EWD796a

Smaothsort, an alterpative for sortinq.in s5itu

by [Edsger W.Dijkstra,

Burroughs Corporation

Abstract.

Like heapsort --which inspired it-- smoothsort is an algorithm for
sorting in situ. It is of arder N.log N in the worst case, but of order
N in the hest case, with a smooth transition between the two, (Hence its

name.)

Key Words and Phrases: sorting in situ, heapsort, sorting trees, sift,

computational complexity.

CR Categories: 5,25 , 5,31

Author's present address:

A

Edsger W.Dijkstra, Burroughs, Plataanstraat 5, 5671 AL Nuenen, the Netherlands

EWD796a - 0O

Smoothsort, an _alternative for sorting in situ

by Edsger W.Dijkstra

Introduction

Heapsort (O] [1] is an efficient algorithm for sorting m(i: O < i < N)
in situ; some, however, consider it a disadvantage of heapsort that it
absolutely fails to exploit the circumstances in which the sequence is
initially nearly sorted. While sharing in general with heapsort its
N.log N characteristic, smoothsort does not share this disadvantage:
for an initially (nearly) sorted sequence, smoothsort is of order N with
a smooth transition betwesn the two. Smoothsort can be viewed as a pure
exchange sort that is of order N.log N in the worst case. for brevity's
sake we shall describe sorting the integer sequence m{i: O < i < N) in

ascending order.

General outline of smaothsort

After a preparation in its first phase, smoothsort builds up the

sorted sequence from right to left, i.e. it maintains between g and m
PO: (Ad, j: O0<i<j A q<j<AN: m(i) <m{i)) A1t <q<nN

which is vacuously true for g = N and enjoys the useful property that
POAg =1 implies that the sequence m 1is in ascending order. (since
smoathsort modifies m only by swapping two of its elements, m obviously

remains a permutation of the same bag of values.)

The second relation, built up during smoothsort's first phase and

maintained during its second phase, is

P1: the unsorted prefix m(i: 0<i <Iq) is the posiorder traversal of

a tree in which no son exceeds its father.

Relation P1 ensures that the rightmost element of the unsorted prefix
is its maximum element and that, therefore, q can be decreased by 1

without violating PO . 1In order to maintsin P1 , however, the decrease

EWD796a - 1

gi= q - 1 must, in general, be accompanied by a rebuilding of the tres.
This clerical obligation has no analogue in heapsort , in which a similar
tree is pruned by removing a leaf; in smoothsort the tree is pruned at
its root and without precautions it would, in general, fall apart into a
forest of subtrees. Smoothsort restores the tree by grafting each subtree

of the forest on the root of the subtree to the right of it.

Note that relation P! has been inspired by the desire to leave

the sequerce m untouched when initially already in ascending order.

Orce the shape of the tree for q = N has been chosen, the grafting
procedure sketched above determines the shape of the tree for all smaller
values of g . Our desire to construct an algorithm that would be of
arder N when m is initially (nearly) sorted forced us tec derive the
shape af the next tree from that of the preceding one. This recurrent
camputation, which heavily deperds on the way in which shapes of trees are

represented, is responsible for muchk of smoothsort's apparent complexity.

The presentation of smoothsort

In our presentation we shall follow the principle of postponing
definitions until they are needed and -~as a special case-- not igtruducing
variables until they are needed. The latter leads to so-called "program
projections™., A program is projected on a subset of its variables by omit-
ting the declarations of its other variables and all statements not assigning
to any of the variables of the subset projected on; the remaining expressions
may only depend on the variables of the subset. Each time we shall give the
minimal extension of the subset projected on. In the new statements thereby

introduced, the variables introduced earlier are constants.

This way of program presentation has the advantage of introducing one
complication at a time. It has the disadvantage of hiding the heuristics
that led to the algorithm to be presented; the general outline and later
remarks have been included to overcome this disadvantage as much as possible,

(I think that we shall have to learn to live with the fact that presenting the

EWDT796a - 2

final design in the most disentangled way and giving the heuristics =--perhaps
even in the form of a possible design history-- are not necessarily compatible
guals.) Finally I beg the impatient reader to remember that a program projec-
tion --though a legal program-- does not make sense in isolation: iis sole

purpose is to be extended to something meaningful.

