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Abstract In a large variety of situations one would like to
have an expressive and accurate model of observed animal or
human behavior. While general purpose mathematical mod-
els may capture successfully properties of observed behav-
ior, it is desirable to root models in biological facts. Because
of ample empirical evidence for reward-based learning in
visuomotor tasks, we use a computational model based on
the assumption that the observed agent is balancing the costs
and benefits of its behavior to meet its goals. This leads to
using the framework of reinforcement learning, which addi-
tionally provides well-established algorithms for learning
of visuomotor task solutions. To quantify the agent’s goals
as rewards implicit in the observed behavior, we propose
to use inverse reinforcement learning, which quantifies the
agent’s goals as rewards implicit in the observed behavior.
Based on the assumption of a modular cognitive architec-
ture, we introduce a modular inverse reinforcement learning
algorithm that estimates the relative reward contributions of
the component tasks in navigation, consisting of following
a path while avoiding obstacles and approaching targets. It
is shown how to recover the component reward weights for
individual tasks and that variability in observed trajectories

C. A. Rothkopf (B)
Frankfurt Institute for Advanced Studies, Goethe University,
60438 Frankfurt, Germany
e-mail: rothkopf@fias.uni-frankfurt.de

C. A. Rothkopf
Institute of Cognitive Science, University Osnabrück,
49076 Osnabrück, Germany

C. A. Rothkopf
Technical University Darmstadt, 64283 Darmstadt, Germany

D. H. Ballard
Department for Computer Science, University of Texas at Austin,
Austin, TX 78712, USA

can be explained succinctly through behavioral goals. It is
demonstrated through simulations that good estimates can be
obtained already with modest amounts of observation data,
which in turn allows the prediction of behavior in novel con-
figurations.

Keywords Inverse reinforcement learning · Visuomotor
behavior · Spatial navigation · Task priorities

1 Introduction

Finding expressive and accurate models of animal and human
behavior is an important goal within cognitive science, neu-
roscience, and artificial intelligence. Models of visuomo-
tor behavior, specifically navigation, have been developed,
which are able to describe well the observed average tra-
jectories that human subjects tend to choose when walking
toward a target while avoiding obstacles (Fajen and Warren
2003; Schöner and Dose 1992). This is achieved by assuming
attractive and repulsive forces exerted by targets and obsta-
cles on the navigating agent leading to a dynamical system
governing the resulting trajectories. While these models are
good mathematical models in that they are able to reproduce
average trajectories, they are not necessarily computational
models as it is difficult to relate the underlying model assump-
tions and parameters to visuomotor parameters and cognitive
quantities. Thus, it is not clear what the assumed attractive
and repulsive force fields in these models are.

Substantial empirical and theoretical work has shown that
visuomotor behavior and visuomotor learning in animals and
humans can be explained through mechanisms of reward-
mediated learning (e.g., Glimcher 2004; Graybiel et al. 1994;
Gold and Shadlen 2007; Daw and Doya 2006; Seymour et al.
2004; Haber 2003). Further evidence has demonstrated that
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such behavior can be described well quantitatively using the
formal framework of reinforcement learning (RL) (Sutton
and Barto 1998). RL constitutes a large family of algorithms
with the goal of solving the optimal control problem through
some form of learning, i.e., the agent learns how to solve a
task based on the experience it accumulates while interacting
with an environment quantifying the costs and benefits of its
actions. The generality of RL has lead to the successful inter-
pretation of a large variety of problems in sequential decision
making and visuomotor behavior (e.g Barto 1995; Daw and
Doya 2006). Furthermore, RL has not only been shown to
describe observed psychophysical measures of behavior but
has also been successful in quantitatively explaining neu-
ronal signals associated with visuomotor learning and behav-
ior (e.g., Montague et al. 1996; Schultz et al. 1997; Daw
et al. 2006; Bromberg-Martin et al. 2010). Specifically, at
the algorithmic level temporal difference learning, a par-
ticular RL method for solving the optimal control problem
has been shown to predict the neuronal activity of certain
midbrain dopaminergic neurons. This success in explaining
visuomotor behavior and learning through RL leads to the
aim, which we pursue here, of finding methodologies for
describing human visuomotor navigation behavior within the
framework of reinforcement learning.

