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Abstract
Recent reinforcement learning (RL) approaches
have shown strong performance in complex do-
mains such as Atari games, but are often highly
sample inefficient. A common approach to re-
duce interaction time with the environment is to
use reward shaping, which involves carefully de-
signing reward functions that provide the agent in-
termediate rewards for progress towards the goal.
However, designing appropriate shaping rewards is
known to be difficult as well as time-consuming. In
this work, we address this problem by using natural
language instructions to perform reward shaping.
We propose the LanguagE-Action Reward Network
(LEARN), a framework that maps free-form nat-
ural language instructions to intermediate rewards
based on actions taken by the agent. These inter-
mediate language-based rewards can seamlessly be
integrated into any standard reinforcement learn-
ing algorithm. We experiment with Montezuma’s
Revenge from the Atari Learning Environment, a
popular benchmark in RL. Our experiments on a
diverse set of 15 tasks demonstrate that, for the
same number of interactions with the environment,
language-based rewards lead to successful comple-
tion of the task 60% more often on average, com-
pared to learning without language.

1 Introduction
Reinforcement learning (RL) has enjoyed much recent suc-
cess in domains ranging from game-playing to real robotics
tasks. However, to make reinforcement learning useful for
large-scale real-world applications, it is critical to be able
to design reward functions that accurately and efficiently de-
scribe tasks. For the sake of simplicity, a common strategy is
to provide the agent with sparse rewards—for example, posi-
tive reward upon reaching a goal state, and zero reward other-
wise. However, it is well-known that learning is often difficult
and slow in sparse reward settings [Večerı́k et al., 2017]. By
contrast, dense rewards can be easier to learn from, but are
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Figure 1: An agent exploring randomly to complete the task de-
scribed by the blue trajectory may need considerable amount of time
to learn the behavior. By giving natural language instructions like
“Jump over the skull while going to the left”, we can give interme-
diate signals to the agent for faster learning.

significantly more difficult to specify. In this work, we ad-
dress this issue by using natural language to provide dense
rewards to RL agents in a manner that is easy to specify.

Consider the scenario in Figure 1 from the Atari game
Montezuma’s Revenge. Suppose we want the agent to go to
the left while jumping over the skull (as shown in the blue
trajectory). If the agent is given a positive reward only when
it reaches the end of the desired trajectory, it may need to
spend a significant amount of time exploring the environment
to learn that behavior. Giving the agent intermediate rewards
for progress towards the goal can help, a technique known
as “reward shaping” [Ng et al., 1999]. However, designing
intermediate rewards is hard, particularly for non-experts.

Instead, we propose giving the agent intermediate rewards
using instructions in natural language. For instance, the agent
can be given the following instruction:“Jump over the skull
while going to the left” to provide intermediate rewards that
accelerate learning. Since natural language instructions can
easily be provided even by non-experts, it will enable them to
teach RL agents new skills more conveniently.

The main contribution of this work is a new framework
which takes arbitrary natural language instruction and the tra-
jectory executed by the agent so far, and makes a prediction
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whether the agent is following the instruction, which can then
be used as an intermediate reward. Our experiments show that
by using such reward functions, we can speed up learning in
sparse reward settings by guiding the exploration of the agent.

Using arbitrary natural language statements within rein-
forcement learning presents several challenges. First, a map-
ping between language and objects/actions must implicitly or
explicitly be learned, a problem known as symbol grounding
[Harnad, 1990]. For example, to make use of the instruction,
“Jump over the snake”, the system must be able to ground
“snake” to appropriate pixels in the current state (assuming
the state is represented as an image) and “jump” to the appro-
priate action in the action space. Second, natural language
instructions are often incomplete. For instance, it is possible
that the agent is not directly next to the snake and must walk
towards it before jumping. Third, natural language inherently
involves ambiguity and variation. This could be due to differ-
ent ways of referring to the objects/actions (e.g. “jump” vs.
“hop”), different amounts of information in the instructions
(e.g. “Jump over the snake” vs. “Climb down the ladder after
jumping over the snake”), or the level of abstraction at which
the instructions are given (e.g. a high-level subgoal: “Collect
the key” vs. low-level instructions: “Jump over the obstacle.
Climb up the ladder and jump to collect the key.”)

