Ewp6s7 ~ O
EWD657.html

On_leaves and nodes: a simplification of EWD6S3.

I distributed EWD653 aware of "its imperfect and incomplete state™; on
the one hand apulugiz;ng for problems its unclarity or unconclusive arguments
may have caused some of my readers, I am on the other hand glad that 1 did
distribute it, as its exposure to a wider public --in particular to the Tues-
day Afternoon Club-- enabled me to reach a uniforming synthésis that, unaided,

I had been unable to accomplish.

I refer to the discussion about leaf segments and node segments that
starts with the dilemms introduced on the middle of EWD653 - 6 and ends at the
top of EWD653 - 8 with: "The question is still open, I think that I have a
mild, intuitive preference for the second choice; the reason is preobably that
then we can come away with one type of shift operastions only." The mild
preference has disappeared, because a different coding of the information in

the descriptors makes a singly memory shift operation suffice.

The discussion in EWD653 is unsatisfactory for several reasons. It
rejected two alternatives (EWD653 - 6, buttom) because in the one the global
index chains were one elemenit longer than necessary, and in the other the
block "height increased one more than necessary. It was Jjustly remarked
that it was hard to decide how much weight should be given to those (otherwise)
correct observations, as neither the "price" of longer global index chains nor
the "price" of more deeply nested inner block was very clear. In trying to
make the different cost aspects of in particular the deeply nested inner blocks
more clear I encountered an until that moment tacit assumption on my part that,
thanks to the assumed availability of the memory shift operation, seemed no

longer justified.

Consider a procedure with the following declaration structure:

broc P: begin wvar x: int; var u: array of int;

begin wvar y: int; var v: array of int;

end; ...,

corp

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD657.html

EWD65T - 1

When I implemented ALGOL 60 in 1960 I had to accommodate all variables
in a single stack. At the call of P +the stack was extended (in Drder) with:
the variable x , a descriptor du for the array u , and the elements of u
itself; wupon the inner block entry the stack would be similarly extended with
the variable y , a descriptor dv , and the elements of v itself. Because
in general the memory requirements for u were unknown at compile time —--and
so the "distance" in the stack between x and y —- it was decided to give
y and v a block height one higher than x and u , i.e. to implement the
inner block as an anonymous procedure, hardly exploring that this anonymous

" " ——i.e. the outer block of P —-

procedure would only be called with X, u
as top activation in the stack. If in the object code the variables x and

u were referenced by the address couples

X1 3, 0
u: 2, 1

then y and v would be referenced by

YE 4, 0
v 4, 1 .

(we did explore the special nature of the inner block at run time by shortcutting
the there superfluous part of the operation UPDATE DISPLAY upon its entry and
exit.) When EWD653 was written it was tacitly assumed that in the stack segment
a new block segment would be created upen inner black entry in exactly the same

way as would occur upon procedure call.

* * *
In the new arrangement only at procedure call & new block segment needs
to be introduced, upon inner block entry its uninterpreted information (for
the local scalars) and/dr its header (with a descriptor for each local array)
will be extended. In the example given above, we would have as address couples
--ignoring for the time being such minor details as possible size differences

between fixed length integers and descriptors-—- in P's outer block

X3 3, -1
u: 5, +0

and in its inner block in addition to the above
e 3, =2

Ve 3’ +1

EWD657 - 2

The layout of the block segment is still —-like any other segment--
uninterpreted information --- header ——- subsegment(s) .

During the activetion of P's outer block the corresponding layout of its

block segment would be
X === du ——= u H

during the activation of its inner block the corresponding layout of its

block segment would be

¥y X —=du dv —— u v .

Observe that both the header and the uninterpreted information are allocated
{(or "used") in stack fashion, but that the stacks are in opposite direction.
The two stacks meet with their bottoms. Thanks to this convention of oppo-
site directions of the two stacks it is now possible to code the relevant
information in the descriptor in such a way that one memory shift operation
will do the job. Again, as in EWD65%, the descriptor contains four scalars
but now a different linear combination seems more appropriate, with only

one of them fixing fhe position of the segment by fixing the position where
its two stacks meet: for instance (I use different identifiers Fhan I did

on EWD653 - 6)

sp (= segment position)

dl (= downward ;ength) .
h: (= header length)

ul { = upward length)

Suppose that we have a supersegment the header of which starts at a location
with address b ; for one of its subsegments described by the above quadruple
the uninterpreted information would comprise locatjions M[i] with

b+ 5sp ~dl <i<b+ sp
the header would comprise the locations M[i] with

b+sp<i<b+ sp+hl
and for its subsegments (subsubsegments of the supersegment the position of
which is fixed by b) the location M[i] are avesilable with

b+ sp+ hl <i<b+sp+ul .

Note that (g1 + ul) equals the length of the subsegment in question.

EWD65T - %

combination of the position and size data in the descriptor. This is
8 wrong suggestion: +the possibility is the cnnééquence of choosing dif-
ferent orientations for the header stack and the stack of the uninterpreted

infarmation., (End of note.)

*

I am pleased with the ahove simplification, because it simplifies and
—-Mmore important!-- removes g dilemma thet posed a question that | bad to

leave open. It is the same old story again: whenever a design decision pre-

back up and rethink, because it is much nicer if the conflict can be avoided,

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL Nuenen Burroughs Research Fellow
The Netherlands

