EWD641 - O

ON THE INTERPLAY BETWEEN MATHEMATICS AND PROGRAMMING
oo ; E.W. Dijkstra S S T S T S B B

This talk is delivered under confusing”pircumstances. aAnd the only way
I can think of, of assisting you in not getfing confused by these complica-
ting circumstances is describing them explicitly in my introduction. The
complication is that, while I would prefer to give a completely technical
talk, its moral is heavily loadéd from a political point of view: it is a
technical talk to be delivered against almost overwhelming political odds.
In order to make you understand all this we have to go ba?k to about ten
years agc, when Programming Methodology became a topic of:explicit concern.

In the history of programming October 1968 has been a turning point.
In that month a conference on the topic denoted by the newly coined térm
"software engineering” was held in Garmisch-Partenkirchen. The conference
was sponsored by the NATO Science Committee. The conference was remarkable
because a large fraction of the participants had positions so high in their
local hierarchy that they could afford to be honest. As a re;ult this was
the first sizeable conference at which the existence of the so-called "soft-
ware crisis" was openly admitted. The gloomy atmosphere of doom at that con-
ference has been a severe shock for some of the participants; some left the
place very depressed indeed. The majority, however, left the conference

with a feeling of relief, some even in a state of great excitement: it had

‘. been admitted at last that we did not know to program well enough. I myself

and quite a few others had been waiting eagerly for this moment, because
now at last something_could be done about it. For years we had already been
worried by the consequences of the proliferation of error-loaded software,
but there is very little point in trying to urge the world to mend its ways
as long as that world is still convinced that its ways are perfectly ade-
quate. It was at that conference in Garmisch-Partenkirchen, that the whole
climate changed. Now, nearly a decade later, we can only conclude that the

excitement was fully justified: it was indeed a turning point in the histo-



EwDe4t - 1

ry of programming. Since tha; conference, programming has never been the
same again.

In reaction to the recognition that we did now know how to program
well enough, people began to ask themselves how a really competent program-
mer would look like. What wbuld_we have to teach if we wanted to educate a
next generation of really competent programmers? This became the central
question of the study that later would become known as "programming meth-
odology". A careful analysis of the programmer‘'s task was made, and program-
ming emerged as a task with a strong mathematical flavour. As. I have oncé
put it "Programming is one of the hardest branches of applied mathematics
because it is alsoc one of the hardest branches of engineering, and vice
versa". Why the programming task has such a étrong mathematical flavour is
something I shall indicate later.

A lower bound for what the adequate education of a really competent
programmer should comprise was very convincingly established, but it was
not an easy message to sell, because it demonstrated by necessity the to-
tal inadequacy of the education of what is known as "the average program;-
mer". The world today has about a million "average programmers", and it is
frightening to be forced to conclude that most of them are the victims of
- an earlier underestimation of the intrinsic difficulty of the programmer's
task and now find themselves lured into a profession beyond their intellec- ~
tual capabilities. It is a horrible conclusion to draw, but I am afraid
that it is unavoidable. | '

The conclusion that competent ﬁrogramming required a fair amount of
mathematical skills has been drawn on purely technical grounds and, as far
as I know, has never been refuted. On emotional grounds which are only toco
understandable, many people have refused to draw the conclusion, and the
conclusion is opposed to, not because its validity is challenged, but be-
cause its social consequences are so unpleasant.

The situation is immensely aggravated by changes in attitude towards
science and technology in general, that took place during the sixties. In
that decade we have seen a growing distrust of technolbgy, a disillusion
with science, which by the end of that decade caused political outbursts
from which most universities haven't fully recovered yet.

For those who had hoped that the explosive growth of universities and
other research establishments would éutomatically bear fruits in proportion

to that growth, the results have indeed been disappointing, because, while



EWD641 - 2

the gquantity grew, the average quality declined. Browsing through a scien-
tific journal or attending a conference is nowadays rather depressing;
there is no denying it: there is just an awfull lot of narrow mediocrity,
of downright junk even. Many people seem to have failed to see, that it

was not science itself, but only the explosive growth of the institutions
that was to blame. Throwing away the child with the bathwater, they have
declared war on science in its best tradition. They are openly antiscienti-
fic, antiacademic, very much against rigour and formal techniques, and
they propose to be agressively creative, gloriously intuitive and nobly in-
texrdisciplinary instead. The cruel love of perfection and excellence, that
" wused to characterize the hard sciences, are but elitist relics to be abol-
ished as quickly as possible, and progressive from now onwards shall mean
soft. The political slogans of the late sixties cast these views in a jar-
gon that is still alive and still causes confusion.