Once an instruction has been interpreted, we incorporate
it into the RL system as an additional reward (as opposed to
other options like defining a distribution over actions), since
modifying the reward function allows using any standard RL
algorithm for policy optimization. We evaluate our approach
on Montezuma’s Revenge, a challenging game in the Atari
domain [Bellemare et al., 2013], demonstrating that it effec-
tively uses linguistic instructions to significantly speed learn-
ing, while also being robust to variation in instructions.

2 Overview of the Approach
A Markov Decision Process (MDP) can be defined by the tu-
ple 〈S,A, T,R, γ〉, where S is a set of states, A is a set of
actions, T : S×A×S → [0, 1] describes transition probabil-
ities, R : S × A → R is a reward function mapping the cur-
rent state st and current action at to real-valued rewards, and
γ < 1 is a discount factor. In this work, we consider an ex-
tension of the MDP framework, defined by 〈S,A,R, T, γ, l〉,
where l ∈ L is a language command describing the intended
behavior (with L defined as the set of all possible language
commands). We denote this language-augmented MDP as
MDP+L. Given an MDP(+L), reinforcement learning can be
used to learn an optimal policy π∗ : S → A that maximizes
expected sum of rewards. We use Rext (“extrinsic”) to de-
note the MDP reward function above, to avoid confusion with
language-based rewards that we define in Section 4.

In order to find an optimal policy in an MDP+L, we use a
two-phase approach:

LanguagE-Action Reward Network (LEARN) In this
step, we train a neural network that takes paired (trajectory,
language) data from the environment and predicts if the lan-
guage describes the actions within the trajectory. To train the
network, we collect natural language instructions for trajec-
tories in the environment (Section 3).

Figure 2: Our framework consists of the standard RL module con-
taining the agent-environment loop, augmented with a LanguagE-
Action Reward Network (LEARN) module.

Language-aided RL This step involves using RL to learn a
policy for the given MDP+L. Given the trajectory executed by
the agent so far and the language instruction, we use LEARN
to predict whether the agent is making progress and use that
prediction as a shaping reward (Section 4). Note that since
we are only modifying the reward function, this step is ag-
nostic to the particular choice of RL algorithm. A schematic
diagram of the approach is given in Figure 2.

3 LanguagE-Action Reward Network
3.1 Model
LEARN takes in a trajectory and a language description and
predicts whether the language describes the actions in the
trajectory. More formally, given a trajectory τ , we create
action-frequency vectors from it as follows:
1. Sample two distinct timesteps i and j (such that i < j)
from the set {1, . . . , |τ |}, where |τ | denotes the number of
timesteps in τ . Let τ [i : j] denote the segment of τ between
timesteps i and j.
2. Create an action-frequency vector f from the actions in
τ [i : j], where the dimensionality of f is equal to the number
of actions in the MDP+L, and the kth component of f is the
fraction of timesteps action k appears in τ [i : j].

Using the above process, we create a dataset of (f, l) pairs
from a given set of (τ, l) pairs. Positive examples are created
by sampling f from a given trajectory τ and using the lan-
guage description l associated with τ . Negative examples are
created by (1) sampling an action-frequency vector f from
a given trajectory τ , but choosing an alternate language de-
scription l′ sampled uniformly at random from the data ex-
cluding l, or (2) creating a random action-frequency vector
f ′ and pairing it with the language description l. These ex-
amples are used to train a neural network, as described be-
low. Thus, given a pair (f, l), the network learns to predict



whether the action-frequency vector f is related to the lan-
guage description l or not.

