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Statiornary behaviour of saome ternery networks.

We consider a graph of N vertices in which each vertex has a wultiplicity
three, i.e. in which three edges meet at each vertex, Because the number af

edges equals 3N/2 , we conclude that N must be even.

Each =dge connects two diffarent vertices --i.e. no "auto-cycles"--; the
graph is partially directed, more precisely: each vertex has an ocutgoing edge,

an undirected edge, and an ingoing edge. (Such graphs exist for all even N 2;4.)

In the initial situation, 3N numbers —~which can be assumed to be all
different from each other-- are placed at the vertices, three at each vertex.

A move consists of sending for each vertex:

1) its maximum value to the neighbour wvertex at the other end of its outgoing
edge,
2) its medium value to the neighbour vertex at the other end of its undi-

rected edge,

3) its minimum value to the neighbour veriex at the other end of its ingoing
edge,
4) and of accepting three new values from its neighbours,

(WE can also view a wmove as 3N/2 simultaneous swaps of values at the end of

each edge.)

After thes mave, again three wvalues are placed at each vertex, and, therefore,
a next move is possible. We are interested in the periodic travelling patterns

as will ocecur in infinite sequences of moves.

Suppose that, before distributing the 3N values among the vertices, we
had painted the N largest values red, the N smallest values bhlue, and the
N remaining values in between white; then we are interested in final patterns
in which at each vertex a red, a white, and a blue value can be found. Note
that such a distribution of colours is stable: in each move two white values
will be swapped along each undirected edge, and along eech directed edge a red
and a blue value will be swapped ——the red one will go in the direction of the
arrow, the blue one will trevel in the opposite direction-- ; after the move,

agein all three colours will be present in each vertex.
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We furthermere require that the period of the stationary behaviour is
exactly N moves. Below we shall give constructians of such networks for
each N > 4 with the property that the desired stationary behaviour as described
above will be established after a8 finite number of moves, independently of the
initial distribution of the 3N vaslues., The cases N =42 and N =4Z + 2

are trezted separately.

N =47 .

The directed edges form a single directed cycle; the 27 undirscted edges
connect the pairs of in this directed cycle dismetricelly opposite vertices.
(It the vertices sre numbered from 0 through N-1 , then & directed edge
goes from vertex nr.i to vertex nr.(i+1)mgg N , and undirected edge connects

vertex nr.i and vertex nr.(i+22)mod N .)

Proof of stabilization. Let % be the maximum value, such that the k

largest vslues are all placed in different vertices; initially we have
1<k<N ., We shall first show that within a finite number of moves, k =N
by showing that, if k <N , within a finite number of moves k will be in-
creased by at least 1 . In each move the k largest values will each be moved
to the next vertex in the cycle: as long as k does not increase, the definition
of k implies that the k+ist largest must share a vertex with exactly one of
the k largest ones, It is, therefore, the medium value in that vertex and
will be sent away along the undirected edge: relestive to the rotating pattern

of the k 1largest ones, it advaﬁces in the cycle over 27-1 places. Because
gcd(42, 27-1) =1, the k+ist largest value, while oscillating along an undi-
rected edge, must find itself within at most N1 moves in a vertex that is not
alsa occupied by one of the k largest velues: that is the moment that k is
increased by at least one. Hence, eventually each veriex will have exactly

one red velue.

For reasons of symmetry, eventually each vertex will also have exasctly
one blue value. But when both red and blue values are evenly distributed among
the vertices, so will the white ones be. Hence the steble state will have
been reached. The period of the cyclic behaviour chviously equals N . (End of

proaf af stabilization.)
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N=42 + 2 .

Here the directed edges of the graph form two cycles of length 2Z+1 each.
The 22+t undirected edges each connect one vertex of the one cycle with one
vertex of the other cycle. (Note that the way in which each vertex of the one

cycle is paired with exactly ane vertex of the ather cycle, is arbitrary.)

Proof of stabilization. Let k be defined as in the previous proof
and assume k <N . The k largest values are in general divided over the
two cycles; in each they form a pattern that will roiate and will return ip
its original position in 2Z+1 Vmcves. Within at most N-1 moves, however,
k will have been increased. Consider again the k+1st largest one. As long
as it shares B vertex with ons of the k largest ones, it will oscillate
along an undirected edge. During two moves it returns to & vertex of a cyele
in which in the meantime the subset of the k largest velues has moved over
2 places. Because ged (2241, 2) = 1, from one of the cycles at wost 27 daouble
moves, ar in tote N-1 single moves are possible, and it must find itself in
& vertex that is rot slso occupied by one of the k i;rgest ONES. Egen-
tuelly, eech vertex will have exectly one red value, etc.. The period is
the smallest common multiple of 27+ --the period of the red and the blue
values—- and 2 -—the period of the white ones--; because 27+1 is odd,

the total period = N . (End of proof of stabilization.)

The above problem and solution emerged during my ®Tuesday afternoon
discussion® of May 17, 1977, with Feijen, Prims, Peeters, Martin, and Bul-
terman. It was Feijen who posed the problem as a generalization of the
binary network ——without undirected edges-- that I had shown in my lectures
that morning. The solution has been recorded because we liked the argument,
in spite of the fact that it is far from giving a sharp upper bound on the

number of moves needed.
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