5].



UT Austin Villa participates in the Standard Platform League (SPL) of the
RoboCup competition. In 2016, the SPL league moved from a bright orange soc-
cer ball, which had been used all previous years, to a classic truncated icosahedral
black and white soccer ball.

This shift presented a significant challenge to the SPL teams; black and white
are prominent colors throughout the field, whereas the previous orange ball could
be easily distinguished from the surrounding environment using an RGB thresh-
olding approach. With an accurate threshold it was a relatively simple matter to
identify all of the “orange” pixels in the camera frame, and due to their sparse-
ness, thoroughly evaluate each orange cluster to determine whether it was a ball.
Since black, white, and gray are prominent colors on the soccer field, identify-
ing a black and white soccer ball is a far more challenging task. The image is
generally filled with clusters of black and white and thus it is too computation-
ally expensive to scrutinize every cluster of black or white pixels. As described
in Section 3, detecting a pattern is an involved process that is computationally
expensive and thus great care must be taken to preserve computational capac-
ity and maximize the payoff of investigating any particular ball candidate. This
transition from orange to black and white thus rendered the problem of consis-
tent ball detection significantly more difficult than in previous years. Ultimately,
however, our new ball detection algorithm proved to be as good as or better than
that of other teams at the competition and allowed UT Austin Villa to place
second at the international RoboCup competition in Germany and first at the
RoboCup US Open competition in Maine.

In this work we discuss UT Austin Villa’s approach to solving the challenge
of black and white ball detection with detailed analyses of the various compo-
nents of our detection system. After we cover the necessary background work in
Section 2 we proceed to Section 3 where we cover the main ball detection loop.

In Section 4 we provide empirical analyses of our ball detector and then
summarize and conclude in Section 5.

2 Background

In this section, we first introduce RoboCup and the SPL, as well as the various
challenges teams in the SPL have undertaken in recent years in order to stay
competitive. Later in this section, we introduce heuristic approaches to this year’s
main challenge and briefly discuss Machine Learning as a possible complement
to heuristics.

2.1 RoboCup Soccer Challenges

RoboCup has many leagues including multiple simulation leagues and various
physical robot soccer leagues. Almost all of the leagues involve robot agents that
must act autonomously in their environments.

UT Austin Villa has participated in a physical robot soccer league called the
Standard Platform League since 2008. The SPL is different from other RoboCup
leagues in that all teams must use the same robot platform, namely the Softbank



NAO Robot. The NAO uses a single-core 1.6 GHz Intel x86 processor and a pair
of 1280x960 non-stereoscopic cameras running at 30Hz.

At RoboCup 2016, teams competed in 5 vs. 5 soccer games on a 9 meter by 6
meter soccer field. Each game consists of two 10-minute halves. Teams must play
completely autonomously — no human input is allowed during games outside
of game state signals sent by an official to communicate to the robots when a
goal has been scored, when they have been penalized, etc. The robots on each
team are additionally allowed to communicate with each other over a wireless
network.

Historically, there have been many vision-related challenges since the SPL
began using the NAO robots in 2008. In 2008, games were played with an orange
street hockey ball on a 6 meter by 4 meter field. This field had a blue goal and
a yellow goal to allow teams to easily differentiate sides. Over time, the playing
environment has become less and less color-coded. After a few changes in field
size that eventually resulted in a 6 meter by 4 meter playing surface, in 2012
both goals became yellow. This change required teams to find ways other than
goal color to differentiate the two sides of the field. The field size was increased
again in 2013 — to the current 9 meters by 6 meters — and then in 2015 white
goals were introduced.

In 2016, the league removed the final color-coded landmark when they switched
from playing with an orange street hockey ball to a black and white printed soc-
cer ball. This paper discusses the research problems this change presented, as
well as how we successfully handled these problems to finish 2nd at RoboCup
2016.

