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Abstract. The UT Austin Villa team, from the University of Texas at
Austin, won the 2021 RoboCup 3D Simulation League, winning all 19
games the team played. During the course of the competition the team
scored 108 goals while conceding only 5. Additionally the team finished
second in the overall RoboCup 3D Simulation League technical challenge
by finishing second in both the fat proxy and scientific challenges. This
paper details and analyzes the results of the 2021 competition, and also
presents a new deep RL learning framework that was presented during
the scientific challenge.

1 Introduction

UT Austin Villa won the 2021 RoboCup 3D Simulation League for the ninth
time in the past ten competitions, having also won the competition in 2011 [1],
2012 [2], 2014 [3], 2015 [4], 2016 [5], 2017 [6], 2018 [7], and 2019 [8] while finishing
second in 2013 (there was no official competition in 2020, however the team also
won the Offenburg Open replacement competition that year). During the course
of the competition the team won all 19 games it played and scored a total of 108
goals while conceding only 5. Many of the components of the 2021 UT Austin
Villa agent were reused from the team’s successful previous years’ entries in
the competition. This paper is not an attempt at a complete description of the
2021 UT Austin Villa agent, the base foundation of which is the team’s 2011
championship agent fully described in a team technical report [9].

In addition to winning the main RoboCup 3D Simulation League competi-
tion, UT Austin Villa took second place in the RoboCup 3D Simulation League
technical challenge by taking second in each of the two league challenges: fat
proxy and scientific challenges. This paper serves to document these challenges
as well as the main competition.

The remainder of the paper is organized as follows. In Section 2 a description
of the 3D simulation domain is given highlighting differences from the previous
year’s competition. Section 3 provides an overview of the 2021 UT Austin Villa
team and its key components, while Section 4 analyzes the overall performance



of the team at the competition. Section 5 describes and analyzes the fat proxy
challenge, while also documenting the results of the overall league technical chal-
lenge consisting of both the fat proxy and scientific challenges. Section 6 provides
details about a new deep RL learning framework that was presented during the
scientific challenge, and Section 7 concludes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark [10, 11], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics Engine
(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing two 5 minute halves of soccer on
a 30 x 20 meter field. The robot agents in the simulation are modeled after the
Aldebaran Nao robot, which has a height of about 57 cm, and a mass of 4.5kg.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20 ms), while joint
effectors allow the agent to specify the speed/direction in which to move a joint.

Visual information about the environment is given to an agent every third
simulation cycle (60 ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120°). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40 ms) by sending 20 byte messages.

In addition to the standard Nao robot model, four additional variations of
the standard model, known as heterogeneous types, are available for use. These
variations from the standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Teams must use at least
three different robot types, no more than seven agents of any one robot type,
and no more than nine agents of any two robot types.

In 2019 a pass play mode was introduced to the RoboCup 3D simulation
league to encourage more passing and teamwork. The pass play mode allows
players some extra time on the ball to kick and pass it during which time the
opponent is prevented from interfering with a kick attempt. A player may initiate
the pass play mode as long as the the player is within 0.5 meters of the ball and
no opponents are within a meter of the ball. Once pass play mode for a team has
started the players from the opponent team are prevented from getting within a
meter of the ball. The pass play mode ends as soon as a player touches the ball or
four seconds have passed. After pass mode has ended the team who initiated the
pass mode is unable to score for ten seconds—this prevents teams from trying
to take a shot on goal directly out of pass mode. However, new for this year’s
competition, a team may score before 10 seconds after their pass play mode has



ended if multiple players from the team have touched the ball with at least one
touch coming after the ball has traveled beyond the area where opponents were
not allowed to enter when pass mode was active—this allows a player to take a
quick shot on goal and score after receiving a teammate’s pass out of pass mode.

