
Keepaway Soccer: From Machine Learning

Testbed to Benchmark

Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{pstone,kuhlmann,mtaylor,yxliu}@cs.utexas.edu

Abstract. Keepaway soccer has been previously put forth as a testbed

for machine learning. Although multiple researchers have used it suc-
cessfully for machine learning experiments, doing so has required a good
deal of domain expertise. This paper introduces a set of programs, tools,
and resources designed to make the domain easily usable for experimen-
tation without any prior knowledge of RoboCup or the Soccer Server. In
addition, we report on new experiments in the Keepaway domain, along
with performance results designed to be directly comparable with future
experimental results. Combined, the new infrastructure and our concrete
demonstration of its use in comparative experiments elevate the domain
to a machine learning benchmark, suitable for use by researchers across
the field.

1 Introduction

Keepaway soccer in the Soccer Server used at RoboCup has been previously
put forth as a testbed for machine learning [15]. Since then it has been used for
research on temporal difference reinforcement learning with function approxima-
tion [16], evolutionary learning [12], relational reinforcement learning [20], and
behavior transfer [18].

These successes notwithstanding, the domain has remained inaccessible to
many potential users due to the considerable implementation effort required. In
particular, though the domain itself is publically available, it has been necessary
for each researcher to build up agents capable of following the rules of Keepaway
and executing the required low-level behaviors such as intercepting a moving
ball, passing the ball, and moving to open space. Due to the complexity of the
simulator, building up such agents is no simple task. As a result, researchers who
have no prior experience in RoboCup, or who are unwilling to invest considerable
start-up effort, have not been able to use the testbed.

Even if willing to invest this effort, the resulting experiments are not directly
comparable with previously published results. Because each experiment is done
with different underlying agents, the performance results may vary more from
inter-agent differences than from the learning algorithms under study.

These two barriers — inaccessibility to the non-domain-experts and incom-
parability of results across studies — have prevented the Keepaway testbed from

serving as a benchmark for the machine learning community. This paper reports
on new resources that elevate the Keepaway testbed to a benchmark problem
for machine learning. In particular, it describes a repository that:

1. Provides standard, open source implementations for all aspects of the prob-
lem except the learning algorithm itself;

2. Provides a step-by-step tutorial for non-domain-experts to get up to speed
easily; and

3. Provides the graphical tools necessary to evaluate progress.

In addition, we report concrete numerical results for several easily replicable
approaches using the material from the repository. These numerical results are
designed to be directly comparable with future experimental studies.

Finally, we illustrate the use of this benchmark by presenting an empiri-
cal study of different function approximators used within a temporal difference
learning approach to the problem. Previous results indicated that using a form of
linear tile-coding (a CMAC [1]) to approximate the value function led to results
that were better than hand-coded approaches. However, it was not known to
what extent the CMAC itself was responsible for these results. In this paper we
directly compare the CMAC against other function approximators, including a
variation of CMAC based on radial basis functions, as well as neural networks.

2 Background

This section introduces the Keepaway task, surveys previous examples of learning
in this domain, and specifies a standardized learning scenario to be used as a
machine learning benchmark.

2.1 The Keepaway Task
Keepaway is a subproblem of RoboCup simulated soccer in which one team, the
keepers, tries to maintain possession of the ball within a limited region, while
the opposing team, the takers, attempts to gain possession [15]. Whenever the
takers take possession or the ball leaves the region, the episode ends and the
players are reset for another episode (with the keepers being given possession
of the ball again). Parameters of the task include the size of the region, the
number of keepers, and the number of takers. Figure 1 shows a screen shot of
an episode with 3 keepers and 2 takers (called 3 vs. 2, or 3v2 for short) playing
in a 20m× 20m region.1

2.2 The Soccer Server
Since late 2002, the Keepaway task has been part of the official release of the
open source Soccer Server used at RoboCup.2 Agents in the simulator [11] re-
ceive visual perceptions every 150 msec indicating the relative distance and angle
to visible objects in the world, such as the ball and other agents. They may ex-
ecute a primitive, parameterized action such as turn(angle), dash(power), or

1 Flash files illustrating the task are available at http://www.cs.utexas.edu/
∼AustinVilla/sim/keepaway/

2 Starting with version 9.1.0

kick(power,angle) every 100 msec. Thus the agents must sense and act asyn-
chronously. Random noise is injected into all sensations and actions. Individual
agents must be controlled by separate processes, with no inter-agent communica-
tion permitted other than via the simulator itself, which enforces communication
bandwidth and range constraints. Full details of the simulator are presented in
the server manual [6].