Due to the hardware constraints of the NAO and the characteristics of the
SPL, the problem of visual object detection rests on two primary criteria:

1. Efficiency: Detectors process 1280x960 images faster than 30Hz.
2. Precision: Detectors must minimize false positives.

The difficulty of completing the full sensing and action loop at 30Hz is com-
pounded by the fact that processing takes place sequentially on a single CPU
core. UT Austin Villa’s codebase in particular allocates approximately 10ms for
the entire ball detection pipeline. Even performing a full image read takes 14ms,
so care must be taken to minimize reads and isolate computations to the areas
of the image most likely to yield results.

However, computational efficiency cannot come at the expense of precision.
While a false negative may delay action for a short period of time, a single
false ball detection can lead robots astray and cause the team to pursue a ball
that doesn’t exist. UT Austin Villa’s detection system therefore aggressively
prunes out false detections at the possible cost throwing out correct detections
on occasion.

2.2 Heuristic Approaches

When deciding whether an object in the visual frame belongs to one class or an-
other there are generally two possible approaches to take: hand-designed heuris-
tic methods, and machine learning models.



Heuristic methods tend to be ad-hoc in nature, as finding the right combina-
tion of features involves a great deal of trial and error. For example, one might
identify whether an object is a soccer ball by considering the patterns identified
on the object and testing how close they are to the expected patterns of the ball.
This general technique can be easy (i.e. computationally efficient) to compute
and is common in the RoboCup domain.

Even though machine learning techniques have been very successful in object
detection and recognition tasks [9], heuristic methods are still relevent because of
their computational efficiency. Rather than apply a traditional “sliding window”
approach, our algorithm incorporates machine learned models by first applying
a high level heuristic search that quickly identifies ball candidates for further
analysis, and progressively applies more rigorous filters to throw out candidates
that are likely to be false positives. Finally the algorithm applies a more com-
putationally expensive machine-learned ball classifier to verify that the selected
candidate is indeed a soccer ball.

2.3 Machine Learning Approaches

Machine Learning (ML) is a more principled approach that is supported by a
wide variety of algorithms in the computer vision literature. Examples of pop-
ular models are Support Vector Machines (SVMs) and Deep Neural Networks
(DNNs) which map vectors of image pixels to discrete classifications. Many ML
algorithms require anywhere from tens of thousands to millions of labeled sam-
ples for successful training. While these techniques are generally more accu-
rate and robust than heuristic approaches, they must be provided with properly
cropped input images that derive from either a sliding window or a region-of-
interest (ROI) detection system. The latter of these has much greater potential
for computational efficiency and, as we will describe below, is the most effective
method of incorporating ML into RoboCup vision tasks such as soccer ball de-
tection. Rather than using ML as a complete alternative to heuristics, in this
work we show that ML can be combined with heuristics to strike an effective
balance between generality, accuracy, and computational efficiency.

3 Ball Detection

In this section we describe the complete ball detection algorithm. Within the
constraints of available space, we describe our approach with the goal of en-
abling full reimplementation. To complement our description, we also provide
the complete source code from our implementation1.

3.1 Ball Candidates

As shown in Algorithm 1, the ball detection algorithm can be broken down into
six subroutines that are aimed at progressively refining an estimate of the ball’s

1 Source code is hosted at: https://github.com/LARG/spl-release



position. The first phase, seen on line 2, consumes a raw image and produces a
set of regions with exceptionally high contrast. Line 3 of the algorithm iterates
over these regions to identify dark blobs which intuitively correspond to the black
pentagons on the soccer ball. This produces one set of blobs for each region. Line
4 organizes each set of blobs into one triplet per set; this triplet corresponds to a
triangle formed by 3 pentagons. Line 5 of the algorithm selects the triangle whose
characteristics most closely fit those of the soccer ball. Line 6 of the algorithm
applies a Hough transform to estimate the ball’s center and radius.