When invariants are given, they precede the repetition of which they

are the invariant.

The introduction of g

Projected on the variable q , smoothsort is reduced to

|[g: int; q:= 1 {inuariant: 1 <q SN}
; do o AN~ qi=q+ 1 g_n_:l_{invariant: 1 SqSN}

; dog#1 -qi=q-1o2d

Il

Variable q denstes the length of the unsorted prefix; the above
projection shows that smoothsort as presented here is only defined for

N1,

The introduction of =

Projected on the variables (q, r), smoothsort is reduced to

![q, r: int; gi= 1; r:= O {invariant: g - 1 = constant}

; do g % N-gi=g+1; r:=r+ 1 od {invariant: q=-1r= cunstant}

s do g A1 wqgi=q=1; ri=1 = 1 od

1l

Remark 0. Variable r comes in handy in two ways. Firstly because m(r)
is the rightmost element of the unsorted prefix, and secondly because re-
placing its initialization r:= 0 by 7r:= X will cause smoothsort to
sort the sequence m(i: X < i <X+ N) . Smoothsort accommodates such a

shift of origin a little bit more easily than bheapsert . (End af Remark 0.)

¢ -

EWD796a - 3

The introduction af p , b , and c

Invariant P1 states that the unsorted prefix m(i: O < i <iq) is
the postorder traversal of a tree, but does not define the tree. In this
section we shall begin to define the tree for the unsorted prefix of length

g and how the shape of that tree is recorded using the triple (p, b, c.

To this purpose we regard the unsorted prefix m{i: 0<1i <Zq) as

a so-called standard econcatenation of éo—called stretches,

A '"stretch" is a subsequence of consecutive elements m(i: h <i <Ih1)
for some h < hl {which we shall later identify with the postorder traversal
of a binary subtree of the tree mentioned in P1). As we shall see later, it
is desirable that the number of stretches that concatenated together constitute
the unordered prefix is relatively small., Stretches, however, don't come in
all possible lengths and when q is not a stretch length we need more stretches
to cover m(i: O < i <Zq) + The available stretch lengths are the so-called

Leonardo numbers

eo. 41 25 15 9 5 3 1 1 (1)

given by LFO = LP1 =1 and LPn+2 = LF’rl+1 + LPn + 1. (The justification

for this choice of available stretch lengths is better postpaoned.,)

The "standard concatenation" of a sequence of length gq! consists
of the longest stretch with length < q! , followed by the standard con-

catenation of the remainder (when not empty).

Remark 1. We leave it as an exercise for the reader to convince himgelf of
the fact that the standard concatenation of a sequence af given length
decomposes that segquence into the minimum number of stretches. (End of

Remark 1.)

For the sake of the recurrent stretch length computations, we introduce

for each stretch length b its "companion" ¢, i.e. we maintain

(_E_n: n > 0: b=LF‘n/\c=LF’n_1) H

EWD796a - 4

here LP 1 is to be taken = -1 . This is achieved by madifying variables

b and c wusing only "up" and "down", defined by

up: b, c:=b+ec+1, b and down: b, c :=¢, b - ¢ - 1 .

The stretches forming a standard concatenation are given by the

triple (p, b, c); more precisely, with a binary representation of p

e p5 p4 p3 p2 p-] pO s
the triple (p, b, c) defines the set of stretches Lpn+i for all 1 such
that P, = 1 and n defined hy LPn =h A LPn 1 =6 .

Note 0. As a first result, the length of the standard concatenetion given

by the triple (p, b, c) can --~destructively-- be computed by

length:= O
3 dop>0 -
if even(p) - pr= p/2; up
[odd(p) - lengthi= length + b; pi= (p=1)/2; up
fi
od . (End of Note 0.)

Note 1. The representation is not unique: the operations "p:= 2'%* p; down"
leave the standard concatenation represented by the iriple (p, b, c) unchanged,

(End of Note 1.)