Neural network architecture The action-frequency vec-
tor is passed through a sequence of fully-connected layers
to get an encoded action vector with dimension D1. Simi-
larly, the natural language instruction is encoded into a vec-
tor with dimension D2 as described below. The encoded
action-frequency vector and language vector are then con-
catenated, and further passed through another sequence of
fully-connected layers, each of dimension D3, followed by a
softmax layer. The final output of the network is a probability
distribution over two classes – RELATED and UNRELATED,
corresponding to whether the action-frequency vector f can
be explained by the language instruction l.

Language encoder To embed the natural language instruc-
tion, we experimented with three models:
(1) InferSent : In this model, we used a pretrained sen-
tence embedding model [Conneau et al., 2017], which em-
beds sentences into a 4096-dimensional vector space. The
4096-dimensional vectors were projected to D2-dimensional
vectors using a fully-connected layer. We train only the pro-
jection layer during training, keeping the original sentence
embedding model fixed.
(2) GloVe+RNN : In this model, we represent the sentence
using pretrained 50-dimensional GloVe word embeddings
[Pennington et al., 2014], and train a two-layer GRU [Cho
et al., 2014] encoder on top of it, while keeping the word em-
beddings fixed. We used the mean of the output vectors from
the top layer as the encoding of the sentence. The hidden state
size of the GRUs was set to D2.
(3) RNNOnly : This model is identical to Glove+RNN, ex-
cept instead of starting with pretrained GloVe vectors, we ran-
domly initialize the word vectors and train both the word em-
beddings and the two-layer GRU encoder.

These three models trade-off prior domain knowledge with
flexibility – InferSent model starts with the knowledge of
sentence similarity and is least flexible, GloVe+RNN model
starts with word vectors and is more flexible in combin-
ing them to generate sentence embeddings, while RNNOnly
starts with no linguistic knowledge and is completely flexible
while learning word and sentence representations.

Our complete neural network architecture is shown in Fig-
ure 3. D1, D2 and D3 were tuned using validation data.

Training procedure We used backpropagation with an
Adam optimizer [Kingma and Ba, 2014] to train the above
neural network for 50 epochs to minimize cross-entropy loss.

3.2 Data Collection
To collect data for training LEARN, we generate trajectories
in the environment, which may or may not be directly relevant
for the final task(s). Then, for each trajectory, we get natural
language annotations from human annotators, which are in
the form of instructions that the agent should follow to go
from the initial state of the trajectory to the final state.

In our experiments, we used 20 trajectories from the Atari
Grand Challenge dataset [Kurin et al., 2017], which contains
hundreds of crowd-sourced trajectories of human gameplays
on 5 Atari games, including Montezuma’s Revenge. The 20

Figure 3: Neural network architecture for LEARN (Section 3.1)

trajectories we used contain a total of about 183,000 frames.
From these trajectories, we extracted 2,708 equally-spaced
clips (with overlapping frames), each three-seconds long.

To obtain language descriptions for these clips, we used
Amazon Mechanical Turk. Workers were shown clips from
the game and asked to provide corresponding language in-
structions. Each annotator was asked to provide descriptions
for 6 distinct clips, while each clip was annotated by 3 people.

To filter out bad annotations, we manually looked at each
set of 6 annotations and discarded the set if any of them were
generic statements (e.g. “Good game!”, “Well played.”), or
if all the descriptions were very similar to one another (there-
fore suggesting that they are probably not related to the corre-
sponding clips). After filtering, we obtained a total of 6,870
language descriptions. Note that the resulting dataset may
still be quite noisy, since our filtering process doesn’t explic-
itly check if the language instructions are related to the cor-
responding clips, nor do we correct for any spelling or gram-
matical errors.

More details about the Amazon Mechanical Turk interface
and example descriptions are included in the supplementary
material.