Methods for inferring the costs and benefits underlying
observed behavior under the assumption of the agent acting
according to RL are termed inverse reinforcement learning
(IRL) (Ng and Russell 2000). These methods offer the pos-
sibility to infer the costs and benefits underlying observed
behavior under the assumption that the animal or human is
carrying out actions with the intention of maximizing or
approximately maximizing its measure of success, the so
called reward. In the case of navigation behavior, this means
that utilizing IRL assumes that this behavior is governed by
explicit costs and benefits that the organism is balancing to
achieve its navigational goals. This is an appealing model
as it is plausible to assume that navigation is a fundamental
task both at the phylogenetic as well as ontogenetic levels
and that therefore considerable optimization pressure exists
on finding optimal solutions. As such, IRL is ideally suited
to describe observed behavior in terms of a reward function
expressing the preferences of the organism for different states
of the world, which reflect the inherent costs and benefits of
navigation.

An additional area of interest in building an accurate
model of observed agent behavior through IRL is that of
imitation learning. For an agent to learn a new task by trial
and error can be very time-consuming and even impracti-
cal depending on the task difficulty. To that end researchers
have studied ways of learning by demonstration (Whitehead
and Ballard 1991; Whitehead 1991; Pastor et al. 2009; Bil-
lard and Mataric 2001). Learning by watching other agents’
performance has gained wide acceptance with the discov-

ery of specific motor neurons in monkeys that respond to a
task component regardless of whether they themselves are
performing a task of whether they are watching another per-
form it. Such results in part have motivated imitation learning
whereby an agent observes the demonstrations of another
agent and uses that data to infer sets of motor actions that
would duplicate the behavior. One can think of this venue
as having a demonstrator who produces the behavior and an
observer who attempts to interpret the behavior in terms of
an RL model using IRL.

Work by several authors has expanded on the IRL idea
introduced by Ng and Russell (2000) within the frame-
work of RL. A probabilistic approach was suggested in
Ramachandran and Amir (2007), see also Lopes et al. (2009)
and Neu and Szepesvári (2007), in which the authors pro-
vide an intuitively appealing formulation of the likelihood
of observing state–action pairs from a demonstrator given
a reward function. By sampling from a prior distribution
over reward functions and evaluating the samples’ likelihood
within a Markov chain Monte Carlo framework, Ramachan-
dran and Amir (2007) compute the posterior mean over
reward functions as the best estimate explaining the observed
actions of the agent. A technique related to IRL has also
been applied to human navigation data in Ziebart et al.
(2010). Subsequently, a general Bayesian formulation for
general relationships between rewards and values and gen-
eral action selection functions including possibly suboptimal
ones was developed in Rothkopf and Dimitrakakis (2001)
and a hierarchical Bayesian extension allowing for prin-
cipled modeling in the case of multiple demonstrators or
multiple tasks was developed in Dimitrakakis and Rothkopf
(2011).

Here,1 we start from the formulation given in Ramachan-
dran and Amir (2007) (see also Lopes et al. 2009) in which
it is assumed that state–action pairs corresponding to high
future expected rewards are more likely to be observed com-
pared to less valuable ones. But in the present paper, we
propose methods that are specifically targeted at the chal-
lenges encountered when trying to infer the costs and ben-
efits underlying human navigation behavior. First, usually
only limited data are available from a single subject, limited
by the experimental conditions, but it is essential to esti-
mate the implicit rewards on a trial by trial and subject by
subject basis to avoid only estimating average behavior. Sec-
ondly, substantial additional domain knowledge about the
underlying reward functions in such tasks can be used. It is,
e.g., reasonable to assume that the reward associated with
reaching a target is determined by the position of that tar-
get itself and not by some arbitrary position relative to an
obstacle. Thirdly, full knowledge of the underlying tran-

1 The basis of the model developed in this paper was published previ-
ously as part of a PhD thesis (Rothkopf 2008).
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sition functions governing the agent may be difficult to
obtain so that it may be easier to come up with a family
of value functions as the result of a simulation or a suitable
prior.