The above coding of a standard concatenation is possible because,
with the exception of stretch length 1, which may occur twice in a standard
concatenation --e.g. of length 2 or 7 -- , each stretch length occurs at
most once, whereas for stretch length 1 we have LP, and LP. at our

: 1 Q
disposal. We adopt the additional convention of recording a single stretch

of length 1 asg LP1 .

Note 2. We leave it as an exercise for the reader to prove that, as a
consequence of the streich lengths being Leonardo numbers, in the hinary

representation of p only the two least significant 1's may be adjacent.

This fact will be used in our next projection. (End of Note 2.)

EWD796a - 5

We now extend the subset of variables projected on by adding the triple

(p, b, c) satisfying the invariant

P2 the length of the standard concatenation represented by the triple

(p, b, :) equals g .

|[q, r, 9, b, c: int; g:= 1; O; p, b, ez=1, 1, 1 {invariant: PZ}
; do g # N

— if p mod 8

H
Il

%
~pi= (p = 1)/2; up; p:
0 pmed 4 =1

Il

(p - 1)/2; up; pi=p + 1 {b 233}

- dawn; p:= 2 ¥ p
; do b # 1 - down; pi= 2 ¥ p od; pi=p + 1 {b = T}

fi; gi= g+ 1; ri=1 + 1

[a]
o8

linvariant: P2}

g £ 1

- qg:i=q-=-1; rit=1 -1

o
[m]

g Al b =1
~pi=p - 1; do even(p) — p:=p / 2; up od {p mod 4 = 1}
lb=3
- pi= p - 1; dawn; p:= 2% + 1; down; p:= 2% + 1 {p mod 8 = 3}

Note 3. For the (nmnempty!) standard concatenations we have chosen in the

above the "normalized" representation with Gdd(p) . (End of Note 3.)

Note 4. The assertions at the end of each alternative have been given in
order to stress that --as 1% should be!-- the one repeatable statement is
the inverse of the other: assertions in the one reappear as guards in the

other [2]. (End of Note 4.)

Note 5. The reader may wish to prove that p's property as described in

Note 2 4is an invariant of both repetitions. (End of Note 5.)

EWD796a -~ 6

Note 6. The above projection is still of order N . The argument is as
follows., In the first repetition the number of "down's" is bounded by
the number of "up's", which is certainly less than 2N . The second
repetition is merely the inverse of the first one and the conclusion

follows. (End of Note 6.)

. The _introduction of m

At last the time has come to describe how stretches and the standard
concatenation define which order relations between elements of m are main-
tained by smoathsort . We begin with the stretches, on which the predicates
"trusty" and "dubious" will be defined. In accordance with the interpretation
of a stretch as the postorder traversal of a binary tree we shall refer %o

the rightmost element of a stretch as the "raot" of that stretch.

Denoting a sequence of length LP Dy <Iseqn > , we parse for n > 2
n

< seqn > = < seqn > < seq_ > < ropt >

1 2

where < root > stands for a singleton sequence. Stretch <159qn > is
dubious means that both <Iseqn_1 > and <Iseqn_2 > are trusty. Stretch
<Iseqn = 1s trusty means that, in addition, the roots of <:seqn—1 > and
<Iseqn_2 > are at most the root of <Iseqn > ; a stretch of length 1 is

by definition both dubious and trusty. As a conseguence, the root of a trusty

stretch is the maximum elemernt of that stretch.

When stretches thus parsed are viewed as postorder traversals of binary
trees, trustiness means that no son exceeds its father. A dubious stretch
is made into a trusty one by applying the operation "sift" --a direct
inheritance from heapsort-- to its root, where sift is defined as follows:
sift applied to an element without larger sons is a skip, sift applied to
an element m(r!) that is exceeded by its largest son m(r2) consists of

a swap of these two values, followed by an application of sift to m(r2) .

EwD796a - 7

Remark 2. We can now partly justify cur choice of the Leonardo numbers as
available stretch lengths, i.e. justify why we have not chosen (with the

Same recurrence relatiun)
cees 3% 20 12 7 4 2 1 (0) .