4 Using Language-based Rewards in RL
To incorporate language information into RL, we use
LEARN’s predictions to generate intermediate rewards.
Given the sequence of actions a1, . . . , at−1 executed by the
agent until timestep t and the language instruction l associ-
ated with the given MDP+L, we create an action-frequency
vector ft, by setting the kth component of f equal to the frac-
tion of timesteps action k appears in a1, . . . , at−1. The result-
ing action-frequency vector f and the language instruction
l are passed to LEARN. Let the output probabilities corre-
sponding to classes RELATED and UNRELATED be denoted
as pR(ft) and pU (ft). Note that since l is fixed for a given
MDP+L, pR(ft) and pU (ft) are functions of only the current
action-frequency vector ft.

Intuitively, trajectories that contain actions described by
the language instruction more often will have higher values
of pR(ft), compared to other trajectories. For instance, if
the language instruction is “Jump over the skull while go-
ing to the left”, then trajectories with high frequencies corre-
sponding to the “jump” and “left” actions will be considered



more related to the language by LEARN. Therefore, we can
use these probabilities to define intermediate language-based
rewards. These intermediate rewards will enable the agent
to explore more systematically, by choosing relevant actions
more often than irrelevant actions.

To map the probabilities to language-based shaping re-
wards, we define a potential function for the current timestep
as φ(ft) = pR(ft) − pU (ft). The intermediate language-
based reward is then defined as Rlang(ft) = γ · φ(ft) −
φ(ft−1), where γ is the discount factor for the MDP+L. We
show in the supplementary material that a policy that is opti-
mal under the original reward function (Rext) is also optimal
under the new reward function (Rext +Rlang).

5 Experimental Evaluation
To validate the effectiveness of our approach, we conducted
experiments on the Atari game Montezuma’s Revenge. The
game involves controlling an agent to navigate around multi-
ple rooms. There are several types of objects within the rooms
– (1) ladders, ropes, doors, etc. that can be used to navigate
within a room, (2) enemy objects (such as skulls and crabs)
that the agent needs to escape from, (3) keys, daggers, etc.
that can be collected. A screenshot from the game is included
in Figure 1. We selected this game because the rich set of
objects and interactions allows for a wide variety of natural
language descriptions.

The first step involved collecting (trajectory, language)
pairs in the game as described in Section 3.2. The (trajec-
tory, language) pairs were split into training and validation
sets, such that there is no overlap between the frames in the
training set and the validation set. In particular, Level 1 of
Montezuma’s revenge consists of 24 rooms, of which we use
14 for training, and the remaining 10 for validation and test-
ing. The set of objects in both training and validation/test set
are the same, but each room has only a subset of these objects
arranged in different layouts. We create a training dataset
with 160,000 (action-frequency vector, language) pairs from
the training set, and a validation dataset with 40,000 pairs
from the validation set, which were used to train LEARN.

We define a set of 15 diverse tasks in multiple rooms, each
of which requires the agent to go from a fixed start position
to a fixed goal position while interacting with some of the
objects present in the path.1 For each task, the agent gets an
extrinsic reward of +1 from the environment for reaching the
goal, and an extrinsic reward of zero in all other cases.

For each of the tasks, we generate a reference trajectory,
and use Amazon Mechanical Turk to obtain 3 descriptions
for the trajectory. We use each of these descriptions as lan-
guage commands in our MDP+L experiments, as described
below. Note that we do not use the reference trajectories to
aid learning the policy in MDP+L; they are only used to col-
lect language commands to be used in our experiments.

We use Proximal Policy Optimization, a popular on-policy
RL algorithm [Schulman et al., 2017]. We train the policy for

1Although the tasks (and corresponding descriptions) involve in-
teractions with objects, we observe that just using actions, as we
do in our approach, already gives improvements over the baseline,
likely because most objects can be interacted with only in one way.

Figure 4: Comparison of different reward functions: The solid lines
represent the mean successful episodes averaged over all tasks, and
the shaded regions represent 95% confidence intervals.

500,000 timesteps for all our experiments.

5.1 How much does language help?
Settings We experiment with 2 different RL setups to eval-
uate how much using language-based rewards help:
(1) ExtOnly: In this setup, we use the original environment
reward, without using language-based reward. This is the
standard MDP setup, and serves as our baseline.
(2) Ext+Lang: In this setup, in addition to the original en-
vironment reward that the agent gets on completing the task
successfully, we also provide the agent potential-based lan-
guage reward Rlang at each step, as described in Section 4.

