EWD670 - O
EWD670.html

Sequencing and the discriminated unian,

The purpose of this note is to record an observation on a connection
between the availability of sequencing primitives on the one hand and the

need for the discriminated union on the other.

Our starting point is & rather abstract inner block that captures
a structure of which I have encountered several examples. The variable =z
represents the global environment symbolically, the variable x 1is a lo-
cal variable, and the predicates H(x) and K(x) , used in the annotations,
are complementary, i.e. H(x) = non K(x) . The BHH , BHK , etc. repre-
sent boolean expressions such that (EHH(x,z) or BHK Xy z)) x) , stc,

begin var x: Xtype; x:= some functiun(z);

do BHH(x,z) - {H(x)} zi= ZHH(x,z); x:= XHH x,z) {H(x }
H BHK(x,z - {H )} z1= ZHK(x,z); x:= XHK x,z) {K(x }
ﬂ BKH(x,z - { )} zZi= ZKH(x,z); Ki= XKH z) {H x)}
H BKK(x,z - {K(x)} z:i= ZKK(X,Z); xi= XKK(x z) {K(x)}
od
end

Suppose now that we have to code this inner blaock in the absence of
the required Xtype , but in the presence of two types, Htype and Ktype ,
such that there is a natural cne-toc-one correspondence between the values
in Htype and those x of Xtype satisfying H(x) , and, similarly,
there is a natural one-to-one correspondence between the values in Ktype
and those x of Xtype satisfying K(x) « The classical solution consists
of replacing the above variable x by a triple, i,e. one boolean, one
variable of Htype and one variable of Ktype . Reusing the same identi-

fiers in analogous functions, we get:

begin var Hholds: boolean; var h: Htype; var k: Ktype; Hholds:= Q{z);

Hholds - h:= some fumction(z) ﬂ non Hhelds - k:i= ather function{z) fi;
Hholds cand BHH(h,z) — z:= ZHH(h,z); hi= XHH{h,=z)

Hholds cand BHK(h,z) - z:= ZHK({h,z); k:= XHK(h,z); Hholds:= false
Hholds cand BKH(k,z) - z:= ZKH(k,z); h:= XKH(k,z); Hholds:= true
non Hholds cand BKK(k,z) - z:= ZKK(k,z)}; k:= XKK(k,z)

=8 II—‘-
[w] —h

O = = =3
=
Q
3



http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD670.html

EWDETO - 1

This second program is ugly for a variety of reasons:
1) The fact that at any moment in time of the values of h and &k op-
ly one matters is not syntactically expressed.
2) Withaut the introduction of "fake initializations", the assignments
to h and k cannot be separated in the text into initializations ver-
sus modifications, (This complaint is closely related to the first one.)
3) The value of Hholds requires explicit manipulation, despite the
fact that that wvalue is almost a function of the ﬁlace in the text.
4) The cand's are really necessary, because the BHH , BHK etc., may

now be partial functions. (Note that we may not write

do Hholds — if BHH(h,z) - ...
I BHK(h,z) - ...
fi
] non Hholds — if BKH(k,z) - ...
0 Bkk{k,z} - ...
fi
od

because, instead of to proper termination, this would lead to abortion.)

These complaints are largely overcome when we use --very much in the
style suggested by Eric C.Hehner of the University of Toronto-- what we
might call "semi-recursicn". The main text for our program part then be-

comes
if Q(z) - processHtype(some function(z))

ﬂ hon Q(z) - processKtype(Dthex function(z))
fi

with the two local refinements, which —-under the assumption of value-

parameters in the style of ALGOL 60-- can be written:

pracessthpe(gg;gg h: Htype):
begin do BHH(h,z) —» z:= ZHH(h,2); h:= XHH(h,z) od;
if BHK(h,z) — z:= ZHK(h,z); processKtype(XHK(h,z))
ﬂ non BHK(h,z) - skip
fi

end

and for "processKtype" similarly. Following Hehner we can abolish the



EWD6T70 - 2

do...od completely --and, in passing, retain the potential nondeterminacy-—-

by refining as follows:

prDcaSsthpe(velue ki thpe):

begin if BHH(h,z) - zi= ZHH(h,z); prDcessthpe(XHH(h,z))
ﬂ BHK(h,z) - Z:1= ZHK(h,z); prncessKtype(XHK(h,z))
ﬂ non (EHH(h,z) or BHK(h,z)) - skip
i

end

and for "processKtype" similarly.

This form of recursive refinement is at most "gemi-recursion", for
what an ALGOL programmer would intuitively interpret as calls on recursive
procedures are here all so-called "last calls™: for their implementation
no stack is required and ~-because the term "continuation" has slready a
technical meaning in denotational semantics-~- we could call them "comple-
tions". If the "completion" is a recognized syntactic concept, none of the
four complaints against our second program applies to our semi-recursiwve

programs!

The above can be read as a plea for semi-recursion as a sequencing
device. Its strength, however, remains to be ascertained. Semi-recursion
provided a nice alternative for our second program, i.e. a second way of
avoiding a discriminated union «-a way of type formation about which I have
mixed feelings-- , but we should not forget that in this example we replaced
anly ope variable of such a type. The complete moral of this observation
==if there is one-- has still to be written; for the time being I must be
content with having discovered a connection --between sequencing and types-—

of which I had been unaware before.

Plataanstraat 5 prof,dr.Edsger W,Dijkstra
5671 AL NUENEN BURROUGHS Research Fu ilow
The Netherlands