The result of all this is that the message that "software”, in spite
of its name, requires a very hard discipline, is in many environments now
politically unacceptable, and therefore fought by political means. In char-

acteristically anonymous blurbs in periocdicals of the Computer Weekly va-
7 riety I find myself under political attack. "Dijkstra articulates the voice
of reaction®™ is a mild one. "I am inclined to view Dijkstra [...] as intel-
lectual product of the Germanic system" is much worse. And I arouse the
"suspicion that [my] concepts are the product of an authoritarian upbriﬁg-
ing" coming as T do from a country having “"social philoscphies touched by
authorjtarianism and the welfare state" etc. Nice is also the choice of ad-
jectives when my effortsraré described as ”directed.into turning a noble
art into a rigid discipline". The first time I found myself confronted with
‘the opinion that adhering to a formal discipline hampers creativity I was
. completely baffled, because it is absoclutely contrary to my experience and
the experience of the people I have worked with. I found thé suggestion so
ludicrous that I could not place it at all: it is so terribly wrong. Since
then I have learned that as symptom of a political attitude it is quite
well interpretable.

Having thus -I hope- cleared. the sky from political encumbrances, I
shall now turn to the technical part of my talk.

Why is programming intrinsically an activity with a strong mathemati-

cal flavour? Well, mathematical assertions have three important character-
istics, '



EWD641 - 3

1) Mathematical assertions are always general in the sense that they are
applicable to many -often even infinetely many- cases: we prove something
for all natural numbers or all nondegenerate Euclidean triangles.

'2) Besides general, mathematical assertions are very precise. This is al-
ready an unusual combination, as in most other verbal activities general-
ity is usually achieved by vagueness.

3) A tradition of more than twenty centuries has taught us to present these
general and precise assertions with a convincing power that has no equal in
any other intellectual discipline. This tradition is called Mathematics.

The typical program computes a functiop that is defined for an incred-
ibly large number of different values of ifs arguement; the assertion that
such and such a program corresponds to such and such a function has there-
fore the generality referred to above. 7 .

Secondly: the specification of what a program can achieve for us must
be pretty precise, if itis going to bea safe tool to use. Regarded as a tool
its usage can only be justified by an appeal to its stated properties, and
if those are not stated properly its usage cannot be justified properly.
And here we have the second characteristic. _

Thirdly: the assertion that such and such a program corresponds Eo
such and such a function, although general and precise, is not much good if

t is wrong. If the program is to be regarded as a reliable tool, our least
obligation is a convincing case, that that assertion is correct That pro-
gram testing does not provide such a convincing case is well-kncwn The
theoretically inclined can deduce this from the indeed incredibly large
number of different argument values for which the function is typically
defined; the more experimentally inclined can conclude this from more than
twenty years of experience in which program testing as main technigque for
quality control has not been able to prevent the proliferation of error-
loaded software. The only alternative that I see is the only alternative
mankind has been able to come up'with for dealing with such problems, and
that is a nice convincing argument. And that is what we have always called
Mathematics. )

Here we touch upon the major shift in the programmer's task that took
place during the last ten years. It is no longer sufficient to make a pro-
gram of which you hope that it is correct -i.e. satisfies its specifica-
tions- you must make the program in such a way that you can give a convinc-
ing argument for its correctness. Superficially it may éeem that this shift



EWD641 - 4

has made the task of the poor programmer only more difficult: besides mak-
ing a program he has to supply a correctness argument as well. It may in-
deed be hard to supply a nice correctness argument for a given program; if,
however,rone Goes not add one's correctness concerns as an afterthought,
but thinks about the correctness argument right at the start, the correct-
ness concerns have proved to be of great heuristic value. And the wise
programmer now develops program and correctness argument hand in hand; as
a matter of fact, the development of the correctness argument usually runs
slightly ahead of the development of the program: he first decides how he
ls going to prove the correctness and then designs the program so as to fit
the next step of the proof. That's fine. ‘

You may think that I have introduced a wore serious difficulty by stat-
ing that the programmer should make his program in such a way that he can
give "a convincing argument" for its correctness. Convincing to whom? Well,
.of course, only to those who care. But couldn't those have very, very dif-
ferent notions of what te regard as "convincing"? Has the programmer to
brovide as many different arguments as there may be pecople caring about
the correctness of his .program? That would maké his task clearly impossible.