One significant change for the 2021 RoboCup 3D Simulation League com-
petition was in how robots are penalized for a couple of types of fouls. Pre-
viously, if robots committed touching fouls (a group of three or robots touch-
ing at the same time), or illegal defense fouls (more than three robots inside
their own goal area), robots were beamed (moved) to the sideline outside of
the field of play. Both touching and illegal defense fouls were created to pre-
vent crowding that could inhibit play and potentially make the simulator un-
stable due to handling a large amount of robots colliding at the same time.
While enforcing these fouls is currently necessary for smooth play in RoboCup
3D simulation games, moving robots off the field for having committed the
fouls looks very unnatural as they are not part of normal soccer, and could
even be exploited by a team committing a foul to their advantage (e.g. a team
could purposely commit an illegal defense foul during their own goal kick to-
https://www.overleaf.com/project /6164550b981e83657848d0a8 have their robot
moved to a forward position just outside the field to receive a pass from a goal
kick). Now, instead of moving robots all the way off the field after having com-
mitted these fouls, robots are only slightly repositioned to have less of an effect
on game play: robots are moved to as close a position on the field as possible to
their current position where they are not touching other robots, and for illegal
defense fouls robots are also moved to a position outside of their own goal area.

Figure 1 shows images of the Nao robot and soccer field during a game.

Fig. 1. A screenshot of the Nao humanoid robot (left), and a view of the soccer field
during a 11 versus 11 game (right).



3 2021 UT Austin Villa Team

The UT Austin Villa team was largely unchanged from the the previous RoboCup
competition in 2019, with many components developed prior to 2021 contributing
to the success of the team including dynamic role assignment [12], marking [13],
and an optimization framework used to learn low level behaviors for walking and
kicking via an overlapping layered learning approach [14].

The primary changes to the team for this year’s competition were related to
pass mode: a bug was fixed that would sometimes cause an agent to take a shot
on goal directly out of pass mode, and logic was added to no longer need to wait
10 seconds before trying to score after pass mode has ended in order to account
for the pass mode rule change in this year’s competition. The decision to keep
the agent almost the same as that which was used in the previous competition
was twofold. First, instead of focusing on the competition, the team decided
to dedicate more time and resources to research and development of a deep
RL framework detailed in Section 6. Second, keeping the team almost the same
allows for it to serve as a benchmark for league progress as discussed in Section 4.

4 Main Competition Results and Analysis

In winning the 2021 RoboCup competition UT Austin Villa finished with a per-
fect record of 19 wins.! During the course of the competition the team scored 108
goals while conceding only 5. Despite the team’s strong performance at the com-
petition, the relatively few number of games played at the competition, coupled
with the complex and stochastic environment of the RoboCup 3D simulator,
make it difficult to determine UT Austin Villa being better than other teams
by a statistically significant margin. At the end of the competition, however,
all teams were required to release their binaries used during the competition.
Results of UT Austin Villa playing 1000 games against each of the other eleven
teams’ released binaries from the competition are shown in Table 1.

UT Austin Villa finished with at least an average goal difference greater than
1.6 goals against every opponent. Additionally, UT Austin Villa’s win percentage
was greater than 94% against all teams except for a 78.1% win percentage against
magmaQOffenburg. These results show that UT Austin Villa winning the 2021
competition was far from a chance occurrence.

As mentioned in Section 3, the UT Austin Villa team was largely unchanged
from the previous competition, and can thus serve as a benchmark for the pro-
gression of the league by looking at the team’s relative performance against
opponents between the previous and current competitions. Analysis from the
2019 competition showed that UT Austin Villa had an average goal difference
of at least 2.4 goals and a winning percentage greater than 91% against all
opponents [8]. Also, among the six common opponents between the 2019 and
2021 competitions (magmaOffenburg, WrightOcean, HfutEngine, FCPortugal,

! Full tournament results can be found at http://www.cs.utexas.edu/
~AustinVilla/?p=competitions/RoboCup21#3D



Table 1. UT Austin Villa’s released binary’s performance when playing 1000 games
against the released binaries of all other teams at RoboCup 2021. This includes place
(the rank a team achieved at the 2021 competition), average goal difference (values in
parentheses are the standard error), win-loss-tie record, and goals for/against.

Opponent Place|Avg. Goal Diff.|Record (W-L-T)|Goals (F/A)
magmaOffenburg| 2 | 1.612 (0.048) 781-68-151 2073/461
WrightOcean 4 2.989 (0.047) 963-4-33 3181/192
Apollo3D 3 3.119 (0.053) 941-16-43 3690/571
HfutEngine 5 3.835 (0.049) 995-1-4 4055/220
FCPortugal | 6 | 4.106 (0.062) 975-8-17 6045,/1939
Miracle3D 7 5.819 (0.048) 1000-0-0 5820/1
BahiaRT 9 6.806 (0.060) 1000-0-0 6809/3
KgpKubs 10 | 7.337 (0.052) 1000-0-0 7337/0
ITAndroids 8 8.031 (0.058) 1000-0-0 8033/2
MIRG 7 |12.193 (0.049) 1000-0-0 9193/0
WITS-FC 11 | 10.552 (0.054) 1000-0-0 10552/0

BahiaRT, and ITAndroids), the opponents improved by an average goal differ-
ence of 0.97 when playing against UT Austin Villa during this year’s competition.
The significant overall relative improvement in performance by teams from the
previous competition is a strong sign of the league progressing, and suggests that
to repeat again as champions in future competitions UT Austin Villa will likely
need to return focus toward improving the team’s performance.