Boundary

Keepers

Takers

Ball

Fig. 1: A screen shot
from the middle of a 3 vs.

2 Keepaway episode in a
20m x 20m region.

When started in a special mode, the simulator enforces
the rules of the Keepaway task, as described above, in-
stead of the rules of full soccer. In particular, the simulator
places the players at their initial positions at the start of
each episode and ends an episode when the ball leaves the
play region or is taken away. In this mode, the simulator
also informs the players when an episode has ended and
produces a log file with the duration of each episode.

2.3 Previous Studies

Although the Keepaway task has been available in the
server for some time, it required knowledge of player de-

velopment to be useful as a machine learning testbed. Nonetheless, there are a
few examples of machine learning research involving RoboCup Keepaway.

In addition to our own previous work [16, 18], work by DiPietro et al. [12]
applied evolutionary algorithms to train 3 keepers against 2 takers in the Soccer
Server. Other work by Walker et al. [20] used relational reinforcement learning
to learn the value function for a keeper coordinating with 2 “smart” teammates
against 2 takers.

There has been additional previous work in Keepaway using simulators other
than the Soccer Server. Whiteson et al. [21] used neuroevolution to train keep-
ers in the SoccerBots domain [3], an extension of the more abstract TeamBots
simulator [2]. Also, Hsu and Gustafson [9] evolved keepers for 3 vs. 1 Keepaway
in the TeamBots simulator.3

Clearly it is not possible to to directly compare performance of work using
simulators with different primitive actions and different game dynamics. But
even work within the same simulator cannot typically be compared directly
because the approaches differ in their set of high-level behaviors, implementation
of basic skills, fixed opponent policies, and sometimes even performance metrics.
It is exactly this problem that our benchmark repository seeks to address.

2.4 Standardized Task

When Keepaway was introduced as a testbed [15], a standard task was defined.
The main contribution of the current work is the infrastructure required to easily
implement that task (Section 3). This section reviews the standardized task as
previously formulated.

3 Gustafson has made some code available that contributes to this more abstract
simulator having some of our defined properties of a benchmark: http://www.cs.
nott.ac.uk/∼smg/kas/keepaway-v0.01.html

The Keepaway problem maps fairly directly onto the discrete-time, episodic,
reinforcement-learning framework. As a way of incorporating domain knowledge,
the learners choose not from the simulator’s primitive actions but from a set of
higher-level macro-actions implemented as part of the player. These macro-
actions can last more than one time step, and the keepers have opportunities
to make decisions only when an on-going macro-action terminates. To handle
such situations, it is convenient to treat the problem as a semi-Markov decision
process, or SMDP [13, 5]. The macro-actions used (and fully provided as a part
of our repository) can be found in [16]. The agent can make decisions at discrete
SMDP time steps, at which macro-actions are initiated and terminated.

For the purpose of defining a standardized task, we focus on training the
keepers, but training the takers can be done similarly in the Keepaway domain,
as suggested in [16]. The keepers learn in a constrained policy space. They have
the freedom to decide which action to take only when in possession of the ball.
A keeper in possession may either hold the ball or pass to one of its teammates.
Keepers not in possession of the ball are required to execute the Receive macro-
action in which the player who can get there the soonest goes to the ball and
the remaining players try to get open for a pass.

For training the keepers, the behavior of the takers is “hard-wired” and rela-
tively simple. The two takers that can get there the soonest go to the ball, while
the remaining takers, if present, try to block open passing lanes. Similarly, for
training the takers, the keepers may be hard-wired. These hard-wired behaviors
are provided in the repository.