The task is, indeed, impossible as long as we don't distinguish*be-
tween "conventional" and "convenient". What different people from different
parts of the world have been used to varies so wildly, that it is impos-
sible to extract a guiding principle from trying to present your argument
in the most "conventional" way: their usual patterns of thiﬂking are most
likely inadequate anyhow. About convenience of a notation, about effective-
ness of an argument, about elegance of a mathematical proof, however, I
observed among mathematicians a very strong consensus -the consensus was,
as a matter of fact, much greater than most of the mathematicians I spoke
suspected themselves— and it is this consensus among mathematicians that
has proved to be a very valuable guiding principle in deciding towards what
type of "convincing argument" the programmer should be heading.

Let me now try to sketch to you the type of mathematics involved in
arguing about prograﬁs. One way of viewing a program is as the rules of be-
haviour which can be followed by an automatic computer, which is then said
"to execute" the program. The process taking blace when a computer executes
a program is called a "computation", and a computation can be viewed as a
time-sequence or a long succession of different machine states. The part of

the machine in which its current state is recorded is called the store -or:



EWD641 - 5

the memory—' the store is very large because it must be able to distinguish
between a huge number of different states.

In arguing about programs we have to characterize the set of machine
states that are possible at various stages of the computaticnal Process.
Individual states Are characterized by the values of variables in very
much the same way as the position of a point in a plane can be character-
ized by the value of its coordinates in a well-chosen coordinate system,
There are in this analogy only two differences: while the coordinates in
the Euclidean plane are usually viewed as continuous, the variables char-
acterizing the state of the machine are discrete varjables that can only
take on a finite number of different values. And secondly: while in Euclid-
ean plane geometry two coordinates suffice to fix the position of a point,
in computations we typically need thousands or millions of different vari-
ables te record the current machine state.

In spite of the fact that that last differenée is a drastic one, the
analogy is yet a useful one. Everybody familiar with analytic geometry
knows how specific figures, lines, circles, ellipses etc. can be character-
ized by equations: the figures are regarded as the subset of the points
whose coordinates satisfy the equation. The analogy to the figure in ana-
lytic geometry is the subset of possible states at a certain peint 6f pro-
gress of the computation, and in analogy to analytic geometry, such a sub~
set is characterized by an equation: the subset comprises all states of the
machine in which the values of the variables satisfy that eqhation.

The analogy can even be carried a little bit further: we all know how
the ease with which a proof in analytical geometry. can be carried out often
depends on the choice of ocur coordinate system. The pProgram designer has a
similar freedom when he chooses the conventions according to which the vari-
ables he introduced shall represent the information to be manipulated. He
can use this freedom to speed up the computation; he can -also use it to sim-
plify the equations characterizing the sets of states he is interested in.
If he is lucky, or gifted, or both, his choice of representation serves
both goals. -

S50 much for the analogy; now for the difference. The number of vari-
ables he is dealing with is much larger than the two coordinates of plane
geometry, and the subsets of machine states he needs to characterize have
very seldomly an obvious regularity as the straight line, the circle, and

the ellipse that analytic geometry is so good at dealing with. This has



EWD64T - 6

two lmmediate consequences.

First of all we need a much richer framework and vocabulary in which
we can express the equations than the simple algebraic relations that carry
analytic geometry. The framework is provided by the Ffirst-order predicate
calculus, and the vocabulary by the predicates the programmer thinks it
wise to introduce. That the first-order predicate calculus was the most
suitable candidate for the characterization of sets of machine states was
assumed right at the start; early experiences, however, were not too en-—
couraging, because it only seemed practicable in the simplest cases, and
we discovered the second consequence: the large number of variables com-~
bined with the likely irregularity of the sdﬁsets to be characterized very
gquickly made most of the formal expressions to be manipulated unmanageably
long.

Let me put it in other words. The programmer is invited to apply the
first-order predicate calculus; I am even willing to make a stronger state-
ment: not knowing of any other tool that would enable to db the job, the
programmer must apply the first-order predicate calculus. But he has to dé-
so in an environment in which he is certain to create an unmanageable mess
unless he carefully tries to avoid doing so (and even then success is_hot
guaranteed!}. He has to be constantly consciously careful to keep his nota-
tion as adequate and his argument as elegant as possible. And it is only in
the last years that we afe beginning to discover what that care implies.
Let me give you a simple example to give you some feeling for' it.

To begin with we consider a finite undirected graph at each vertex of
which a philosopher is located: philosophers located at vertices that are |
directly connected by one edge of the graph are called each other's neigh-
bours and no philoscpher is his own neighbour. For the time being the life
of a philosopher exists of an endless alternation of two mutually exclusive
‘states, called "thinking" and “tabled"”.