A further important assumption, for which evidence is
abundant, is that of the modular organization of behav-
ior. The general idea of a modular organization of cogni-
tive processes has appeared in the literature in many differ-
ent variations (see e.g., Minsky 1988; Barrett and Kurzban
2006; Fodor 1983; Pinker 1999; Brooks 1986). Concrete and
direct evidence for a modular organization of task solutions
in the human brain conform with the modular RL frame-
work used in the present paper comes from experiments by
Gershman et al. (2009). Human subjects made simultane-
ous decisions with their left and right hands and received
separate rewards for each hand movement. Not only was the
choice behavior better described by a modular learning model
that decomposed the values of bimanual movements into
separate values for each component but also blood-oxygen-
level-dependent activity in reward-learning-related areas of
the subjects’ brains reflected specific values of modular RL
models. This suggests that the human brain can use modu-
lar decompositions to solve RL problems allowing for the
factorization used in this paper.

Under the above assumptions, we propose a methodology
for estimating the relative reward weights associated with
the component tasks underlying human navigation such as
obstacle avoidance, path following, and target approach. We
improve on Ramachandran and Amir (2007) in several ways.
First, we show that if one can assume a parametric form of
the reward function by incorporating additional knowledge
about which states are rewarded, it is not required to solve
the RL problem for each sample in the Markov chain as the
reward function’s parameters can be computed directly. The
problem reduces to finding the linear scaling of the expected
total discounted reward associated with each individual task
component, the so called Q-functions. Secondly, as only
parameterizations of Q-functions are used, it is not obliga-
tory to have transition functions for the considered tasks but
one can start from appropriately parametrized Q-functions
or from a prior over Q-functions. On the other hand, if one
has access to the transition functions and knows which states
are rewarded, it is possible to precompute the corresponding
Q-functions. Furthermore, in the particular navigation task
presented, we show that reasonably accurate estimates for
the component reward weights can be obtained from a single
experimental trajectory of only 40 m. Finally, the modular
IRL formulation not only allows estimating rewards in cases
where the composite state space would be intractable for
other IRL methods because of its high dimensionality, but
leads to an appealing interpretation of the estimated reward
weights as priorities within a modular cognitive architec-
ture.

2 Background

The problem setting is that of a Markov decision processes
(MDP) (Puterman 1994). An individual MDP consists of a 4-
tuple (S,A, T ,R) with S being the set of possible states, A
the set of possible actions, T the transition model describing
the probabilities P(st+1|st , at ) of reaching a state st+1 when
being in state st at time t and executing action at , and R
is a reward model that describes the expected value of the
reward rt , which is distributed according to P(rt |st , at ) and
is associated with the transition from state st to some state
st+1 when executing action at .

In RL, the dynamics of the environment T and the reward
function R may not be known in advance. One central goal in
classical RL is to assign a value V π (s) to each state, which
represents the expected total discounted reward obtainable
when starting from the particular state s and following the
policy π thereafter:

V π (s) = Eπ

( ∞∑

t=0

γ t rt

)

(1)

Alternatively, the values can be parametrized by state and
action pairs, leading to the so called “Q” values Qπ (s, a). RL
attempts finding a policy π that maps from the set of states S
to actions A so as to maximize the expected total discounted
future rewards through some form of learning (Sutton and
Barto 1998), where Q∗ denotes the Q-value associated with
the optimal policy π∗, and the optimal value of a state s can
be written as V ∗(s) = maxa Q∗(s, a). The optimal Q-values
can be expressed through the recursive Bellman optimality
equation:

Q∗(s, a) =
∑

r

r P(r |s, a) + γ
∑

s′∈S

P(s′|s, a)V ∗(s′) (2)

Temporal difference learning (Sutton 1988) is one spe-
cific algorithm for computing the optimal values through
continuous experience with the environment and uses the
error between the current estimated values of states and the
observed reward to drive learning. Evidence for temporal dif-
ference learning in animals comes from a multitude of stud-
ies (e.g., Schultz et al. 1997). In a related Q-learning form,
the value of state–action pairs is adjusted by this temporal
difference error δQ between current Q-value estimates and
observed rewards using a learning rate α:

Q(st , at )← Q(st , at ) + αδQ (3)

Evidence for the representation of action values in the brain
has also been found (e.g., Samejima et al. 2005). One specific
classic RL algorithm for updating the Q-values according to
the temporal difference error is the SARSA algorithm (Rum-
mery and Niranjan 1994), an on-policy temporal difference
learning rule, i.e., one in which the updates of the state and
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action values reflect the current policy derived from these
value estimates. The update in this case is:

