EWD6SQ - O

The pragmatic engineer versus the scipntific designer.

The two literary figures wmentioned in the above title were invented
last week when I addressed young Burroughs managers on the role of farmal
techniques in autamatic computing. (TD sweeten the pill I presented them as
"caricatures" although --but that is strictly between you and mel-- reality
can only be understood as a gross exaggeration of fiction.) It was, @ think,
this recent exposure that, upon my return, made me read all sorts of planning
and management documents that happened to cross my way --nane frowm Burroughs,
I am happy to add, because I was not very pleased with them—- with unusual
attention. (Prmceedings from a seminar on Digital Systems Design, a USAF
survey on Software Engineering Project Management, and the minutes of a large
number of meetings devoted to the plamning of software research and develapment
from several industrial Drganizatinns.) Among all these documents I suddenly

saw a common theme.
* *

I introduced the pragmatic engineer and the scientific designer as the
two extremes of a whole specirum in between. The pragmatic enginesr hbelieves
in the correctness of his design until it has failed to werk properly; the
scientific designer believes in the correctness of his design because he has
understoaod why it must work properly. And in order %o drive home the message
and its significance I introduced as exemplary thinking pattern of the
pragmatic engineer the standard example known as "Poor Man's Induction": the
"proof" that 60 can be divided by all smaller natural numbers: you just try!
1? Yes. 27 Yes. 37 Yes. 47 Yes. 57 Yes! 67 Yes!! OK.... Let us try a random
example. 107 Yes!!! 127 Yes!!!!!!! Obviously 60 can be divided by all
smaller natural numbers. After having done so, I continued my experiments
both in public and in private: I used two very different examples, but in
both cases it turned‘aut to be impossible not to seduce my audience to the
assertion that something was "impossible", whereas each time this assertion
was solely based on the circumstance that the man making the assertion had
been unable to discover a way in which "to do it". No discovery of a counter-
example,was taken as proof. {Because my audience existed predominantly of
people with their primary professional background in hardware design and de-

velopment, and only toa familiar with the extremely experimental attitude of

EWD690 - 1

the average electrotechnical engineer in several European countries, including

my awn, I was not surprised at all by the outcome of my little Experiment.)

Upon my return 1 gathered
1) that in hardware development it is still ~-I am writing November 1978--
guite common that a so-called "breadboard" is taken as the functional specifi-
cation of the thing to be eventually produced in series —--with the hilarious
refinement that, because the breadboard wight break down, in the case of an
"important" design, two breadboards are made for the sake of "reliability":
it makes one wonder what to do when the two breadboards turn ocut to differ
functionally, Three breadboards and majority voting?-—-
2} that in softwdre development the role of functional specifications is
not properly understood (I quote: "On a scale of 1 to 7, with 1 being little
more than the name of the system, and 7 being complete specifications down
through preliminary design, how detailed were the specifications provided?".
From the way in which this question has been farmulated one can deduce that
it can only make sense —-if it can do so at all: rating something along a
scale from 1 through 7 in the absence of any metrics I still regard as silly—-—
within an environment that has not discovered yet that the main function of
specifications is to act as a logical firewall between usage and design: if
the functional specifications are "overcomplete" to the extent that they in-
clude "preliminary design" the firewall "leaks".)
3) that in both hardware and software development the role of documentation
is not praperly understood; it was uniformly treated as an additional burden,
to be produced --by a special type of slaves called "technical writers"?--
a posteriori, therefore usually on the critical path and hard to keep up to
date
4) that software project managers see software development primarily as a
management problem, because they cannot manage it because they don't understand
it -=-it was a very lively illustratiaon of the saying that to someone, whose
only tool is a hammer, every problem locks like a nail!-— (this week's sources
gave nc indication on the average hardware project manager's prejudices, but

one almost feels entitled to extend one's daubts) .