In our next stage we allow edges to be marked or not, a marked edge
meaning that the two philosophers, at its two ends are both tabled, more
precisely '

Pl: For any pair (A, B) of neighbours
“both A and B are tabled" = "the edde between A and B is marked".

We assume that the system is started in an initial state in which

1) all edges are unmarked



EWD641 ~ 7

2) all philoscphers are thinking.

As -a result, Pl initialiy holds. Therefore Pl will continue to hold indefi-
nitely, provided no philosopher transition from thinking to tabled intro-
duces a violation of it. This is cbviously achieved by associating with
these transitions the following "point actions" -where no twe different

point actions are assumed to take place simultaneously-

Ti: < mark the edges connecting you to tabled neighbours and switch from
thinking to tabled >

T2: < unmark your marked edges and switch from tabled to thinking >.

The first transition now introduces a markyfor every pair of tabled neigh-
bours introduced by it, the second one removes a mark for every pair of ta-~
bled neighbours disappearing as a result of it. With these conventions the
permanent truth of Pl is guaranteed.

From the above we see that a mark on the edge between the neighbours
A and B has either been placed by A or by B. In our next stage we shall in-
dicate which of the two has placed the mark by representing a marked edéé
between A and B by a directed edge, i.e. by placing an arrow along the edge.

In this representation relation Pl is rephrased as b

Pl: For any pair (A, B) of neighbours
Yboth A and B are tabled" = "the edge between A and B is directed".

The direction of the arrow is fixed, by rephrasing the transitions as

Tl: < direct arrcws'pointing towards your tabled neighbours and switch
from thinking to tabled >
T2: < make all your edges undirected and switch from tabled to thinking >.

We observe that transitions T1 create arrows and only transitions T2 de-
stroy them. More precisely: each arrow is created as an outgclng arrow of
its creator, hence,

a philosopher without outgoing arrows remains without cutgoing arrows

until it performs itself its own transition T1.

We now subdivide the state "tabled" into the succession of two sub-
states "hungry" followed by "eating", where the transition is marked by the

observation of absence of outgoing arrows, more precisely
"philosopher A is tabled" = “philosopher A is hungry or eating”

and the life of a philosopher now consists of a cyclic pattern of transi-

tions




EwWD641 - 8

T1: <direct arrows pointing towards your tabled neighbours and switch
from thinking to hungry >

Ti.5:; <observe that you have no outgoing arrows and switch from hungry to
eating >

T2: <remove all your incoming arrows and switch from eating to thinking >
and we establish the permanent truth of

P2: For any philosopher A we have

"philosopher A has no outgoing arrows" or "philosopher A is hungry”.

In transition T1 the first term P2 may become false, but the second cne be-
comes certainly true; in transition T1.5 the second term becomes false at
a moment when the first term is true, a truth that cannot be destroyed by
the other philosophers. In T2 the fact that initially the philosopher is
eating tells us in combination with P2 that its arrows, if any, must be in-
coming arrows; hence, removal of your incoming arrows 1s the same as remov-
al of all your arrows.

Relations Pl and P2 guarantee that no two neighbours can be eating si-
multaneously: if they were, they would both be tabled, hence there would be
an arrow between them (on account of Pl), for one of them it would be ‘an
‘outgoing arrow, but P2 excludes that an eating philosopher, which by defi-
nition is ﬁot hungry, has outgoing arrows.

(In addition we can prove that if the graph is finite and each eating
period for each philosopher is finite, then each hungry perioh for each
philoscpher will be finite. This follows from the fact that the arrows nev-
er form a directed cyclic path.}

The way in which the above argument has been described illustrates one
of the aspects of the "care" which is becoming typical for the competent
programmer: "step-wise refinement" is one of the catchwords. Note that we
have started the argument in terms of the still very simple concepts "ta-
bled"” and "marked". Only after the exhaustion of these two concepts, the
state "marked” was split up into two mutually exclusive substates as repre-
sented by the two possible directions of an arrow along the edge. aAnd only
when the consequences of that refinement had been explored, the state "ta-
bled" was subdivided into two mutually exclusive states, viz. "hungry" and
"eating".

In the simple example shown such a cauiious approach may seem exagger-
ated, but for the trained programmer it becomes a habit. In a typical pro-

gram so many different variables are manipulated that the programmer would



gwpedt - 9

lose his way in his argument if he tried to deal with them all at once. He
has to deal with so many concerns that he would lose his way if he did not
separate them fairly effectively. He tries to keep his arguments simple
.ompared to the final program by abstracting from all sorts of details
that can be filled in later.