δQ = rt + γ Q(st+1, at+1)− Q(st , at ). (4)

2.1 Modular RL

Early work in RL noted that the problems associated with
learning task solutions in high dimensional state spaces, i.e.,
spaces for which the number of states increases exponentially
in the number of dimensions, could be simplified by taking
the statistical structure present in the respective domain into
account so as to somehow factor the problem. This idea has
been proposed by several authors early on and has reappeared
in many different settings (see e.g., Dayan and Hinton 1992;
Kaelbling 1993; Humphrys 1996; Singh and Cohn 1998).
More recent approaches (Chang et al. 2004; Sprague and
Ballard 2003; Russell and Zimdars 2003) use decompositions
of the transition function T and reward functionR to simplify
learning tasks. The idea is that separate representations for the
states of individual tasks are available and that actions by the
agent influence state transitions and rewards individually and
independently for the separate tasks. This allows evaluating
the value of individual state–action pairs for the overall task
by assessing the value of the module components separately.

For the most general composite state spaces, the relation-
ship between the optimal value functions for each of the indi-
vidual component tasks and the global task in which multiple
objectives are pursued depend on the overall structure of the
problem and can be very complex. But specifically in the con-
sidered visuomotor tasks such as navigation, the assumptions
of independence hold. Moving with respect to any obstacle
and moving with respect to a target are in general indepen-
dent of each other, i.e., the transition functions governing
these tasks can be factored. Similarly, rewards associated
with obstacles are independent of rewards associated with
targets. We use a formulation of modular RL that is con-
sistent with previous work (e.g., Sprague and Ballard 2003;
Russell and Zimdars 2003; Rothkopf and Ballard 2010). A
module can be defined as an MDP, i.e., the n-th module is
given by:

M (n) = {S(n),A, T (n),R(n)} (5)

where the superscripts reflect that the information is referred
to the particular MDP. As these modules are all embedded
within a single agent, the action space is unitary and shared
among all modules.

The expression in Eq. 5 incorporates the assumption that
the state transitions and reward functions are independent in
the respective modules, which can be directly expressed as:

P(st+1|st , at ) =
N∏

n=1

P(s(n)
t+1|s

(n)
t , at ) (6)

P(rt |st , at ) =
N∏

n=1

P(r (n)
t |s(n)

t , at ) (7)

While this may seem a rather restrictive set of assumptions
for general tasks, note again that this holds for the navigation
tasks considered in this paper and evidence that the human
brain indeed uses such factored representations has been pro-
vided (Gershman et al. 2009).

Given the computations of optimal Q-values for the indi-
vidual task components, a single action needs to be selected
by the agent. As in previous literature, we consider the action
selection to be based on the aggregate value estimate:

Q(st , at ) =
N∑

n=1

Q(n)(s(n)
t , a(n)

t ) (8)

In general, one may consider some form of action selection
in order to mediate the competition between actions pro-
posed by individual modules. In accordance to both theoret-
ical work on RL as well as empirical results in animal and
human sequential behavior, we consider here the probabilis-
tic softmax action selection. This formulation includes an
inverse temperature parameter, which expresses the degree
of randomness in the action selection. Once the action a has
been selected, it is used for all modules. Note that the prob-
lem of learning in this modular setting has been considered
previously (Sprague and Ballard 2003; Russell and Zimdars
2003). The basic result is that if an on-policy learning method
such as SARSA is used, as described in Eq. 4, the locally
learned Q-functions can be combined to give the globally
optimal policy.

3 Modular IRL

Ng and Russell (2000) formulate the problem of inverse rein-
forcement learning as inferring the reward function R an
agent implicitly maximizing by only observing its behav-
ior and knowing the transition function governing the state
dynamics. This corresponds to assuming that the transition
function T of the MDP is given and that there are T obser-
vations of state–action pairs (st , at ) at each moment in time
t , which together constitute the observed data D. Implicitly,
this therefore also assumes that the specific representation
of the state space and action spaces is know, which we also
assume in the present study. Probabilistic formulations of the
IRL problem were subsequently provided (Ramachandran
and Amir 2007; Lopes et al. 2009). Following these authors,
we model the likelihood of observing a single state–action
pair to be given by:
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P(st , at |Q∗, η) = eηQ∗(st ,at )