4.1 Additional Tournament Competition Analysis

To further analyze the tournament competition, Table 2 shows the average goal
difference for each team at RoboCup 2021 when playing 1000 games against all
other teams at RoboCup 2021.

Table 2. Average goal difference for each team at RoboCup 2021 (rows) when playing
1000 games against the released binaries of all other teams at RoboCup 2021 (columns).
Teams are ordered from most to least dominant in terms of winning (positive goal
difference) and losing (negative goal difference).

UTA | mag | Apo | Wri | Hfu | FCP | Mir | ITA | Bah | Kgp | MIR | WIT
UTAustinVilla — 1.612]3.119|2.989 | 3.835| 4.106 | 5.819 | 8.031 | 6.806 | 7.337 | 9.193 |10.552
magmaOffenburg| -1.612 | — |1.399|1.407 | 2.386 | 4.101 | 4.481|5.099 | 6.157 | 5.771 | 9.947 | 8.288
Apollo3D -3.119 |-1.339] — [0.379(0.996 | 3.321 | 3.130 | 4.816 | 3.201 | 4.512 | 6.717 | 6.483
WrightOcean | -2.989 [-1.407(-0.379] — |0.349|1.332|2.961 |3.738|2.735|4.237 | 7.520 | 6.181
HfutEngine | -3.835 |-2.386|-0.996|-0.349| — |0.557|2.113|4.075|1.952 | 3.661|6.398 | 6.000
FCPortugal | -4.106 |-4.101|-3.321|-1.332|-0.557| — | 0.664 |0.567 | 0.544 | 1.125 |3.454 | 2.772
Miracle3D -5.819 |-4.481|-3.130{-2.961|-2.113|-0.664| — |0.857|0.589|1.712 |5.581 | 3.962
ITAndroids | -8.031 |-5.099|-4.816|-3.738|-4.075|-0.567|-0.857| — |0.340|0.819|3.461 | 3.738
BahiaRT -6.806 |-6.157|-3.201|-2.735|-1.952|-0.544|-0.589|-0.340 0.606 | 2.462 | 1.387
KpgKubs -7.337 |-5.771]-4.512|-4.237|-3.661|-1.125|-1.712|-0.819|-0.606| — |0.610 | 0.154
MIRG -9.193 |-9.947]-6.717|-7.520(|-6.398|-3.454|-5.581|-3.461|-2.462|-0.610| — | 0.161
WITS-FC -10.552(-8.288|-6.483|-6.181|-6.000|-2.772|-3.962|-2.306|-1.387|-0.154|-0.161




It is interesting to note that the ordering of teams in terms of winning (pos-
itive goal difference) and losing (negative goal difference) is transitive—every
opponent that a team wins against also loses to every opponent that defeats
that same team. Relative goal difference does not have this same property, how-
ever, as a team that does better against one opponent relative to another team
does not always do better against a second opponent relative to that same team
(e.g. UTAustinVilla has a higher average goal compared to magmaOffenburg
when playing Apollo3D but not MIRG).

5 Technical Challenges

During the competition there was an overall technical challenge consisting of two
different league challenges: scientific and fat proxy challenges. For each league
challenge a team participated in, points were awarded toward the overall tech-
nical challenge based on the following equation:

points(rank) = 25 — 20 * (rank — 1)/(numberOfParticipants — 1)
Table 3. Overall ranking and points totals for each team participating in the RoboCup

2021 3D Simulation League technical challenge as well as ranks and points awarded for
each of the individual league challenges that make up the technical challenge.