In yet another respect the above argument is typical. T did not tell
you the original problem statement, but that was phrased as a synchroniza-
tion problem, in which no two neighbours were allowed to eat simultaneous-
ly. The notion "hungry" has to be invented by the programmer; and then the
argument is introduced by abstracting from the difference between "hungry"
and "eating", in terms of the notion rtabled" that did not occur in the
original problem statement at all. Such abstractions must be performed:
instead of "tabled" one can say "hungry” or "eating", but the translation
of "a pair of tabled neighbours" gives you some hint of the clumsiness thus
engendered.

- One last detail worth noticing is provided by our arrows. We had to
introduce two different forms of marking: we could have done that with col-
ours, say red edges and blue edges, but then we would have lost that my in-
coming arrows are my neighbours outgoing arrows, and the whole argument
would have lost its clarity.

' So much for the care needed to keep the aréuments manageable: we can
summarize it by stating that in programming mathematical elegance is not a

dispensable luxury, but a matter of life and death. L

In the example sketched the argument could be rendered nicely and com-
pactly essentially thanks to the introduction of the proper nomenclature,
but Quite often more drastic steps have to be taken. In oxder to formulate
‘the equations characterizing sets of possible machine states it is gquite
often necessary to change the program by the insertion of additional oper-
ations on so-called "auxiliary variables®. They are not necessary for the
computation itself, they are hypothetical variables whose values we can
view as being changed ;n the course of the computational process studied.
They record some aspect of the progress of the computation that is not
needed for the answer, but for the argument justifying the program. Their
values can appear in the characterizing equations in terms of which the
correctness argument is couched. The introduction of the appropriate aux-

' iliary variables is a next step in the progress of "“choosing an adequate

nomenclature"; the role of the auxiliary variables in proofs of program



EWDE4t - 10

correctness is very similar to the role of auxiliary lines or points in geo-
metrical proofs, and their invention requires each time a similar form of
creativity. This is one of the reasons why I as a computing scientist can
only regret that the attention paid to Euclidean geometry in our secondary
school curricula has been so drastically reduced during the last decades.
In a recent correctness proof I had to go still one step further. I
had to introduce auxiliary variables, but their values did not occur direct-
ly in our characterizing equations: in those equations occurred terms which
had to be defined as the minimal solution of two sets of equations in which
the auxiliary variables appeared as constants. As far as I am aware, that
proof was the first one of its kind, but its discovery was a pure joy. It
showed a counterexample to the commonly held but erroneous belief that for—
mal correctness proofs for programs are only belabouring the cbvious; it
showed how the first—order predicate calculus was an indispensable and ade-
quate tool, but, most important of all, it showed how a careful analysis of
the syntactic structure of the predicates quite naturally led to all the
additicnal logical gear to be invented. _ ’
In the interplay between mathematics and programming during the last
ten years programming aé an intellectual discipline has clearly been at Fhe
receiving end. A new area of intellectual activity has been discovered tb
be amenable to mathematical treatment, and thanks to the introduction of
mathematical techniques we can now design programs thaﬁ are an order of
magnitude better than the ones we could design ten years agot. In the past
the discovery of a new area of applicability of mathematics has always in-
fluenced and stimulated mathematics itself, and it is reasonable to wonder
about the question what influence on mathematics may be expééted this time.
- I expect that the influence will be very wholesome. The proérammer ap-
plies mathematical techniques in an environmént‘with an unprecendented po-
tential for complication; this circumstance makes him methodologically very,
very conscious of the steps he takes, the notations he introduces etc.
Much more than the average mathematician he is explicitely concerned with
the effectiveness of this argumeﬁt, much more than the average mathemati-
clan he is consciously concerned with the mathematical elegance of his ar-
gument. He simply has to, if he refuses to be drowned in unmastered com-
plexity. From the programmer's exposure and experience I can expect only
one influence on mathematics as a whole: a great improvement of the taste

with which formal methods are applied. This improvement may very well turn



EWne41 - 11

out to be drastic. In texts about the philosophy of science from the firét
half of this century it is quite common to encounter a postulatéd antago-
nism between formal rigour on the one hand and "understandability" on the
other. Already now, whenever I see such a text it strikes me as hopelessly
out of date, arquing as it does against formal rigour instead of against
ugliness: in those days the two were evidently often regarded as synonymous.
And I have some indication that this improvement in taste is not only the
dream of an optimist. I have conducted a little experiment with students
from all over the world, in which I asked them to prove a nice little the-
orem from number theory that, although everyone can understand what the
theorem states, happens to be unknown: the mathematicians with programming
experience did markedly better than the mathematicians without that experi-

ence.