Finally a machine-learned classifier is used to filter out false positives in line
7. The remainder of this section describes these phases in further detail.

Algorithm 1 The ball detection algorithm described throughout Section 3.

1: function DetectSoccerBall(RawImage i)
2: RHC ← DetectHighContrastROIs(i)
3: P ← DetectBlackPentagons(RHC)
4: T ← ConstructTriangles(P)
5: t← SelectBestTriangle(T )
6: b← HoughCorrection(t)
7: return b if Classify(b) else return null
8: end function

Line 2 [DetectHighContrastROIs]: The motivation behind computing
regions of interest is speed. We cannot devote expensive image processing time
to the whole image, so the algorithm first quickly narrows its focus to smaller
subsets of the image. Compute time is then allocated to these smaller ROIs. Our
ROI detector algorithm is based on the fact that the ball will produce regions of
high contrast because it has black spots on a white surface. We identify areas of
high contrast by using adaptive thresholding [1]. Adaptive thresholding requires
two parameters - window size (measured in pixels) and a threshold value. Opti-
mal window size depends on the size (in pixels) of the ball in the image, which
in turn depends on the ball’s position relative to the camera and the robot’s ori-
entation. A ball that is far away from the robot will appear smaller in the image
and thus requires a smaller window size. To address this issue, the image is split
into 3 parts - top, middle, and bottom, corresponding to far, medium, and close
balls. Adaptive thresholding is applied to each part independently with different
window sizes and thresholds. Window sizes are selected to be approximately 1.6
times the projected ball size in that portion of the image.

Adaptive thresholding produces a set of response pixels - pixels that exceed
the adaptive threshold. The algorithm ignores response pixels that are classified
as green in the original color image because they are unlikely to have been
captured from the ball. The algorithm clusters the non-green response pixels
by Euclidean distance to one another. Any two pixels which have Euclidean
distance at most 0.6 times the expected ball size are put into the same cluster.
Each cluster is then converted to an ROI bounding box whose center is set to
the cluster’s centroid, and whose width and height is set to the expected ball



diameter plus padding. ROIs whose projected world coordinates are greater than
20 meters away are not returned.

Line 3 [DetectBlackPentagons]: In this phase, each ROI is evaluated
independently with more computation to determine if a ball might be present.
The first step is to identify the black pentagons of the ball. Blobs are computed
by partitioning each row of pixels into either dark or light scanlines, and then
merging scanlines into blobs based on the union find algorithm [2].

Scanlines are computed on the subsampled grayscale image, moving from
left to right along a row of pixels. The first and last scanlines of the row are
assumed to be white because the ROIs were padded to contain the entire ball.
Because of imperfect lighting conditions, the black spots on the ball don’t have
a consistant grayscale value. Thus, the algorithm looks for pixel segments that
are dark relative to their neighboring pixels. A color change is triggered when
the percent difference between two adjacent pixels is more than 25% of their
average color. We refer to this percentage as the Blob Threshold and examine
alternative values in Section 4.1. A value of 25% enables the algorithm to be
somewhat robust to varying lighting conditions. After every row of the ROI has
been segmented into light and dark scanlines, they are then merged into blobs.

It is often the case that non-ball objects in the image will create blobs. We
attempt to filter out these erroneous blobs according to the following heuristics:

1. The blob must cover at least some percentage of the area of its bounding
box.

2. The blob cannot be too big or too small, relative to the expected ball size.
3. The blob’s bounding box aspect ratio cannot be too narrow or too wide.
4. The blob cannot have too many green pixels.
5. The average intensity of the blob’s constituent pixels must be below some

threshold.

Line 4 [ConstructTriangles]: We make the assumption that at least 3
of the ball’s black spots will be visible regardless of ball orientation, and that
these 3 of the black spots will form a nearly-equilateral triangle. We group 3
blobs together into a “BlobTriangle” and apply the following series of heuristic
tests to filter out BlobTriangles that probably aren’t the result of a true ball.
Thresholds and specific criteria can be found in our accompanying source code
release.