Takers

Keepers

Ball

Fig. 2: This diagram depicts the 13
state variables used for learning with

3 keepers and 2 takers. There are 11
distances to players, the center of the
field, and the ball, as well as 2 angles

along passing lanes.

Also as a way of incoporating domain knowl-
edge, the learners do not make decisions based
on raw positional information but based on
higher-level features that form the states for
the Keepaway learning task. The keepers’ states
comprise distances and angles of the keepers
K1, . . . , Kn, the takers T1, . . . , Tm, and the cen-
ter of the playing region. Keepers and takers
are ordered by increasing distance from the ball
and when learning takes place, K1 is always the
keeper in possession of the ball. The 13 state
variables for 3v2 Keepaway are (see Figure 2):

– Distances from players to center of region,
– Distances from other players to K1,
– Distances from teammates to their closest

opponent, and
– For each Ki (i = 2, . . . , n), the minimal an-

gle with the vertex at K1 between Ki and
an opponent.

We can easily vary the size of the Keepaway region, the number of keepers,
and the number of takers to change the Keepaway task. Our framework provides
a standard interface to the learner in terms of macro-actions, states, and rewards.

We choose episode duration as the performance measure for this task. The
keepers attempt to maximize it while the the takers try to minimize it. To this
end, it is natural to give the learners a constant positive reward for each time
step an episode persists. Complete details on the task and the learning scenario
can be found elsewhere [16].

3 Benchmark Repository

We have implemented a standardized Keepaway player framework in C++ and
released its code base for public use in an online repository.4 The code base
provides an open source implementation for all aspects of the Keepaway problem
except the learning algorithm itself, which is intended to be the object of study
by each individual researcher.

3.1 Standardized Keepaway Player

We have created an implementation of a standardized player built upon the
player framework developed by the UvA Trilearn team [8]. This framework han-
dles communication and synchronization with the server, world model update,
localization, and low- and mid-level skills.

On top of this framework, we added additional skills necessary for Keepaway
and implemented the fixed policy carried out by the keepers when they do not
have the ball. Also, we have implented hand-coded takers that follow the policy
described previously.

By default, a player in the Soccer Server is only able to see objects in a
90-degree cone in front of them. A difficult problem in developing agents that
are meant to coordinate in dynamic environments with limited vision is trying
to maintain a correct distributed world model. This requires agents to decide
where to look, what to communicate, whom to listen to, and how to incorporate
second-hand information. Although we have previously demonstrated that it is
possible to get learning to work in this scenario [10], the players do not perform
at as high of a level. For this reason, the players operate with 360-degree (but
still noisy) vision by default. A rudimentary implementation of communication
and information-gathering actions is included, but is not recommended. We hope
that in future development of the players, the level of play in the 90-degree case
can be increased such that the 360-degree assumption is no longer necessary.

Learning Agent Interface The Keepaway player implementation is constructed
in such a way that the details of the Keepaway domain are completely abstracted
from the high-level action selection. This was done to allow new learning algo-
rithms to be integrated into the players with minimal effort.

From the learning algorithm’s perspective, the Keepaway problem is pre-
sented as a generic SMDP. The state is represented as a fixed-length vector of
continuous values. A macro-action is represented as an integer ranging from 0
to numActions− 1. The reward is a single continuous value received after each
macro-action terminates.

4 http://www.cs.utexas.edu/∼AustinVilla/sim/keepaway/

A new learning agent must implement the SMDPagent interface, which
consists of the following three functions:

– int startEpisode(double state[])
This function is called the first time this player has an action opportunity in
an episode. In other words, it is called when the player first has possession
of the ball. If the player never obtains the ball, this function will never be
called. The agent is supplied with the current state and is expected to return
a macro-action to be executed.

– int step(double reward, double state[])
This function is called at every action opportunity for this player after the
first one. The reward accumulated during the execution of the previous
macro-action is given along with the new state. A macro-action is again
expected to be returned.

– void endEpisode(double reward)
This function is called when the player receives notice from the server that
the episode has ended. The agent is supplied with the reward accumulated
from the last macro-action up until the end of the episode. Note that this
function is called after every episode, even when this player never touches
the ball.