The occurrence of length 2 would have required a sift able to deal with
fathers having one or two sons, like the sift required in heapsort ;
thanks to the Leonardo numbers a father has always two sons and, consequently,

smoothsort's sift is simpler. (End of Remark 2.)

During the second repetition smoothsort maintains

P3: the stretches of the standard concatenation of the unsorted prefix

m(i: O <i <:q) are all trusty.

During the first ane it maintains the weaker

P3'; of the standard concatenation of the unsorted prefix m(i: 0<1i <Iq)

the rightmost stretch is dubious; its other stretches are all trusty.

Remark 3. The weaker P3' has been introduced for reascns of efficiency
which cannot be explained now; see, however, Remark 4. (End of Remark 3.)
So much for the order relations captured by the stretches. In addition,

smoothsert maintains during the second repetition

P4 : the roots of the stretches of the standard concatenation of the

unordered prefix m(i: O <i<g) are ascending from left to right |,

a relatiaon, which is useful since P3 A P4 implies that m(r) , the rightmost
element of the prefix, is a maximum element of the prefix, and this is the
circumstance under which ¢:= g - 1 maintains PO . During the first

repetition smoothsort maintains the weaker

P4*': the roots of the trusty streiches of the standard concatenation of the
unordered prefix m(i: 0<i4i <iq) that are also stretches of the

standard concatenation of length N are ascending from left to right.

EWD796a - 8

We now have to investigate

1) what to add to the first repetition for the maintenance af FP3' A B4
2) what +o ingsert between the two repetitions in order to transform

P3' A P4r into P3 A P4
3) what to add to the second repetition for the waintenance of P3 A P4,

Investigaticon 1. In the case p mpod 8 = 3 , the standard concatenation ends

on a dubious stretch of length b which must be made trusty before it can
be combined with the preceding stretch and the following element into a

new dubious rightmost stretch., This can be achieved by applying sift +to
m(r) + aince no new trusty stretch is added to the standard concatenatian,

P4' is maintained without further measures.

In the case p mod 4 = 1 , the standard concatenation ends on a dubious

stretch of length b , which in this step becomes the last but one stretch
of the standard concatenation and, hence, must be made trusty. In the case
qg+c<<N, it suffices io apply sift +to m(r) as before, since this
stretch will later disappear from the standard concatenation. In the case
q+ c >N, however, just applying sift +to m(r) might violate P4!

since this stretch of length b also occurs in the standard concatenation
of length N , Making a dubious stretch trusty and including its root in
the sequence of ascending roots is achieved by applying "trinkle" to m(r) .
(As we shall see later, +trinkle is like sift , be it for a partly ternary

tree.) (End of Investigation 1.)

Investigation 2. The reader may prove that it suffices to apply trinkle

to m(r) . (End of Investigation 2.)

Investigation 3. In the case b =1 , the standard concatenation loses its

last stretch, and P3 A P4 is maintained without further measures.

In the case b >3 , the rightmost stretch of length b is replaced
by two trusty omes; hence P3 is maintained. To restore P4 it would
suffice to apply +trinkle +irst to the root of the first new stretch and
then to the raot of the second new stretch, but this would fail to exploit
the fact that the new stretches are already trusty to start with. This is
exploited by applying "semitrinkle" in order to those roots. {(End of In-

vestigation 3.)

EWD796a - 9

Remark 4. from a logical point of view it would be perfectly permissible
to replace a call on trinkle by a call on sift , which would make the
dubious stretch trusty, followed by a call on semitrinkle , which would
include its root in the seqguence of ascending roots, After this substitutiaon,
gach iteration of the first repetition starts with a sift and the whole
first repetition is immediately followed by a sift . Since initially the

last [and Dnly) stretch is trusty, we can transform the program by removing
all calls on sift and inserting a single call on sift at the end of the
repeatable statement of the first repetition. This is essentially the program
transformation that would be required if we wished to replace P3' by P3 .,
(The collection of trusty stretches being extended, P4' would regquire

refurmulatinn.)