1. Relative Size Test: The ratio between the areas of the smallest blob and
largest blob cannot exceed some threshold.

2. Angle Test: The largest angle of the triangle formed by the three blob cen-
troids cannot exceed some threshold. This angle is recorded as the BlobTri-
angle’s score. A smaller score is considered better because smaller angels are
more similar to the ideal equilateral triangle. We notice in practice that many
false BlobTriangles are farther from equilateral than true BlobTriangles.

3. Float Test: The projected height of the ball must not be too far above or
below the ground.

4. Intersecting Blob Test: No other blobs are allowed to be inside the triangle.



If the BlobTriangle passes all of these tests, then it proceeds to the next
round of tests. If there are more than 3 blobs in the ROI, every combination
of 3 is evaluated and the BlobTriangle with the largest score is chosen for its
enclosing ROI.

Line 5 [SelectBestTriangle]: Next, the algorithm identifies the best ROI
by computing the following real-valued heuristic features from the ROI’s best
BlobTriangle. No single threshold is applied to any of these values because they
are filtered in aggregate [8].

1. The percentage of green pixels in an imaginary box below the BlobTriangle.
True balls usually have a large amount of green field directly below them, so
a larger value here indicates higher likelihood.

2. Percentage of green pixels in the BlobTriangle’s bounding box. True balls
usually have very few green pixels on them, so a smaller number here indi-
cates higher likelihood.

3. Projected Ball Height: Similar to the Float Test, but this time with a soft
threshold.

4. Distance from the field. The center of the BlobTriangle in image coordinates
is projected into world coordinates. The farther this projected position is
from the field, the less likely it is to be a true ball.

5. Ball velocity, as measured by the difference in world distance coordinates
between this BlobTraingle and the previously observed ball.

6. KW Discrepancy : The discrepancy between Kinematics-based and Width-
based distance computations (see Menashe et al. [8]).

These values are fed through a multidimensional Gaussian estimator which
has hard-coded means and standard deviations for each of the 6 features [8]. This
gives a likelihood estimate for the BlobTriangle being the result of a true ball.
If this likelihood estimate is below a certain threshold, we throw it out and no
longer consider it to be a ball candidate. If multiple ROIs pass this test, then only
the ROI with best BlobTriangle score will proceed to the next round. We refer
to the precise threshold for the likelihood estimate as the Gaussian Likelihood
Threshold and examine different settings of this variable in Section 4.1.

Line 6 [HoughCorrection]: Before applying the final test, the algorithm
uses a Hough transform to correct the estimated position and radius of the ball
represented by the best triangle. This operation is only applied to the single best
candidate due to being computationally expensive.

We want the resulting circle to conform to the ball’s contour. However, the
Hough transform sometimes “snaps” to the contours of the black spots on the
ball due to their high contrast and similarity with normal edges. This problem is
partially alleviated by overwriting the pixel values of these blobs to a ligher gray
color; in this way the algorithm “erases” the dark blobs from the ROI, and is
thus less likely to produce unwanted edges during the Hough transform. Figure 1
shows an example of this.

Line 7 [Classify]: In this final test, the ROI image is classified using a
machine learned classifier with low false negative rate. If the classifier’s prediction
is positive, then we consider this ROI/BlobTriangle pair to be a ball, and we
signal a ball observation to the rest of the system. Section 3.2 describes the
classification step in further detail.



(c)
(a)

(b)
(d)

Fig. 1: (a) Ball localization based on BlobTriangle location. (b) Ball localization
after Hough Transform. (c) Edge image without erasing dark blobs. (d) Edge
image after erasing dark blobs.

3.2 Classification

The last step of the filtering process described in Section 3.1 uses a general
purpose machine learning technique to perform a final test on a potential ball
detection. The algorithm uses a machine-learned classifier (MLC) - either a Deep
Neural Network (DNN) or a Support Vector Machine (SVM). In Section 4.2 we
evaluate the relative effectiveness of these two approaches.