Although the players do not come with any learning code, a few fixed policies
are supplied:

– Random - choose actions uniformly at random
– Always Hold - always choose the hold action
– Hand-coded - a simple handcoded policy that holds the ball when no takers

are nearby and passes to the most open teammate otherwise. More details
can be found in [16].

The known performance of these policies as reported later in this paper (see
Section 4) serve as a sanity check for new installations of the system.

3.2 Tools

The player source code package comes with a set of scripts that are helpful in
running experiments and analyzing the resulting data. There are scripts to start
and stop the simulation. Another script can be executed during the simulation
to launch the Soccer Monitor, the standard visualization tool for the simulator,
in a special mode that displays the Keepaway region on field. Additional scripts
use the known structure of the .kwy log files to compress and decompress them
much more compactly than using a standard compression utility.

One of the most useful tools is a script that converts the episode duration data
in a .kwy file into a representation that is appropriate for generating a learning
curve using a tool such as gnuplot. This script uses a “sliding window” to find
average episode durations for each fixed-sized sequence of episodes. Along with
the size of the window (number of episodes), the script takes in an additional
parameter that specifies the coefficient of a low-pass filter used for smoothing

the curve. A gnuplot style file is also supplied to produce graphs similar to the
ones included in this paper (e.g. Figure 4).

Finally, there is a tool to generate histograms of episode durations. The
intended purpose of this tool is to allow someone to visualize the distribution of
episode durations when evaluating a fixed policy. Again, a gnuplot style file is
included for generating figures appropriate for publication.

3.3 Online Tutorials

In addition to source code itself, the web site repository contains a step-by-step
tutorial of how to use the code. The goal of the tutorial is to allow for someone
who is not an expert in the RoboCup simulated soccer domain to get up to speed
easily.

The tutorial is divided into two sections. The first section walks through the
necessary steps for downloading and installing the simulator and players, starting
a simulation using one of the supplied hand-coded policies, and generating a
learning curve. Two graduate students from our lab that had never worked in
the Keepaway domain before were able to successfully complete this section in
a matter of minutes.

The second part of the tutorial discusses how to incorporate a new learning
algorithm into the provided player source code. We include skeleton code for
download from within this section of the web site that can serve as the starting
point for a new learning agent implementation. Thus, the main effort required
on the part of a new user is exactly the porting of one’s own learning approach
to the place-holders within the provided source code.

4 An Empirical Study

Though many learning approaches are possible in this domain, we now consider
a particular learning approach to learning Keepaway for the keepers. The keep-
ers learn their task using episodic SMDP Sarsa(λ) [17, 16], a well-understood
temporal difference algorithm and naturally fit into the SMDPagent interface.

Static Keepaway Policies
Policy 3 vs. 2 4 vs. 3 5 vs. 4

Always Hold 3.4±1.5 4.1±1.8 4.8±2.2
Random 7.5±3.7 8.3±4.4 9.5±5.1
Hand-coded 8.3±4.7 9.2±5.2 10.8±6.7

Table 1: This table details the average posses-

sion time and standard deviation in seconds for
three simple policies included in our distributed

code on three different Keepaway tasks. 3 vs. 2 is
run on a 20m x 20m field, 3 vs. 4 is run on a 25m

x 25m field, and 5 vs. 4 is run on a 30m x 30m
field. These numbers may be used as benchmarks
to be compared against other learned policies.

The state variables are continuous
and therefore suggest value function
approximation. We consider episodic
SMDP Sarsa(λ) but with different
function approximators. A function
approximator in a Sarsa(λ) learner
maps states to a vector of state-action
values, one entry for each action, and
the Sarsa(λ) learner uses the state-
action values to perform on-policy
learning.

Within this framework, a question that arises is the efficacy of different func-
tion approximators. By using an implementation of the SMDPagent interface we
are able to easily substitute different function approximators, a key component
of a value-based RL learning. In this section we compare three such function ap-
proximators, CMACs, a novel extension to CMACs using radial basis functions

which we denote RBF networks, and neural networks, in the Sarsa approach
to the Keepaway task. The training performs a version of Sarsa using function
approximators [14], with adaptations for SMDPs.