Metrics Performance is evaluated using two metrics:
(1) AUC: From each policy training run, we plot a graph with
the number of timesteps on the x-axis and the number of suc-
cessful episodes on the y-axis. The area under this curve is a
measure of how quickly the agent learns, and is the metric we
use to compare two policy training runs.
(2) Final Policy: To compare the final learned policy with Ex-
tOnly and Ext+Lang, we perform policy evaluation at the end
of 500,000 training steps. For each policy training run, we use
the learned policy for an additional 10,000 timesteps without
updating it, and record the number of successful episodes.

Hyperparameters For the Ext+Lang setup, we perform
validation over the three types of language encoders de-
scribed in Section 4 (InferSent / GloVe+RNN / RNNOnly).
For each type of language encoder, we use the LEARN model
with the best accuracy on the validation data. Further, we de-
fine the joint reward function as Rtotal = Rext + λRlang.
The type of language encoder and the hyperparameter λ are
selected using validation as described below.

We treat each task as the test task in turn, using the remain-
ing 14 tasks to find the best language encoder and λ. For
each setting of the hyperparameters, we run policy training
on all the validation tasks and each of the 3 descriptions, and
compute AUC for each run. Since AUCs across tasks dif-
fer by orders of magnitude (due to varying task difficulties),



we aggregate the scores across tasks as follows – for each
validation task, we compute a rank for each setting of the hy-
perparameters based on AUC, and then for each setting of the
hyperparameters, we compute its average rank across the val-
idation tasks. The setting with the best average rank is used
for the test task.

Results At test time, we performed 10 policy learning runs
with different initializations for each task and each descrip-
tion. The results, averaged across all tasks and descriptions,
are summarized in Figure 4, from which we can conclude that
Ext+Lang learns much faster than ExtOnly, demonstrating
that using natural language instructions for reward shaping
is effective. In particular, the average number of successful
episodes for ExtOnly after 500,000 timesteps is 903.12, while
Ext+Lang achieves that score only after 358,464 timesteps,
which amounts to a 30% speed-up. Alternately, after 500,000
timesteps, Ext+Lang completes 1529.43 episodes on average,
compared to 903.12 for ExtOnly, thereby giving a 60% rela-
tive improvement.

Statistical Significance Tests For each task, we perform
an unpaired t-test between 10 runs of policy training with
random initializations using ExtOnly reward function and
30 runs of policy training with random initializations using
Ext+Lang reward function (3 descriptions × 10 runs per de-
scription), for both metrics.
(1) AUC: Of the total 15 tasks, Ext+Lang gives statistically
significant improvement in 11 tasks, leads to statistically sig-
nificant deterioration in 1 task, and makes no statistical dif-
ference in the remaining 3 tasks. This agrees with the con-
clusions from Figure 4, that using language-based reward im-
proves the efficiency of policy training on average.
(2) Final Policy: We observe that the number of success-
ful episodes for the final policies is statistically significantly
greater for Ext+Lang compared to ExtOnly in 8 out of 15
tasks, while the difference is not significant in the remain-
ing 7 tasks. Further, averaged across all tasks, the number of
successful episodes is more than twice with Ext+Lang com-
pared to ExtOnly. These results suggests that using natural
language for reward shaping often helps learn a better final
policy, and rarely (if ever) results in a worse policy.

5.2 Analysis of Language-based Rewards
In order to analyze if the language-based rewards generated
from LEARN actually correlate with language descriptions
for the task, we compute the Spearman’s rank correlation
coefficient between each component of the action-frequency
vector and corresponding prediction from LEARN over the
500,000 timesteps of policy training. Correlation coefficients
averaged across 10 runs of policy training for some selected
tasks are reported in Table 1. Figure 5 shows the policy train-
ing curves for these selected tasks.