In this work, MLCs are trained with binary labels: 0 (or “negative”) indicat-
ing that the input image does not contain a ball, and 1 (or “positive”) indicating
that the input image does contain a ball. Input images are taken from the ROI
detection system described in Section 3.1, converted to the MLC’s expected in-
put format, and then processed by the MLC. Rather than evaluate every ROI,
the computational complexity of our MLCs only allows for a single validation
per image frame. Thus, we simply take the highest-scoring candidate and apply
our MLC validation step to the candidate as a way to further reduce our false
positive rate.

Support Vector Machines One of the two MLCs we evaluate in this work is
the Support Vector Machine. In order to train the SVM we collected our training
dataset in two phases. In the first phase we used our candidate identification
system to collect positive sample images of the ball, and manually removed false
positives from the dataset. We were able to gather around 1,000 positive samples
in this manner.



We collected negative samples by capturing images from the NAO’s camera
at various points on the field, taking care to ensure that none of the images
had balls in their field of view. We then randomly divided these images into
ROIs and supplied these ROIs as negative samples. We produced approximately
15,000 negative samples through this process.

We used OpenCV’s Nu-SVM implementation with a linear kernel. Images
were resized to 32-by-32 pixel grayscale and then transformed into a vector of 8-
by-8 HoG descriptors. Training time generally ranged from 15 to 30 minutes on a
modern laptop with an Intel i7 processor. Training time increased exponentially
as more negative samples were added so in practice we were not able to go
beyond the 15,000 noted above.

Deep Neural Networks We also applied Deep Neural Networks to the binary
ball classification problem using similar data collection techniques as with SVMs
(Section 3.2), We used the Caffe Deep Neural Network implementation [4] on
raw pixels with GPU training enabled. With this approach we were able to train
the ball detector within about 2 hours on a typical laptop with GPU hardware.

In order to enable fast test-time processing on the NAO’s hardware we used
a simple DNN consisting of a single Gaussian convolutional layer. Even such a
simple network required 3ms to test a single image, which was comparable with
the test time for our SVM implementation. At the RoboCup competition we
found that the SVM showed a lower false negative rate than the DNN, which
was perhaps due to the simplicity of our DNN structure. Section 4.2 provides a
complete comparison based on rigorous experiments.

4 Experiments

In this section we provide empirical analysis of different variable settings and
MLC techniques to evaluate the options available when implementing the ball
detection algorithm. In Section 4.1 we first look at the effect of varying one of
the primary thresholds used in filtering out ball candidates. In Section 4.2 we
examine the accuracy of both SVMs and DNNs to show the preferred technique
to be used given one’s computing and dataset constraints.

4.1 Ball Candidate Detection

Figure 2 shows the effect of altering the Gaussian likelihood threshold described
in line 5 of Algorithm 1. This likelihood estimate threshold is described in detail
by Menashe et al. [8] where it is also used for ball detection. The figure shows
that recall is consistent except for very high threshold values, indicating that true
positives consistently exhibit a high likelihood estimate and are seldom filtered
by this step of the algorithm.

4.2 SVM and Deep Classification

Deep Neural Network as Ball Classifier Deep neural networks, and con-
volutional neural networks in particular [6, 7], have demonstrated great success



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

R
e
ca

ll

Gaussian Likelihood Threshold

Ball Recall vs. Gaussian Likelihood Threshold

Top Camera
Bottom Camera

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

R
e
ca

ll

Blob Threshold

Ball Recall vs. Blob Threshold

Top Camera
Bottom Camera

Fig. 2: A plot of Recall vs Gaussian Likelihood and Blob thresholds for ball
candidates used in Algorithm 1.