Tiling #1

Tiling #2

Dimension #1

D
im

en
si

on
 #

2

Fig. 3: The tile-coding feature sets are

formed from multiple overlapping tilings.
The state variables are used to deter-

mine the activated tile in each of the dif-
ferent tilings. Every activated tile then
contributes a weighted value to the to-

tal output of the CMAC for the given
state. Increasing the number of tilings

allows the tile-coding to generalize bet-
ter while decreasing the tile size allows
more accurate representations of smaller

details. Note that we primarily use one-
dimensional tilings but that the principles

apply in the n-dimensional case.

In order to quantify the learning rates
of different learning algorithms and func-
tion approximators, we analyze the .kwy files
produced by the Soccer Server in Keepaway
mode. To produce a learning curve we “win-
dow” the data so that every point on a learn-
ing graph is the average of 1000 Keepaway
episodes. The noise in the sensors and actu-
ators is large enough that the variance be-
tween different episodes is large, even within
a single trial using a static policy. By averag-
ing episodes over time we are able to reduce
much of the noise in our graph and still show
representative curves.

The possession times for the three static
policies provided can be found in Table 1.
Note that the standard deviation is a mea-
sure of the difference of windowed averages
across trials, not a measure of the variation
in episode lengths within a single trial. We will see that both function approxi-
mators examined allow players to learn an average possession time better than
these three static policies. While past research [16] has shown that CMAC func-
tion approximation allows learning in the Keepaway domain, this is the first
research showing comparable, or perhaps better, learning results, in this case
using the new RBF function approximator.

4.1 CMAC Function Approximation

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

CMAC Learning Curves (1000 episode window)

Fig. 4: This figure presents the learning

curves for 24 independent 3 vs. 2 trials
using a CMAC function approximator.

CMACs are a form of linear tile-coding func-
tion approximation that have been success-
fully used in many reinforcement learning
systems [1]. CMACs allow us to take arbi-
trary groups of continuous state variables
and lay infinite, axis-parallel tilings over
them (see Figure 3). Using this method we
are able to discretize the continuous state
space by using tilings while maintaining the
capability to generalize via multiple overlap-
ping tilings. The number of tiles and width
of the tilings are hardcoded and this dic-

tates which state values will activate which tiles. The function approximation is
learned by changing how much each tile contributes to the output of the function
approximator. By default, all the CMAC’s weights are initialized to zero. This

approach to function approximation in the RoboCup soccer domain is detailed
by Stone et al. [16].

CMACs have been used previously in the Keepaway domain [16]. We include
results here as a point of comparison. In Figure 4 we see that the keepers learn to
increase the time they are able to control the ball through training. The average
learned possession time over 24 trials after 30 simulator hours of training is 15.69
seconds with a standard deviation of 2.81 seconds. Again, the average possession
time for each trial is averaged over 1000 episodes to reduce the impact of noise.

4.2 RBF Function Approximation

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

RBF Learning Curves (1000 episode window)

Fig. 5: This figure presents the learning

curves for 40 independent 3 vs. 2 trials
using an RBF function approximator.

A radial basis function (RBF) is a general-
ization of the tile coding idea to a contin-
uous function [17]. In the one-dimensional
case, an RBF approximator is a linear func-
tion approximator f̂(x) =

∑
i
wifi(x), where

the basis functions have the form fi(x) =
φ(|x − ci|), x is the current state, and ci is
the center for feature i. A CMAC is a special
type of RBF approximator with ci’s equally
spaced and φ(x) a step function. Here we
use Gaussian radial basis functions, where

φ(x) = exp(− x
2

2σ2), and the same ci’s as a
CMAC. The learning for RBF networks are identical to that for CMACs except
for the calculation of state-action values where the RBFs are used. As is the case
for CMACs, the state-action values are computed as a sum of one-dimensional
RBFs, one for each feature. By tuning σ, the experimenter can control the width
of the Gaussian function and therefore the amount of generalization over the
state space. In our implementation, a value of σ = 1.0 creates a Gaussian which
roughly spans 9 CMAC tiles, a value of σ = 0.5 spans 5 tiles, and σ = 0.25
activates roughly 3 tiles. We found the value of σ = 0.25 to perform the best,
but more tuning would possibly produced better results than reported here.