This analysis supports some interesting observations:
(1) For task 4 with simple descriptions, only the DOWN action
is positively correlated with language-based reward. All other
actions have a strong negative correlation with language-
based reward, suggesting that the proposed approach discour-
ages those actions, thereby aiding exploration.
(2) For task 6 with more complex descriptions, LEARN cor-

rectly predicts language rewards to be correlated with actions
LEFT and DOWN. For the third description, since the descrip-
tion does not instruct going down, the language reward is neg-
atively correlated with the DOWN action. Indeed, we notice
in our experiments that we obtain statistically significant im-
provement in AUC for the first two descriptions, while no
statistically significant difference for the third description.
(3) Task 14 represents a failure case. Language rewards pre-
dicted by LEARN are not well-correlated with the descrip-
tion, and consequently, using language-based rewards results
in statistically significant deterioration in AUC. In general,
we observe that groundings produced by LEARN for descrip-
tions involving the word “jump” are noisy. We hypothesize
that this is because (i) the JUMP action typically appears with
other actions like LEFT and RIGHT, and (ii) humans would
typically use similar words to refer to JUMP, JUMP-LEFT
and JUMP-RIGHT actions. These factors make it harder for
the network to learn correct associations.

Note that LEARN does not see action names used in Ta-
ble 1 (NO-OP, JUMP, etc.); instead, actions are represented
as ordinals from 0 through 17. Thus, we see that our ap-
proach successfully learns to ground action names to actions
in the environment.2

6 Related Work
Prior work on combining RL and natural language can be
divided into two classes. The first class uses reinforcement
learning to solve NLP tasks, such as summarization [Paulus
et al., 2017], question-answering [Xiong et al., 2017] and di-
alog generation [Li et al., 2016]. The second class, in which
our approach lies, uses natural language to aid RL.

Regarding methods that use NLP to help RL, some re-
cent approaches map natural language to a reward function.
[Williams et al., 2017] and [Arumugam et al., 2017] map lan-
guage to a reward function in an object-oriented MDP frame-
work. However, these approaches use a predefined set of ob-
jects, object properties and spatial relations, and/or use simple
language-based features, which is difficult to scale to more
complex environments and instructions. Our approach, on
the other hand, learns to ground natural language concepts to
actions directly from data.

[Misra et al., 2017] use natural language to describe the
goal, which is combined with the state information to learn
a policy in contextual bandit setting. However, they use dis-
tance from the goal and from reference trajectories for reward
shaping. [Kuhlmann et al., 2004] map natural language to a
set of rules which are then used to increase or decrease the
probability of choosing an action during reinforcement learn-
ing. Extending this to complex environments would require
engineering how each rule affects the probabilities of differ-
ent actions. Our approach, on the other hand, uses the natural
language instruction itself for reward shaping, directly gener-
ating rewards from language, thereby reducing human effort.

[Branavan et al., 2012b] extract features from natural lan-
guage instructions, and incorporate them into the action-value

2While there are a total of 18 actions, we only report the most
common 8 actions in Table 1 for brevity. The omitted 10 actions
jointly constitute less that 1% of the actions in the training data.



Task Id Description Correlation coefficients of different actions

NO-OP JUMP UP RIGHT LEFT DOWN
JUMP-
RIGHT

JUMP-
LEFT

4
climb down the ladder -0.60 -0.58 -0.59 -0.61 -0.55 0.07 -0.57 -0.56
go down the ladder to the bottom -0.58 -0.58 -0.58 -0.60 -0.53 0.09 -0.59 -0.60
move on spider and down on the lader -0.58 -0.54 -0.59 -0.60 -0.49 0.10 -0.58 -0.56

6
go to the left and go under skulls and then down the ladder -0.37 -0.40 -0.49 -0.43 0.33 0.16 -0.46 -0.01
go to the left and then go down the ladder -0.24 -0.26 -0.35 -0.31 0.28 0.36 -0.34 -0.04
move to the left and go under the skulls -0.16 -0.25 -0.60 -0.48 0.27 -0.63 -0.52 -0.40

