EWp6s! - 0
EWD651.html

A strong P/V—implementatian of conditional critical regions.

(This note describes a program of which I announced, before starting on it,
that it would become “ghastly complicated™. 1 think that my expectation has
been fulfilled. This note is written for various reasons:

1) a successful result of four hours of hard work shauld be recorded

2) the existence of a program solving the problem in question under

the chosen constraints is, to my knowledge at least, a new discovery

3) I am not certain yet how to describe the program's development, nor

how to justify the result.)

The problem.

With a semaphore m , initially = 1 , the mutual exclusion problem

can be solved by
....F(m); critical section; V(m).....

This, however, introduces the danger of individual starvatien in the case

of three or more processes, when the P/V-operations are so-called "“weakly
implemented". In the weak implementation it is left absolutely undefined
which of the blocked processes is allowed to proceed when t{wo or more processes
are blocked by P(m) when a V(m) is executed; individual starvation --as
the result of "“infinite overtaking™-- can then not be excluded. It is there-
fore not unusual to postulate for the P/V-operations & so-called "strong
implementation”, in which infinite overtaking is impossible -~to admit the
processes in the order of "first-come-first-served" would be one way of
guaranteeing the strong property-- . (Under the assumption of weak P/V—
aperaticns we have to prove that-fnr each semaphore s the number of
processes blocked by P(s) will, when positive, eventually be reduced to
zero., All solutions I know ensure that each semaphore blocks at most one
process: under that circumstance the difference between weak and strong
implementation disappears. A starvation-free solution using a fixed number
of weak semaphores is not known for an unbounded number of processes, and

can probably be shown not to exist.)

With conditional critical regions

"with r when Bi do 5i od"

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD651.html

EwWDo51 - 1

.2 have exactly the same problem. In a weak implementation of conditional
:ritical regions it is left undefined which of the blocked processes is
:1lowed o0 continue when after the execution of an Si more than one blocked

acess has a true guard Bj . Ensuring progress of the individual programs
nder the assumpticn of weakly implemented conditional critical regions im-
1lies proving that for each blocked process this will eventuwally hecome the
inly blocked process with @ true guard; this proof cobligation imposes a
.evere constraint on the programs --several critical regions with the same
Jjuard may create serious complications-— . For a strong implementation of
:onditional critical regions --i.e. one that disallows infinite overtaking--
it should suffice to prove that infipnite blocking of a particular process
implies infinite overtaking. More precisely: we have then only to prove
.hat, whenever & process is ready to enter a conditional critical region,
:he corresponding guard will be true within a finite time. The assumption
that this has been proved is denoted by "the assumption of wesk absence of
itarvation on the B-level", The problem is to give a strong implementation
1 conditional critical regions for an unbounded number of processes,

1sing a fixed number of (possibly strnng) semaphores.
ne solution.

Martin Rem has discovered how to implement conditional critical regions
~#ith three semaphores in a very nice way. (Earlier, but somewhat less nice,
this hag been done by Coen Brun.) Rem's solution is a beauty, but it is only
1 weak implementation, In this note we shall deseribe how with two more
emaphores, conditional critical ;egions can be strongly implemented, by
superimposing upon Rem's solution the idea of "the binary bakery algorithm®.
foughly speaking, blocked processes are divided over two groups, L and R,
and R-processes have pr?urity over L-processes. As long as the R-group
is not empty, it is not allowed to grow; its priority over the L-group and
the assumption of weak absence of starvation on the B-level thus implies
that the R-group gets empty in @ finite period of time. Then the L-group
is emptied --pither by transferring its members to the R-group or by allowing
them to proceed-- before new processes are admitted to the critical compe-

ition.

EWDE51 - 2

Oy B s,
: ‘13&
|
‘ L/’ \ .‘lL
| ’ \
I /’, \\\
(— — 1 =
[! :
{ v v
{ nbL i nR :
: | |

| (
A | *
, el ——— R
4 ! o

i
: wlh Vv w‘RT

|
l ! |

' {
{ :

]

L__ _._.__(......_’—..._...{_.______._'

In the above drawing of four rectangular waiting rooms the dotted lines
indicate the possible paths of {mostly blocked) processes. Circles indicate
switches on their paths, each waiting room has an exit marked by the name
--sL, sR, tlL, or tR-- of a binary semaphore. Inside each waiting room I have
written the name --nL, nR, wL, or wl-- of an integer counting the number of
processes inside the corresponding weiting room. When the processes from
the R-group should be allowed to test their guard --i.e. afier the execution
of an, S.-- , as in Rem's solution the top-right-hand waiting room is first
emptied into the bottom-right-hand waiting room, before they are admitted
(one at a time) to test their guard. The top-right-hand waiting room has
first to be emptied so that we can collect there the processes from the R-group
of which it hes been established that their querds are still false. (Fur
more details of this part of the algorithm, see EWD629.) At the left-hand

ide we have ihe same arrangement for the processes in the L-group. When

the critical activity is left (with m = 1) and a new process is admitted

EwDesi - 3

at the top, the bottom waiting rooms are empty and all blocked processes have,

indeed, a false guard.