in visual recognition tasks. Due to the limited computational capacity of the
robot, we design four simple neural network structures to perform ball classi-
fication. The first two networks are convolutional neural networks. They each
have one convolution layer, a max-pooling layer, and a fully connected layer. The
first network, which we will refer as Conv-1, learns 4 9x9 convolution filters with
stride length 5. While the second one, Conv-2, has 32 7x7 convolution filters with
stride length 4. The third network has a single fully connected layer. The fourth
network has two fully connected layers, in which the hidden layer has 512 neu-
rons. We will refer these two networks as Fc-1 and Fc-2. The dataset we use for
evaluation was collected at two RoboCup competitions and has a total of 34,684
annotated images with 7,666 positives and 30,018 negatives. Table 1 shows the
training times, model complexity, and efficacy results for each network.

Time #Params Precision Recall Accuracy
Conv-1 320s 1106 .9797 .9746 .9907
Conv-2 213s 5314 .9948 .9941 .9977
Fc-1 12s 6146 .9251 .9341 .9712
Fc-2 116s 1574402 .9914 .9772 .9936

Table 1: Classification results of neural network classifiers.

We also test the transferability of the networks across different environments,
since in RoboCup games could in different locations. We train the networks on
a dataset collected in one environment and 1) test on some other data collected
in the same environment; and 2) test on a dataset collected in a different envi-



ronment, without any additional fine-tuning. The results are shown in Table 2a
and 2b. Overall, the performance of all networks degrades considerably due to
overfitting to a particular environment, especially the convolutional networks.
This implies it is desirable to have deep networks fine-tuned or retrained when
environment changes, which is practical given the training time in Table 1.

USopen16 → USopen16
Precision Recall Accuracy

Conv-1 .9972 1.000 .9994
Conv-2 .9991 .9991 .9996
Fc-1 .9346 .9468 .9746
Fc-2 .9944 .9944 .9976

USopen16 → RoboCup16
Precision Recall Accuracy

Conv-1 .1226 .1440 .6726
Conv-2 .4163 .8748 .7654
Fc-1 .7349 .8596 .9218
Fc-2 .7214 .8923 .9215

(a) Transferability results of our DNN
classifiers, using USopen 2016 dataset as
source task and RoboCup 2016 dataset
as target task.

RoboCup16 → RoboCup16
Precision Recall Accuracy

Conv-1 .9820 .9776 .9928
Conv-2 1.000 .9910 .9984
Fc-1 .9623 .9731 .9884
Fc-2 .9977 .9843 .9968

RoboCup16 → USopen16
Precision Recall Accuracy

Conv-1 .6754 .2576 .8109
Conv-2 .9890 .3925 .8664
Fc-1 .8402 .5926 .8865
Fc-2 .9199 .6064 .9026

(b) Transferability results of our DNN
classifiers, using RoboCup 2016 dataset as
source task and USopen 2016 dataset as
target task.

Support Vector Machine as Ball Classifier Since their inception in the
early 1990s, SVMs have proven to be a robust and powerful family of classifiers[3].
In these experiments we use the datasets from the DNN experiments to compare
SVMs with three different kernels: linear, polynomial (degree 3), and radial basis
function (RBF). The results are presented in Table 2a.

As we have done for deep nets, we also wish to measure the transferability,
or generalization, of learning across domains. In these experiments we train the
SVM models on a dataset collected in one environment and test on a dataset
collected in a different one. These results are presented in Table 2b. Overall,
the performance degrades dramatically, more so than in the neural networks
case, due to overfitting to a particular environment, without the flexibility that
the deep architectures offer. Again this implies that one must adjust or retrain
the existing SVM models when presented with a new environment in order to
maintain acceptable performance.

4.3 SVM versus DNN

There are two major lessons to take away from the SVM and DNN experiments
of Section 4.2. First, transferred models perform poorly relative to models that
are trained on datasets similar to their test sets. In the context of RoboCup,
this means that it is highly beneficial to train models on-site at the competitions
in order to train on data that will closely resemble what is seen in the official
games.