14
Jump once then down 0.00 0.07 -0.15 -0.13 0.51 0.50 0.09 0.52
go down the rope and to the bottom -0.03 0.10 -0.16 0.56 0.54 0.33 0.28 0.01
jump once and climb down the stick 0.11 0.11 0.06 0.04 0.14 0.40 0.25 0.11

Table 1: Analysis of language-based rewards

Figure 5: Comparisons of different reward functions for selected tasks

function. More recently, [Bahdanau et al., 2018] proposed
an adversarial learning framework wherein a discriminator
distinguishes between a fixed set of good (instruction, state)
pairs and (instruction, state) pairs generated by the current
policy, and this is used as a reward function to simultane-
ously improve the policy. A key difference between these
approaches and our approach is that they learn linguistic fea-
tures jointly during reinforcement learning, while we learn to
map language to a reward function offline, which could be
beneficial if interaction with the environment is expensive.
However, our approach requires pairs of trajectories and nat-
ural language instructions for offline training.

[Branavan et al., 2012a] and [Kaplan et al., 2017] use natu-
ral language to do high-level planning. These approaches are
orthogonal to our work, in that these approaches can be used
to generate subgoals at a high-level, whereas our approach
can be used to make exploration faster at a lower-level.

Finally, our model is related to that in [Wang et al., 2018],
which also uses intermediate language-based rewards in RL.
However, their goal is to use RL to improve natural language
instruction-following, while our focus is on the reverse prob-
lem of using instructions to improve RL performance.

7 Conclusions and Future Work
We propose LanguagE Action Reward Network (LEARN), a
framework trained on paired (trajectory, language) data in an
environment to predict if the actions in a trajectory match the
language description. The outputs of the network are used
to generate intermediate rewards for reinforcement learning.
We show in our experiments that these language-based re-
wards can be used to train faster and learn a better policy for

sparse reward settings. Further, since the modality by which
information is given to the agent is natural language, this ap-
proach can potentially be used even by non-experts to specify
tasks to RL agents.

While our approach achieves promising improvements
over the baseline, there are several possible extensions of the
approach:
1) Temporal ordering: Our approach aggregates the se-
quence of past actions into an action-frequency vector,
thereby losing temporal information. Therefore a possible
extension is to look at the complete action sequences.
2) State-based rewards: Currently, the language-based re-
ward is a function of only the past actions. As such, the model
cannot utilize natural language descriptions that refer to ob-
jects in the state (e.g. “Go towards the ladder”, “avoid the
skulls”.) Modelling the language-based reward as a function
of both the past states and actions should allow the agent to
benefit from such language descriptions.
3) Multi-step instructions: The current approach only han-
dles a single instruction. One way to handle multiple instruc-
tions is to have another module (trained / heuristic-based) to
predict if a language instruction has been completed or not.
This could then be used in conjunction with our current ap-
proach, where the agent starts following the first instruction,
and transitions to the next one when this new module predicts
that the current instruction has been completed.
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A Example Annotations
Table 2 shows 20 randomly selected annotations collected
using Amazon Mechanical Turk (after the filtering process
described in Section 3.2). Note that the annotations have a
significant amount of variation, both in terms of length and
vocabulary. Further, several descriptions (1) contain spelling
errors (e.g. “climbling” in annotation 6 and “dwon” in an-
notation 7), (2) are ill-formed (e.g. annotation 2) or (3) are
not very informative (e.g. annotations 1 and 7). We do not
filter out or correct these annotations, as the process requires
significant manual effort. Thus, our method is able to extract
useful information from these annotations even in the pres-
ence of noise.

1. wait
2. using the ladder on standing
3. going slow and climb down the ladder
4. move down the ladder and walk left
5. go left watch the trap and move on
6. climbling down the ladder
7. ladder dwon and running this away
8. stay in place on the ladder.
9. go down the ladder
10. go right and climb up the ladder
11. just jump and little move to right side
12. run all the way to the left.
13. go left jumping once
14. go left

15. move right and jump over green
creature then go down the ladder

16. hop over to the middle ledge

17. wait for the two skulls and dodge
them in the middle

18. walk to the left and then jump down
19. jump to collected gold coin and little move

20. wait for the platform to materialize then
walk and leap to your right to collect the coins.

