EWD658 — O

On language constraints enforceable by translators,

(An open letter o Lt.Col.William A.Whitaker.)

Friday 3rd March 1978

Dear Lolonel,

this letter is anp almost immediate reaction to the 4 kilogram of language

design documentation that Teached me last Manday; it is written because --at

issue that now seems to me to he inp urgent need aof clarification. My comments

Sre pertinent to the last sentence of Requirement 1F (Revised "Ironman",

July 1977); ’

by translators. "

and I shall illustrate them by a short discussion of side effects.

Ironmants requirements 4C ang 7E don't ENncourage side effects and
the inclusion aof these requirements reflects the general recognition of the
undesirability of side effects. Despite thisg general recognition of their

undesirability Ironman, however, didn't dare to rule them out! The only ex-

enforceahble by translators, language restrictions preventing side effects
would be tooc severe to live with, and would throw away the child with the

bathwater,

0T postulate-- "the integer procedure ¢ is free of side effects" should mean,
(For the sake gf simplicity I use in thisg discussion here 8n integer procedure
without formal perameters that, when cslled, delivers in general a value that

is functionally dependent on the initial values of some of its global variables.,)
My first Proposal is "ihe integer procedure f is free of side effects if and

only if (within its scope) the inner bleck --ALgoL 60 conventiong-—

begin integer h; h:= f an (1)

—_—

EWDess - 1

is semantically equivalent to the empty statement".

This choice is justified by the ‘circumstance that when f is free of
side effects according to this definition, the following are transfarmations

an optimizing compiler might undertake as harmless:

1) Transform y:i=f ¥ f into begin integer h; h:= f; y:= h ¥ h end

{the sbove as paradigm for "taking a constant expression outside a loop")

2) Transform b or f =1 into if b then true else f = 1
3) Transform a * f into if a = Q0 then O else a * f

Without severe --and we may safely state: unrealisticly severe--
restrictions on the text of the procedure f , it is impossible for a translator
to "enforce" that the function procedure ¥ is in the above sense free of side
effects, as it would require the solution of the halting problem, a problem of
which we know since 1936 thanks to A.M.Turing that in general it is unsolvable.
Statement (I) is not equivaelent to the empty statement under all circumstances

in which the calling of f 1leads not to a properly terminating computation!

In general f computes a partial function and calling f only leads to
a properly terminating computation provided some condition D -~describing its

domain-- is initially satisfied. Thus we come to the definition:

"The integer procedure f is free of side effects with respect to con-

dition P if and only if

"if D then begin integer h; h:= f end else skip"

is semantically equivalent to the empty statement."

Note. The fact that the condition is not necessarily identically true need
not be caused by the possibility of nontermination. Derive ~-under the as-—
sumption of a variable x global to f —- from the text of f the text f'
by inserting the statement "x:= abs(x)". Then D' =D and x >0 . (End of

note.)

In general the condition D with respect to which a function procedure

is free of side effects needs to be stated explicitly; and the user of the

EWD658 -~ 2

function procedure has to ensure that this condition is satisfied wherever the

function procedure may be invoked.

* *

The contrast between the following two function procedures with "own
veriables" may shed a further light. I guess we all abhor a random function

like --described in ALGOL 60, extended with initialization of own variableg--

real procedure random;

beqin own real h = some initial value;

h:= some scrambling of(h);

random:= h

It could be prevented by ruling out function procedures with own variables
of any sort, but that could be regarded as throwing the child away with the
bathwater, as it would also exclude the so-called "memo-function™ mf

~-ALGOL 60 now extended with a while - do construct--

real procedure mf(x); real x; value x;

begin own real X = some initial value;
£(x);
while x £ X do X:= x; F:= £{X) od;

1l

own real F

mfs:=

end

for which mf(x) = f(x) holds thanks to the internal invariance of F = f(X)

Assuming that something like "random" should be out and something like
"mf" should be in, we can only conclude that we need to distinguish between the
notion of "a legal program” and the notion of "a correct program™., From trans-

lators we can require that they reject illegal programs; for legal programs

the language definition should define the broof obligations to be met in order

1o make the legal program also 8 correct program.

A checking compiler may assist the programmer in fulfilling these proof
obligations by detecting cases were the proof is clearly impossible ~-as in

the case of "random"-- or detecting cases where the proof is trivial. (The

EWD658 - 3

latter seems te me to be the main functicn of scope rules.)

* *
*
As far as I have been able to detect in those few days, the four language
designs have only paid lip service to the formal aspects of programming. My

comments in margine next to requirement 1H, first sentence:

"To the extent that a formal definition assists in achieving the above

goals, the language shall be formally defined."

was "a compromise"; from competent language designers we could, however, have
expected the awareness that a programming language definition should define an
interface between the mechanics and their users, i.e. should give a clear de-

finition of mutual rights and ohligations.

To require from the mechanics the rejection of all incorrect programs
is as naive as requiring the Fhilosopher's 5tone: it would impose upon im-
plementors the obligation to include all the theorem proving techniques yet
to be developed by the Artificial Intelligentsia plus the nonexistent solution
of the halting problem. Hence the necessity to distinguish between the notions
"legal"” and "correct", and hence the necessity to define what else is required
that & legal progrem be also a correct program. The adoption of any language
the definition of which fails to do so will only perpetuate the muddle and
confusion (with all the unavoidable expensive consequences) the DoD seeks to

OVEercome.

If I were to select which of the four tenders should be granted a phase 2
contract, I would try to estimate their respective abilities to take the above
formal requirement seriously and to act accordingly. Rewriting the require-
ments and starting all over again could he more fair and sensible: requirement
1H is such "a compromise" that it almost excludes a language of the quality the
the Dol needs, (This is the first conclusion I was led to by the study of the
four proposals.) I wish you the courage of reconsideration and the political
tools needed for the prevention of another billion-dollar mistake.

Yours sincerely
Edsqer W Dy keh.
Plataanstraat 5 prof.dr.Edsger W.Dijkstra DSe
5671 AL NUENEN : Burroughs Research Fellow

The Netherlands