Second, although complex multi-layer DNNs are too computationally expen-
sive for constrained domains such as RoboCup, simpler networks can still provide



SVM Kernel Accuracy AUC Precision Recall
SVM kernel Accuracy AUC Precision Recall

Linear 0.883 0.869 0.833 0.543
Polynomial 0.970 0.990 0.972 0.881

RBF 0.961 0.989 0.989 0.824

(a) Classification results of SVM classifiers.

SVM Kernel USOpen16 USOpen16→RoboCup16
Accuracy AUC Precision Recall Accuracy AUC Precision Recall

Linear 0.893 0.923 0.807 0.655 0.595 0.420 0.163 0.325
Polynomial 0.985 0.997 0.962 0.968 0.363 0.140 0.098 0.027

RBF 0.982 0.998 0.972 0.944 0.421 0.134 0 0
RoboCup16 RoboCup16→USOpen16

Linear 0.992 0.997 0.995 0.960 0.781 0.387 0.200 0.001
Polynomial 0.998 0.999 1.00 0.987 0.782 0.520 1.00 0.001

RBF 0.998 0.999 0.998 0.991 0.782 0.337 1.00 0.001

(b) Generalization results of our SVM classifiers. In the first stage we train a model
on 80% of the source dataset and then test on the remaining 20%. We then test
the trained model on the target (transfer) dataset.

an advantage over SVMs. In particular we see that the DNN recall observed in
Table 1 is signifcantly higher than the SVM recall in Table 2a, while both tech-
niques exhibit high accuracy.

To summarize, we find that a well-trained DNN can outperform a well-trained
SVM on object classification tasks, even when the DNN’s architecture is simpli-
fied to enable fast computation.

5 Conclusion and Future Work

In this work we have described UT Austin Villa’s black and white soccer ball de-
tection algorithm and discussed in detail the heuristic techniques applied as well
as the machine-learned classification algorithms we incorporated for optimizing
detector accuracy. In addition to our proven success at gameplay we provided
empirical results indicating the benefits of applying a Deep Neural Network to
the task of detecting false positives. We showed that a modest DNN architecture
along with a heuristic ROI filtering pipeline can be combined to create a fast,
precise object detection system that is suitable for computationally constrained
environments such as RoboCup soccer.

As the RoboCup competition (and the SPL in particular) progresses toward
more challenging and realistic requirements, lighting invariance will take on a
greater role in vision algorithms in the coming years. Our work is designed to
be robust to changes in lighting conditions, particularly in the area of geometric
checks. However, improvements may still be possible with respect to adaptive
thresholding and green detection in our color table. Improving these components
will be the subject of future work.



Bibliography

[1] John Bernsen. Dynamic thresholding of grey-level images. In International
conference on pattern recognition, volume 2, pages 1251–1255, 1986.

[2] James Bruce, Tucker Balch, and Manuela Veloso. Fast and inexpensive color
image segmentation for interactive robots. In Intelligent Robots and Systems,
2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference
on, volume 3, pages 2061–2066. IEEE, 2000.

[3] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995. ISSN 1573-0565. doi: 10.1007/BF00994018.
URL http://dx.doi.org/10.1007/BF00994018.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[5] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi
Osawa. Robocup: The robot world cup initiative. In Proceedings of the
First International Conference on Autonomous Agents, AGENTS ’97, pages
340–347, New York, NY, USA, 1997. ACM.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[7] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[8] Jacob Menashe, Samuel Barrett, Katie Genter, and Peter Stone. Ut austin
villa 2013: Advances in vision, kinematics, and strategy. In The Eighth Work-
shop on Humanoid Soccer Robots at Humanoids 2013, 2013.

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

http://dx.doi.org/10.1007/BF00994018

	Fast and Precise Black and White Ball Detection for RoboCup Soccer 