∑
b eηQ∗(st ,b)

(9)

This captures the intuition that the higher the Q-value of a
state–action pair, the more likely you are to observe it. In this
context, η expresses the degree of confidence with which the
optimal Q-values are actually selected by the observed agent.
This expression can also be interpreted as a softmax action
selection together with a uniform distribution over state vis-
itations. Furthermore, we assume the observed state–action
pairs to be conditionally independent so that the likelihood L
of the parameters given the entire observation D consisting
of T individual state–action pairs can be written as:

L = P(D|Q∗, η)

= P((s1, a1), . . . , (sT , aT ))|Q∗, η)

=
T∏

t=1

eηQ∗(st ,at )

∑
b eηQ∗(st ,b)

(10)

In the case of the modular RL formulation, the Q-functions
of the composite tasks need to be summed to find the global
Q-values. Substituting Eq. 8 into Eq. 10 gives:

P(D|Q∗(n), η) =
T∏

t=1

eη
∑N

n=1 Q∗(n)(s(n)
t ,at )

∑
b eη

∑N
n=1 Q∗(n)(s(n)

t ,b)

=
T∏

t=1

N∏

n=1

eηQ∗(n)(s(n)
t ,at )

∑
b eηQ∗(n)(s(n)

t ,b)
(11)

where the second line is obtained by expanding all terms in
the exponentials and collecting terms associated with individ-
ual actions b for all individual modules n in the denominator.

As mentioned before, the problem we want to address is
that of estimating how much individual component tasks con-
tribute to the observed behavior, i.e., the relative rewards in
situations in which the agent follows multiple objectives. We
furthermore may only have very limited amounts of obser-
vation data. The solution we propose here is to use addi-
tional prior knowledge about the Q-functions, underlying the
observed behavior. This utilizes the result by Neumann et al.
(1947) that a positive linear transform of reward functions
leads to a rescaling of the corresponding Q-function by the
same scalar, so that the Q∗(n) can be written as scaled versions
of the Q-function Q∗(n)

1 , which represents the Q-function for
a total reward of 1:

Q∗(n)(s(n), a) = w(n)Q∗(n)
1 (s(n), a) (12)

This has the advantage that now we are neither search-
ing for reward functions nor searching for Q-functions
Q∗(n)(s(n), a) over state–action pairs but only for coefficients
w(n), as the normalized Q-functions Q∗(n)

1 (s(n), a) can be

precomputed. Importantly, this formulation does not restrict
the origin of the Q-functions, i.e., they may be obtained by
solving a known MDP, they may be sampled from a suit-
able prior over Q-functions, or they may simply be obtained
by simulation. By substituting Eq. 12 into Eq. 8, we obtain
an expression for the joint Q-values with the corresponding
weights:

Q(st , at ) =
N∑

n=1

w(n)Q∗(n)
1 (s(n)

t , at ) (13)

Note, however, that we now require the sum of the weights
w(n) to sum to one

∑N
n=1 w(n) = 1 because increasing the

weights for individual modules would lead to an increase
in the likelihood of observing corresponding state–action
pairs without bound. This alteration of the original problem
(Ramachandran and Amir 2007) is significant as it allows
estimating the modular reward contributions without suffer-
ing from the indeterminacy in the general formulation of the
IRL problem (Ng and Russell 2000; Ramachandran and Amir
2007). The factors w(n) now quantify the relative contribu-
tions of the component task.

In the limit, in which it is known where in the respective
state spaces reward is available, there will be one basis-Q-
function for each component RL module:

L = P(D|Q∗(n)
1 , w(n), η)

= P((s1, a1), . . . , (sT , aT ))|Q∗(n)
1 , w(n), η)

=
T∏

t=1

N∏

n=1

eηw(n) Q∗(n)
1 (s(n)

t ,at )

∑
b eηw(n) Q∗(n)

1 (s(n)
t ,b)

(14)

subject to:

N∑

n=1

w(n) = 1 (15)

where we used the notation Q(n)
1 to denote the basis-Q-

function for the component module n obtained with a reward
of 1 and w(n) is the factor scaling Q-function n.