In Figure 5 we see keepers can successfully learn to keep the ball with an
RBF function approximator for successively longer periods of time after training.
The average learned possession time over 40 trials after 30 simulator hours of
training is 14.23 seconds with a standard deviation of 3.14 seconds.

By comparing Figures 4 and 5, we note that the RBF trials appear to be
learning faster: they have better performance between the 5-hour and 25-hour
marks (though not significantly different average performance). The best-case
performance of RBF at the 30-hour mark is comparable to that of CMAC, but
more RBF trials land at the worst-case end.

4.3 Neural Network Function Approximation

Feedforward neural networks are a very popular type of function approximator
and have had some notable past successes in reinforcement learning [7, 19]. We
use three seperate 13-20-1 networks, one for each action. Inputs to the neural

network are set to the value of state variables and each network’s output corre-
sponds to an action. Nodes in the hidden layer have a sigmoid transfer function
and output nodes are linear. We use standard backpropagation to modify the
weights in the neural networks to back up Sarsa(λ) values.

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

Fig. 6: This figure presents the learning
curves for 20 independent 3 vs. 2 trials

using a neural network function approxi-
mator.

In Figure 6 we see keepers also learn to
keep the ball with a neural network function
approximator for longer periods of time af-
ter training. The average learned possession
time over 20 trials after 30 simulator hours
of training is 10.13 seconds with a standard
deviation of 0.29 seconds.

By comparing Figure 6 to Figures 4
and 5, we note that neural networks do not
learn as fast as CMACs or RBFs, but have
a lower variance. However, we did not try
to optimize the neural networks’ parameters

and ran fewer experiments relative to the CMACs and RBFs. Neural networks
can theoretically have better performance: they can encode arbitrarily complex
interactions among state variables while CMACs and RBFs in our implementa-
tion only combine effects of different state variables in a simple way (summation).

5 Future Work

In the Section 4 we give an example study comparing the efficacy of two dif-
ferent function approximators using the Keepaway benchmark. Other function
approximators and learning algorithms can be easily inserted into the testbed
and directly compared to these two function approximators, allowing experi-
menters to quickly test the relative benefits of different techniques.

The infrastructure is of course not limited to function approximation studies.
Different reinforcement learning algorithms, both value-based and policy search,
may be compared. Evolutionary methods (as in [12]) may be evaluated and
compared directly to temporal difference methods; different temporal difference
methods may be directly compared (such as Sarsa vs. Q-learning as in [16]).
Multi-agent learning questions may be addressed, such as how learning rates are
affected when opponents or teammates learn simultaneously with an agent, learn
sequentially, or do not learn at all. Different state representations can be easily
expressed, enabling the investigation of state abstraction. Alternate actions can
be implemented, allowing the investigation of hierarchical RL questions such as
using options to speed up learning. We anticipate exploring some of these areas
in the future using this infrastructure.

Our Keepaway benchmark infrastructure provides an easy way of consistently
comparing the relative performance of different methods when investigating any
of the previously mentioned research questions. By using the same benchmark
platform, researchers will be able to make quantitative comparisons between
different learning methods. To that end we will make every effort to not make
changes to the infrastructure that affect performance, thus making direct com-
parisons across versions of our implementation legitimate. However, we intend

to make improvements to the communication and distributed sensing code for
use with limited vision. Because of this and other possible changes, when report-
ing results, we encourage researchers to always cite the implementation version
number as well as any non-default settings that were used. Doing so will en-
sure the validity of direct comparisons as well as enable the repeatability of all
experiments.

6 Conclusion

This paper makes two main contributions. First and foremost, it introduces a
source code repository including a set of tools and tutorials designed to enable all
machine learning researchers to use the Keepaway soccer domain as a benchmark
task. Second, it introduces a function approximation method not previously
tested in this domain and empirically evaluates it on this benchmark task. The
RBF network performs at least as well as, and perhaps a little better than, the
previously-used CMAC method.