When m = 1 , the L-group is empty or the R-group is not empty; when
the R-group is not empty, L will be true, énsuring that new blocked processes
will be placed in the L-group, so that those in the R-group cannot be overtaken
by the new ones; when the R-group is empty, the L-group is empty as well and

the value of L 1is immaterial.

When m = 0 and a blocked process tests again its gquard, L is false
if the process has been admitted to the test via V(tR), thus ensuring that
when the process does not escape, it remains in the R-group; L is true
when a process has been admitted to the test via V(tL), except when during
this critical activity (i.e. period with m = 0) the R-group has become

empty and the L-group has to be emptied.

This tells us that upon completicn of an S5i , the boolean L can al-
ways be set to false: if the R-group is not empty, its processes will test
their guards first, if the R-group has hecomé empty, but the L-group is not,
the L-group hes to be emptied, and if both are empty, the value of L is

immaterial.

The system should be initialized with m=1, sL = sR = tL = tR = 0,

and nL =nR = wk = wR = 0 ; the initial value of the boolean L is immaterial.

For the following program I am much indebted to W.H.J.Feijen. In my
first version the transfer from the members of the L-group to the R-group,
when the latter had become empty, bypassed the testing of their guards, and
only when the transfer was completed, was testing resumed. Feijen's first
contribution was the remark that it was the purpose of the transfer to empty
the L-group, and that therefore noc harm was done when during the transfer
a blocked proces esceped vis its 5i if it found its guard true. His second
contribution was to urge me to make the picture on the previous page and to
draw the paths. As a rule I don't like such drawings because ususlly 1 find
them more confusing then helpful. In this case, however, the picture was

s0 helpful that with the picture next toc me --and a full awareness of Rem's

EWD651 ~ 4

P(m);
da non Bi -
if L= nli=nl + 1; if wL > 0 - v(tL) [[wL:O-.\)(m)g;
P(SL); nly, wb :=nL -1, wL + 1;
if L >0 «v(sL) | nb = 0 = v(tL) fi;
P(tL); whe= wi - 1

| non L = nR:= nR + 1;
if wR >0 = v(tR)
[wR = 0 = L:= true;
if oL + wL = 0 - ¥{m)
J nLb >0 - v(sL)
[nL = 0 and wL >0 - v(tL)
fi;
P(sR); nR, wR := nR - 1, wR + 1;
if R>0 ~Vv(sR) [nR = 0 = v(tR) fi:
P(tﬂ); wH:= wR - 1

fi
od;
Si;
L:= false;

if MR+ wR>0=3if nR>0 <~ V(sR) [nR =0 =~ v{1R) fi
DR+ wR =0~ if nL + wb >0 = if aL >0 - V(sL)] nL = 0 - v(tL) Ffi
[t + W =0 = vim)

fi

solution as described in EWD629-- I could compose the abave program while
sitting at the keyboard of my typewriter. (1 hed written down the text

a8t yesterday's session of "The Tuesday Afterncon Club®™ but had left the
manuscript at the University, and I am certainly not used to knowing programs
like the above by heart. Never using a terminal, I am not used to composing
programs behind the keyboard either. I can only conclude that the drawing

was this time very helpful.)

Hecause testing of the guards of the processes in a group always

EWBES5t - 5

starts with the {op waiting room empty, and the criticel sctivity always
ends with the bottom waiting rooms empty, for the four semaphores associated
with the exits from the waiting rooms a weak implementation suffices, Ffor

the semaphore m , however, we need a strong implementation,

in a8 sense the whole experiment was a disappointment. Our original
goal was an implementation of the conditional critical regions that would

be strong by virtue gf the strength of the gequencing primitives used. We

have not heen able to reach that goal, as we have only been sble to ensure
the strength by means of the "binary bakery slgorithm", as reflected in
the L-graup and the R-group. Whether this goal can be reached at all

ig unknown; on account of yesterday's experience I doubt.

Finally: although it is conceptually very satisfying that this sche-
duling problem can be solved with @ fixed number of semaphores, I can hardly
say that I like the program. As the program stands it is rather an incentive

to search for more appropriate means.

Platsanstraat 5 prof.dr.Edsger W.Dijkstra
671 AL Nuenen Burroughs Research Fellow
The Netherlands