Inference about the latent Q-function weights w(n) that
best describes the data D obtained from the demonstrator
can then proceed by adopting the original policy-walk algo-
rithm (Ramachandran and Amir 2007). The main difference
is that now one requires a suitably chosen prior distribu-
tion over task weights w(n) and not over reward functions
T . But crucially, the modular framework not only renders
the estimation more tractable computationally when using
the policy-walk algorithm but also allows for the estima-
tion of the unknown scaling factors conveniently by using
maximum likelihood estimation as will be shown subse-
quently.

First, we adapt policy-walk (Ramachandran and Amir
2007) by sampling along a grid in weight space andevaluating
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the corresponding posterior. The costly computation in the
original grid-walk algorithm is to do policy iteration at each
step in the Markov chain to obtain a policy from a new
reward vector. Although computation is saved in the orig-
inal algorithm by reutilizing the previously calculated pol-
icy in the next iteration of the Markov chain, this is still
costly. We avoid this by rescaling the precomputed poli-
cies.

Utilizing additional knowledge about the composition of
the tasks, it is desirable to express this in form of a prior
over reward weights w(n). This allows computing a posterior
over reward functions R, or more precisely given the above
formulation, a posterior over the reward weights w(n). Using
Bayes theorem:

P(w(n)|D, Q∗(n)
1 , η) ∝

P(D|w(n), Q∗(n)
1 , η)P(w(n), Q∗(n)

1 , η) (16)

For the above formulation using individual weights for basis-
Q-functions as given in Eq. 14 such additional knowledge
could be that we know a priori that a particular component
task has a much higher reward associated with it, say because
it is known what the main task of the demonstrator was.
Accordingly, a prior over reward functions is now a prior
over individual weights w(n). A suitable prior in this case
is the Dirichlet distribution that can assign different prior
probabilities to individual sets of weights which sum to one
and represent the individual task weights:

P(w(1), . . . , w(N−1);α(1), . . . ,α(N ))

=
∏N

i=1 &(αi )

&(
∑N

i=1 αi )

N∏

i=1

w(i)αi−1 (17)

A noninformative prior can be implemented by setting all the
αi to 0.5 while, e.g., the prior belief that one particular task
has a higher associated reward than the other tasks can be
expressed by α1 > αi for all i (= 1.

Algorithm 1 Gridwalk: MCMC on the grid of Q-value
weights w(n).
1: Pick initial random weights w(n) with

∑n
i=1 w(n) = 1 from prior

2: Compute Q∗ = w(n) Q∗(n)
1 (s, a, η)

3: repeat
4: Pick random weights w̃(n) on grid of size δ with

∑n
i=1 w̃(n) = 1

5: Compute Q̃∗ = w̃(n) Q∗(n)
1 (s, a, η)

6: Compute α = P(Q̃∗)
P(Q∗)

7: if α ≥ 1 then
8: w(n) ← w̃(n)

9: else
10: w(n) ← w̃(n) with probability α
11: end if
12: until criterion

4 ML estimates for regularized modular IRL

While the above adaptation of the policy-walk algorithm to
searching in the space of task weights has clear computational
advantages, it is possible to directly obtain a maximum like-
lihood solution, which will be developed in the following.

Maximum likelihood obtains point estimates for the fac-
tors w(n) of each basis-Q-function by maximizing the likeli-
hood in Eq. 14. Note that because the Q-values for a reward
of 1 can be precomputed and the data D consists of state–
action pairs, the only unknowns in Eq. 14 are the w(n). The
maximum likelihood estimate of the reward function R can
be obtained as follows: We maximize the logarithm of the
likelihood function Eq. 14 by setting its derivative to 0 and
incorporate the constraint Eq. 15 that the individual factors
w(n) sum to one using a Lagrange multiplier. Thus, the max-
imization problem to solve is:

max
w(m)

T∑

t=1

N∑

n=1

ηw(n)Q∗(n)
1 (s(n)

t , at )

−log

(
∑

b

eηw(n) Q∗(n)
1 (s(n)

t ,b)

)

+ λ

(
N∑

n=1

w(n) − 1

)

(18)

We proceed by calculating the gradient of the log-likelihood
with respect to some weight w(m):

∂logL
∂w(m)

=
T∑

t=1

ηQ∗(m)
1 (s(m)

t , at )