Overall Scientific | Fat Proxy

Team Rank|Points|Rank|Points|Rank |Points
magmaOffenburg| 1 50 1 25 1 25
UTAustinVilla| 2 40 2 20 2 20
BahiaRT 3 25 4 10 3 15
FCPortugal 4 20 2 20 — —
WITS-FC 5 10 — — 5 10

Table 3 shows the ranking and cumulative team point totals for the technical
challenge as well as for each individual league challenge. UT Austin Villa finished
second in both the scientific challenge and fat proxy challenge resulting in a
second place finish in the overall technical challenge. The following subsections
detail UT Austin Villa’s participation in each league challenge.

5.1 Scientific Challenge

During the scientific challenge, teams give a five minute presentation on a re-
search topic related to their team. Each team in the league then ranks the pre-
sentations with the best receiving a score of 4 (based on four teams participating
in the challenge), second best a score of 3, etc. Additionally several respected
research members of the RoboCup community outside the league rank the pre-
sentations, with their scores being counted double. The winner of the scientific
challenge is the team that receives the highest score. Table 4 shows the results
of the scientific challenge in which UT Austin Villa tied for second place.



Table 4. Results of the scientific challenge.

Team Score
magmaQOffenburg| 43
FCPortugal 36
UTAustinVilla| 36
BahiaRT 25

UT Austin Villa’s scientific challenge submission? presented research on using
a deep RL framework to learn running behaviors which is presented in detail in
Section 6. The other teams participating in the scientific challenge also presented
interesting work:® magmaOffenburg talked about learning a multi-directional
kick using deep RL, FCPortugal discussed work on 6D localization [15], and
BahiaRT presented a custom OpenAl Gym environment for skills optimization
in the 3D Soccer Simulation League.

5.2 Fat Proxy Challenge

While strategy and teamwork is important for success in the RoboCup 3D Simu-
lation League [12,13], historically the teams with the best low level skills such as
fast and stable walks and long and quick kicks have performed the best. Creating
these low level skills serves as a barrier for entry to new teams in the league,
however, as the skills can be difficult to develop with teams often employing
machine learning techniques to generate them [16].

As a way to make it easier for new teams to join the league, and also to
allow teams to focus on high level strategy without needing to worry about
low level skills, a fat proxy* was created that controls the low level motions of
the robots for walking, kicking, and getting up after having fallen over. The fat
proxy processes all communication between agents and the simulation server, and
receives messages from agents that include high level dash and kick commands
for walking and kicking the ball that are similar to the same commands in the
RoboCup 2D Simulation League:

dash <forward/backward speed> <left/right speed> <turn_angle>
kick <power> <horizontal_angle> <vertical_angle>

When the fat proxy receives a dash command from an agent, it translates the
command to torques to apply to the robot’s joints to have the robot walk in the
direction specified in the dash command using the magmaOffenburg team’s walk
engine embedded inside the fat proxy. In the case of a kick command, the fat

2 Scientific challenge entry description available at https://www.cs.utexas.edu/
~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2021/files/
UTAustinVillaScientificChallenge2021.pdf

3 All participating teams’ scientific challenge entry descriptions available at http:
//archive.robocup.info/Soccer/Simulation/3D/FCPs/RoboCup/2021/

4 https://github.com/magma0ffenburg/magmaFatProxy



proxy sends a message to the simulation server to propel the ball in the direction
specified in the command assuming that the agent that sent the kick command
is close to the ball. By controlling the low level motions of the robots, the fat
proxy levels the playing field such that robots from different teams all have the
same set of skills.

The only change made to the UT Austin Villa agent to participate in the fat
proxy challenge was to map the teams own high level commands used as input
for the team’s walk engine [17] and kicks [18] to that of the fat proxy’s dash and
kick commands. The team used the same strategy and formations for the fat
proxy challenge as were used during the main competition.

Four teams participated in the fat proxy challenge which consisted of a round
robin tournament where every team played every other team using the fat proxy.
Teams were ranked by how many points they received (3 points for a win, 1 point
for a tie, and 0 points for a loss), with the tie breaker when teams have the same
number of points being the number of goals a team scored minus the number of
goals they conceded. Results of the fat proxy challenge are shown in Table 5.