Table 2: Examples of descriptions collected using Amazon Mechan-
ical Turk

B Policy Invariance
In this section, we show that using action-frequency vectors
for reward shaping does not change the optimal policy.
Theorem. Let M = 〈S,A, T,R, γ〉 be a given MDP, and
Rlang(ft) = γ · φ(ft) − φ(ft−1) be a shaping reward func-
tion, where ft is the action-frequency vector corresponding
to actions a1, . . . , at as defined in Section 3.1, and φ be a
potential function. Then, an optimal policy in M is also an
optimal policy in the MDP M ′ = 〈S,A, T,R+ F, γ〉.

Proof. Define an MDP M̂ = 〈Ŝ, Â, T̂ , R̂, γ〉, such that

• For all s ∈ S and g ∈ Z|A|+ , (s, g) ∈ Ŝ.
(g is the vector of counts of each action.)

• Â = A.
• R̂((s, g), a, (s′, g′)) = R(s, a, s′)1[g, a, g′consistent]

(Consistent refers to whether g′ is obtained from g on
taking action a.)

• T̂ ((s, g), a, (s′, g′)) = T (s, a, s′)1[g, a, g′consistent]

Let Q∗M be the optimal Q-function for the original MDP M .
Define

Q̂M ′((s, g), a) = Q∗M (s, a)

Now,

E(s′,g′)∼T̂ [R̂((s, g), a, (s
′, g′)) + γmax

a′
Q̂M′((s′, g′), a′)]

= E(s′,g′)∼T̂ [R(s, a, s
′)1[f, a, g′consistent] + γmax

a′
Q∗M (s′, a′)]

= Es′∼T [R(s, a, s
′) + γmax

a′
Q∗M (s′, a′)]

= Q∗M (s, a)

= Q̂M′((s, g), a)
(1)

The second step involves expanding out the expectation w.r.t.
T̂ , removing the inconsistent terms, since they get multiplied
by zero, and converting back to expectation w.r.t. T .
Thus, Q̂M ′ satisfies the Bellman optimality equation for M ′.

Next, let π∗M be an optimal policy for M . Then,

π∗M (s) ∈ argmax
a

Q∗M (s, a)

Defining π̂M ′((s, g)) = π∗M (s), we get

πM′((s, g)) = π∗M (s)

∈ argmax
a

Q∗M (s, a)

= argmax
a

Q̂M′((s, f), a)

(2)

Using equations 1 and 2, we can conclude that π̂M ′((s, g)) is
optimal in M ′.

Note that M ′ could admit other optimal policies as well,
which could potentially also depend on g.

Since the states in M ′ contain the history of action counts,
our proposed potential-based shaping reward can now be de-
fined as a function of only the state in M ′. From [Ng et al.,
1999], these shaping rewards do not change the optimal pol-
icy.

C Sensitivity Analysis
To better understand the relation between the LEARN mod-
ule and RL, we added varying amounts of noise to the output
of LEARN. Specifically, Gaussian noise N (0, σ) was added
to the potential function as described in Section 4, where
σ was varied from 0.01 to 1.0. The results for Task 8 are
shown in Figure 6, from which we can see that the language-
based rewards improve over the baseline even with significant
amounts of noise. This suggests that the predictions from the
LEARN module are fairly robust.

D Amazon Mechanical Turk interface
Figure 7 shows the interface used on Amazon Mechanical
Turk for data collection.



Figure 6: Effect of adding noise to the predictions of LEARN: The
solid lines represent the mean successful episodes averaged over all
tasks, and the shaded regions represent 95% confidence intervals.



Figure 7: Sample Mechanical Turk HIT for collecting natural language descriptions.