The above list is impressive and --but this again between you and mef--

rather depressing. % %*

EWDE90 - 2

Several people have told me that my inability to suffer fools gladly
is one of my main weaknesses, and I believe them, but despite that belief I
found so much wide-spread and persistent stupidity hard to understand. In

order to ease my own amazement 1 came up with the following "explanation”.

A main nigger in the woodpile is the invention ~-in Europe-- and the
subsequent proliferation —-primarily in the USA-- of the term "software engi-
neering”, The existence of the mere term has been the base of a number of
extremely shallow —--and false-- analogies, which just confuse the issue. In
a recent issue of "Daedalus" I read an article by an American sociologist,
in which he gave the popular picture of "the engineer". Parochial as sociolo-
gists usually are, he gave a very American picture; for me that was in a way
illumirnating, since, besides the similarities, he also gave me the differences.
My conclusion was that the term "“software engineering" should never have been
coined. The typical engineer is an a-cultural illiterate, unable to absorb or
appreciate carefully written prose, equally unable to express himself well, a
socially deficient bore, whoase primary role in life is to make new gadgets with
his hands. (Particularly the “with-his—hands" part is still very dominant --per-
haps even more so than in the US5A-- in the older European Engineering Depart-
ments. Although..... Some time ago a Califormian colleague wrote in & tech-
nical report that he was tired of proving the correctness of theorems "manually™!

Being a little bit old-fashioned, I still use wmy brains for understanding.)

Looking at computers qua structure, qua challenge, qua potential, 1
can only conclude that the sutomatic electronic computer is a gadget absolu-
tely without precedent. If that view is appropriate ~-and I believe it ig—-
we should be very suspicious of anything imported from elsewhere into com-
puting ~-~in the widest sense of the word-- with the mers justification that
elsewhere it worked or made sense. Computers ere such exceptional gadgets
that there is good reason to assume that most amalogies with other disciplines
are too shallow to be of any positive value, are even so shallow that they are
only confusing. I cen only conclude that the wide-spread adoption of the
term "software engineering" is to be regretted as it only hampers this recog-

nition.

Let me give you just one example illustrating how serious the conse-

EWD690 - 3

guences of the thus engendered confusion may be. One of the planning documents
for software research revealed —-in a parenthetical remark anly-- an unchallenged
tacit assumption by referring to "the tradeoff between cost and quality". Now

in all sorts of mechanical engineering it may make sense to talk about "the
tradecff between cost and quality", in software development this is absolute
nonsense, because poor quality is the major contributor to the soaring costs

of software development. What can you expect from a planning document that

is (implicitly) based on such a profound misunderstanding?

The wholesale adoption of the term "software enginesring" may also ex-—
plain one of the more surprising answers --it surprised at least me-- to the
questionnaire that showed that the difficulty of getting adequate specifications
was overwhelmingly regarded, not as a technical problem, but as a management
problem! Now this surpised me, because even if the formal tools for giving
the specifications are in principle available, how to apply them without the
specification becoming unwieldy is & --technical-- problem whose solution
is not apparent; in the absence of & ready-made formalism we return
to our native tongues and we are almost back in the stage of Euclid who had
to do mathematics verbally, (It is for this reason that an exceptional mastery
of the native tongue of his environment is one of the programmer's most im-
portant assats.) It has even been argued that an important cause of the poor
state of the art of progremming is our collective inability of adequately
presenting complex algorithms to our fellows --an opinion that is strongly
supported by the ghastly quality of many publications-- . These are serious
technical problems. Yet it is primarily regarded as a management problem!

Can I offer an explanation by suggesting that those who answered to the
questionnaire have tacitly assumed --or almost postulated-- that the tech-
nicians they have to work with, being "engineers" of some sort, are illiterate?
If that were correct, how do they ever hope to "manage" around that incompe-
tence? If I understand anything about anything, such a hope can only be based

(again) on false analogies.
8 November 1978

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow
The Netherlands