While there is an established repository for supervised machine learning
benchmarks [4], there is currently no comparable repository of sequential decision-
making tasks. For this reason, releasing our new benchmark provides a valuable
service. We plan to continue maintaining the repository at http://www.cs.

utexas.edu/∼AustinVilla/sim/keepaway/ for the foreseeable future. It is our
hope that it will be a benefit to both the RoboCup and the machine learning
communities. For people already involved in RoboCup, it standarizes a bench-
mark for machine learning research within the domain, and could serve as a
domain of interest for the Special Interest Group (SIG) on multiagent learn-
ing. 5 For the machine learning community it makes experimentation within the
RoboCup domain accessible to everyone.

Acknowledgments

This research was supported in part by NSF CAREER award IIS-0237699, ONR YIP
award N00014-04-1-0545, and DARPA grant HR0011-04-1-0035.

References

1. J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH, 1981.
2. Tucker Balch. Teambots, 2000. http://www.teambots.org.
3. Tucker Balch. Teambots domain: Soccerbots, 2000. http://www-2.cs.cmu.edu/

∼trb/TeamBots/Domains/SoccerBots.
4. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
5. S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time

Markov decision problems. In T. Leen G. Tesauro, D. Touretzky, editor, Advances

in Neural Information Processing Systems 7, pages 393–400, San Mateo, CA, 1995.
Morgan Kaufmann.

6. Mao Chen, Ehsan Foroughi, Fredrik Heintz, Spiros Kapetanakis, Kostas Kos-
tiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst, Patrick Riley, Timo Steffens,
Yi Wang, and Xiang Yin. Users manual: RoboCup soccer server manual for soc-
cer server version 7.07 and later, 2003. Available at http://sourceforge.net/

projects/sserver/.

5 http://sserver.sourceforge.net/SIG-learn/

7. Robert H. Crites and Andrew G. Barto. Improving elevator performance using
reinforcement learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,
editors, Advances in Neural Information Processing Systems 8, Cambridge, MA,
1996. MIT Press.

8. Remco de Boer and Jelle R. Kok. The incremental development of a synthetic
multi-agent system: The uva trilearn 2001 robotic soccer simulation team. Master’s
thesis, University of Amsterdam, The Netherlands, February 2002.

9. W. H. Hsu and S. M. Gustafson. Genetic programming and multi-agent layered
learning by reinforcements. In Genetic and Evolutionary Computation Conference,
New York,NY, July 2002.

10. Gregory Kuhlmann and Peter Stone. Progress in learning 3 vs. 2 keepaway. In
Proceedings of the RoboCup-2003 Symposium, Padova, Italy, July 2003.

11. Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server: A
tool for research on multiagent systems. Applied Artificial Intelligence, 12:233–250,
1998.

12. Anthony Di Pietro, Lyndon While, and Luigi Barone. Learning in RoboCup keep-
away using evolutionary algorithms. In W. B. Langdon, E. Cantú-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors,
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Confer-

ence, pages 1065–1072, New York, 9-13 July 2002. Morgan Kaufmann Publishers.
13. M. L. Puterman. Markov Decision Processes. Wiley, NY, 1994.
14. G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department, 1994.

15. Peter Stone and Richard S. Sutton. Keepaway soccer: a machine learning testbed.
In Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors, RoboCup-2001:

Robot Soccer World Cup V, pages 214–223. Springer Verlag, Berlin, 2002.
16. Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning

for RoboCup-soccer keepaway. Adaptive Behavior, 2005. To appear.
17. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.
18. Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based

reinforcement learning. In The Fourth International Joint Conference on Au-

tonomous Agents and Multiagent Systems, July 2005. To appear.
19. Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves

master-level play. Neural Computation, 6(2):215–219, 1994.
20. T. Walker, J. Shavlik, and R. Maclin. Relational reinforcement learning via sam-

pling the space of first-order conjunctive features. In Proceedings of the ICML

Workshop on Relational Reinforcement Learning, Banff, Canada, July 2004.
21. Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolving

keepaway soccer players through task decomposition. Machine Learning, 59(1):5–
30, May 2005.