The version resulting from the above transformation is, however,
rejected because a succession of sift and semitrinkle requires in general
more comparisons and swaps than +trinkle , as will become apparent later. This
can be remedied by replacing the single call on sift by guarded calls on
either sift or the combination in the form of trinkle (and removal of the
calls on semitrinkle from the first repetition, which have now been catered
fnr). P3 would still be valid, P4!' would have to be changed. This version,
hawever, is rejected since it would lead to a duplication of the evaluation

of the guards p mod 8 = % , etc.. (End of Remark 4.)

In arder to enable the reader to check the code in which the calls on
sift , trinkle , and semitrinkle have been inserted, we give their calling
conventions. (These conventions are not to be regarded as a recommendation:
they have been chosen because in this publication I did not want to make any

assumptions about a parameter mechanism.)

Routine sift is applied to the root m(r1) of a stretch of length
b1 , of which ¢l is the companion., Routine trinkle is applied to the roaot
m(rl) of the last stretch of the standard concatenation represented by the
triple (p, b, c); this representation need not be normalized., Routine
semitrinkle is applied to the root m{r) of a stretch of length ¢ which is
preceded by the nonempty standard concatenation represented by the triple

(p, b, c); again this representation is not necessarily normalized.

EWD796a - 10

Note that "p:i=(p - 1)/2; pi=(p - 1)/2; pi= p + 1" has been simplified
to "p:= {p + 1)/4" and that "r:= r - b + c; down; r:= r + c" decreases r

by 1.

smoothsort:
|[q, r, p, b, ¢, 1, b1, cl: int
; qi=1; r:= 0; p, b, ¢ :=1, 1, 1 {invariant: P3' A P4'}
i dog#N
- rl:i=r
; if pmod 8 =3
- b1, el := b, e; sift; pr= (p + 1)/4; up; up
[p mod 4 =1
- if g+ c<N-bt, ct :=b, c; sift
ﬂq+c2N-—»trinkle
fi; down; p:= 2 ¥ p
; do b £ 1 — down; p:=2 *p pod; pi=p + 1

fi; gi= g+ 1; rei= 1 + 1

ad {P3' A P4'}; rl:= r; trinkle {invariant: P3 A P4}
s do g #
- gi=qg - 1
S if b = 1

- ri=r ~1; pi=p -1; do Even(p) ~ p:= p/2; up od
lb=3

- pi=p~1; ri=r -b +c

; it p=0 ~skip | p > 0 - semitrinkle fi

; down; p:= 2% + 1; r:=r + ¢; semitrinkle

; down; pi= 2% + 1

fi
od
upt: b1, e1 := bl + ¢l + 1, bt

downl: b1, cl 1= rcl, bl -~ ¢l = 1

EWD796a - 11

sift:
do bl >3 -
|[r2: int; r2:= rl -~ bl + cf

g if m(r2) Zm(c1 = 1) — skip
[m{z2) <m(rt =1} & 2:= 1 - 1; downl
fi
; if m(x1) > m(x2) - bl:= 1
ﬂ m(rl) <m{r2) - m:swap(zrl, r2); rl:= r2; downl
fi
i
od
semitrinkle:
rli= 1 - ¢

; if w(e1) < m(x) - skip
ﬂ m(rT) >>m(r) — m:swap(r, I?); trinkle

fi

Trinkle is very similar to sift when we regard sach stretch root as
the stepsor of the root of the stretch to its right. Appliesd to a root
without larger sons, trinkle is a skip; otherwise the root is swapped
with its largest son, etc. The trouble with the code is that all sorts of
sons may be missing. In the following, trinkle is eveéniually reduced to

a sift , viz. when the stepson relation is ro longer of interest.