Table 5. Overall rank, goals scored, goals conceded, and points for each team partici-
pating in the fat proxy challenge

Team Rank|Goals Scored|Goals Conceded |Points
magmaOffenburg| 1 27 4 9
UTAustinVilla| 2 15 8 4

BahaiRT 3 13 12 4
WITS-FC 4 0 31 0

UT Austin Villa took second in the challenge with magmaOffenburg winning
the challenge. A noticeable difference during the challenge between UT Austin
Villa and magmaOffenburg was that the UT Austin Villa team was not as stable
when walking and often fell over. A likely reason for the instability is that the dis-
tribution of high level motions normally sent to the UT Austin Villa team’s walk
engine are different from the distribution of walk trajectories that the magmaOf-
fenburg team’s walk engine embedded in the fat proxy is tuned for. For future
iterations of the fat proxy challenge the UT Austin Villa team’s performance
could be improved by attempting to constrain the walk commands to be closer
to those normally used by the magmaOffenburg team in the magmaOffenburg
team’s code release.’

6 Deep RL Framework

Previous work from FCPortugal [19, 20] and ITAndroids [21] demonstrated that
Offline Deep Reinforcement Learning is capable of learning faster walking /running
behaviors than previously hand designed policies. Continuing with this line of

® https://github.com/magma0ffenburg/magmaRelease



Fig. 3. Preliminary result: the agent learns to take a large step forward.

work, UT Austin Villa has been working on facilitating the use of Deep RL algo-
rithms with the Robocup 3DSim league. As the majority of contemporary deep
RL frameworks are written in Python, the UT Austin Villa team developed a
custom OpenAI Gym [22] environment in Python that connected to the 3DSim
platform via network sockets. The environment follows the same definition of
the state and action spaces as FCPortugal [19]. The reward is -1 if the agent
falls; else, 10 * forward distance of agent from time ¢ to ¢ 4+ 1. The OpenAl Gym
environment wraps the 3DSim environment, enabling applying Python deep RL
libraries to the existing C++ simulation software.

FCPortugal and ITAndroids used
the on-policy RL algorithm, Proximal

Policy Optimization (PPO) [23], to

learn faster walking/running behav- (doss fonorh By \
iors. As an on-policy RL algorithm, O i za the 3D simulation

PPO has relatively high data require- 0 rgset(sem:

ments, which ITAndroids addressed # reset the environment

by using parallel actors to gather feturn state

data. UT Austin Villa instead investi- def step(self, action):

# simulate to the next state

gated using the off-policy algorithm,

Soft Actor Critic (SAC) [24]. Off- \
policy RL algorithms have demon-
strated better sample-efficiency than Fig. 2. The environment APIs.
on-policy algorithms in a variety of

domains. UT Austin Villa used the

implementation of SAC provided by Tianshou [25]. All experiments were per-
formed with a single actor.

return next_state, reward, done, info /

In preliminary experiments, SAC has been able to learn simple walking be-
haviors that allow it to move forward small amounts before falling over (See
Figure 3). The preliminary learning curves are also provided in Figure 4, and
the hyperparameters used for SAC are summarized in Table 6. UT Austin is
hopeful that with further training SAC will be able to learn a full running be-
havior that can be integrated into existing play strategies.
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Fig. 4. The average return (left) and episode steps (right) over training.

Hyperparameters Value
Time-step per epoch 10K
Number of epochs 2K
Learning rate of actor 0.0003
Learning rate of critic 0.0003
Learning rate of the entropy regularizer o 0.0001
Replay buffer size 1M
Critic update parameter 7 0.005
Initial « in SAC 0.2
Number of hidden layers in the neural network| 128
Number of neurons in each hidden layer 2
Learning batch size 256

Table 6. Hyperparameters of the SAC algorithm for training a fast walk.

7 Conclusion

UT Austin Villa won the 2021 RoboCup 3D Simulation League main competition
and finished second in the overall league technical challenge.® Data taken using
released binaries from the competition show that UT Austin Villa winning the
competition was statistically significant.

In an effort to make it easier for new teams to join the RoboCup 3D Sim-
ulation League, and also provide a resource that can be beneficial to existing
teams, the UT Austin Villa team has released their base code [26].” This code
provides a fully functioning agent and good starting point for new teams (it was
used by seven out of the other eleven teams at the 2021 competition: Apollo3D,
HfutEngine, KgpKubs, Miracle3D, MIRG, WITS-FC, WrightOcean). Addition-
ally the code release offers a foundational platform for conducting research in
multiple areas including robotics, multiagent systems, and machine learning.

6 More information about the UT Austin Villa team, as well as video from the compe-
tition, released binaries, and team publications, can be found at the team’s website:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2021

" Code release at https://github.com/LARG/utaustinvilla3d
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