EWD796a - 12

trinkle:
I[pl: int; p!, bl, 1 :=p, b, ¢
; do pl >0 -
|[z3: int; do even(pt) - pl:= p1/2; upl od; r3:= r1 - b
; if pt = 1 gor m{x3) §;m(r1) - pl:=0
| pt > 1 cand m(z3) > m(x1)
~pli=pl =1
; if bl =1 = m:swap(ri, r3); rli= 13
[b1 =3 -
|[r2: int; r2:= 1 - bl + ¢l

v

s if m(r2) = w1 - 1) - skip
I m(r2) <m{xt - 1)
~ r2:= vl ~ 1; downl; pli= 2 * pi
fi
i

f m(r}) 2m(r2)

-

- m:swap(r1, r3); rl:= 3

| m(z3) < m(c2)

- mi:swap{rl, r2}; rl:= r2; downl; pl:= O
fi

]l

fi
fi
1l
od
15 sift

And this concludes the code, in which I have abstained from implementa-

tion dependent optimizations,

In retrospect

While heapsort prunes the tree leaf by leaf, smoothsort prunes the

tree et the root, and immediately one of heapsort's charms is lost: while

remains beautifully balanced, the tree in smoothsort
Well,

the tree in heapsort

can get very skew indeed. 5o why bother about smoothsort at all?

EWD796a - 13

I wanted to design a sorting algorithm of order N in the best case, of order
N.log N in the worst case, and with a smooth transition between the twao

(hence its name).

This is also the answer to the guestion why I introduced P4 ., By
dropping P4 one can dispense with +trinkle and the code becomes much
simpler. The price to be paid is a search for the maximum stretch root
in order to establish that m(r) is a maximum element of the unsorted prefix.
Though such a simpler sorting algorithm is gquite defensible, I rejected the

option because it is never of order N .,

One can also reise the guestion why I have not chosen as available
stretch lengths: ... 63 31 15 7 3% 1, which seems attractive since each
stretch can then be viewed as the postorder traversal of a balanced binary
tree. In addition, the recurrence relation would be simpler. But I know
why I chose the Leonardo numbers: with balanced binary trees the average
number of stretches is 1,2559 {: % (5 + V§)(21ug(1 + V?) - 1)} times the
average number of stretches with the Leonardo numbers. (I do not present

this ratio as & compelling argument.)
]

It is possible that others have thought of this algorithm, but have
rejected it for valid reasons, as yet unknown to me. I could not find it in
the literature and it is not mentioned in [3], a recent article that compares
five well-known sorting algorithms when fed with initially nearly sorted
Sequences, (That article compares Straight Insertion Sort, Shellsort,
Straight Merge Sort, Quickersort, and Heapsnrt.) If it has not been discoversd
eerlier, I would like to know the reeson, because all its ingredients

are well-known since the discovery of heapsaort in 1964,

Besides the possible interest in smoothsort I had another reason for
developing it to the degree I did and for wiiting the above. (It took me
three weeks, but I consider them well-spent.) The reason was that I knew
beforehand that in trying to present smoothsort in a way as disentangled
as possible I would encounter considerable difficulties. I hope they have

been surmounted sufficiently well,

EWD796a - 14

Acknowledgements

I am greatly indebted to C.5.Scholten and to all the members of the
Tuesday Afternoon Club, with wham I had the privilege of discussing the
algorithm, its coding, and its presentation, They have helped me clarifying
my own thoughts and have suggested several significant simplifications. I am
furthermore indebted to D.E.Knuth and W.M.Turski for their comments on the
previous version of this text, and to the participants of the Marktoberdorf

+

Summer School, 1981, on whom I could txy out my presentation.

References

[0] williams, J.W.J.,, Algorithm 232 HEAPSORT C.A.C.M., 7, 6 {(June 1964),
pp. 34(-348 "

[1] Floyd, Robert W,, Algorithm 242 TREESORT 3 C.A.C.M., 7, 12 (Dec.
1964), p. 701

[2] Bauer, F.L, and Broy, M. (Ed.), Program Construction, Lecture Notes
in Computer Science 69, Berlin, Heidelberg, New York, Springer Verlag,

1979, pp. 54 - 57

[3] Cook, Curtis R. and Kim, Do Jin, Best Sorting Algorithm for Nearly
Sorted Lists, C.A.C.M., 23, 11 {Nov. 1980) pp. 620 - 624

Plataanstraat 5 16 August 1981
5671 AL NUENEN prof.dr.BEdsger W.Dijkstra

The Netherlands Burroughs Research Fellow