−η

∑
b Q∗(m)

1 (s(m)
t , b)eηw(m) Q∗(m)

1 (s(m)
t ,b)

∑
b eηw(m) Q∗(m)

1 (s(m)
t ,b)

+ λ

and with respect to λ:

∂logL
∂λ

=
N∑

n=1

w(n) − 1 (19)

We can now proceed using numerical optimization to find the
maximum of the log-likelihood. We note that one can change
the objective to take into account that the critical points may
occur at saddle points instead of at local maxima of the log-
likelihood. This is accomplished by minimizing the squared
magnitude of the gradient, so that the function to minimize
is:

h(w(1), . . . , w(N ), λ) =
(

T∑

t=1

ηQ∗(m)
1 (s(m)

t , at )

−η

∑
b Q∗(m)

1 (s(m)
t , b)eηw(m) Q∗(m)

1 (s(m)
t ,b)

∑
b eηw(m) Q∗(m)

1 (s(m)
t ,b)

+ λ




2

+
(

N∑

n=1

w(n) − 1

)2

(20)
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Finally, it may be advantageous to incorporate a sparsi-
fying prior on the weights w(n) especially in cases in which
the number of component tasks may be large. This can be
achieved by including an )1 regularization term. This leads
to the following maximization problem for the regularized
modular IRL:

max
w(m)

T∑

t=1

N∑

n=1

ηw(n)Q∗(n)
1 (s(n)

t , at )

−log

(
∑

b

eηw(n) Q∗(n)
1 (s(n)

t ,b)

)

+ λ1

(
N∑

n=1

w(n) − 1

)

+λ2

(
N∑

n=1

||w(n)||1
)

(21)

While many different approaches to )1 regularization have
been proposed (see, e.g., Schmidt et al. 2007), we use a
smooth approximation to the non-differentiable )1 norm pro-
posed in (Schmidt et al. 2007). Following Lee and Mangasar-
ian (2001), we define the (x)+ function as:

(x)+ = x + 1
α

log(1 + e−αx ) (22)

which derives from the integral of the sigmoid function. The
parameter α is strictly positive and in practice sufficiently
large to render the approximation appropriate. This allows
approximating the absolute value function using the sum of
the integral of two sigmoid functions by writing |x | ≈ (x)++
(−x)+. The first derivative necessary in the )1 regularization
can be approximated by differentiating the (x)+ function and
defining the derivative as:

(x)
′
+ = (1 + e−αx )−1 (23)

leading to the smooth approximation d
dx |x | ≈ (x)

′
+−(−x)

′
+,

which is the sigmoid function tanh(αx/2). Similarly as
before, this objective can be maximized by various numerical

methods including gradient descent on the squared magni-
tude of the gradient:

h(w(1), . . . , w(N ), λ1, λ2) =
(

T∑

t=1

ηQ∗(m)
1 (s(m)

t , at )

−η

∑
b Q∗(n)

1 (s(n)
t , b)eηw(n) Q∗(n)

1 (s(n)
t ,b)

∑
b eηw(n) Q∗(n)

1 (s(n)
t ,b)

+λ1 + λ2
(
(w(m))

′
+
))2

+
(

N∑

n=1

w(n) − 1

)2

+
(

N∑

n=1

(w(n))+

)2

(24)

5 Human avatar simulation methodology

We tested the algorithm on navigation tasks inspired by the
work by Fajen and Warren (2003) and Schöner and Dose
(1992) and a specific setting described in Sprague and Bal-
lard (2007). An agent has to walk down a sidewalk and attend
to three tasks: following the path of the walkway, approach-
ing targets, and avoiding obstacles as shown in Fig. 1. In all
of the following simulations, we used regularized maximum
likelihood estimation of the reward weights with the objec-
tive function specified in Eq. 24. The parameter governing the
influence of the regularization term was determined empiri-
cally by selecting the value giving the smallest total deviation
in the reward estimates across all tested reward settings.

The representation of the state space is punctate and sim-
ilar as in previous work (Sprague and Ballard 2007): There
is only one state that corresponds to the delivery of a reward,
i.e., the distance d of the human to the center of a cylinder is
d < 0.2m. The other distances are discretized according to:

+|Sd |(1− e−0.5∗d∗log(2)),

Fig. 1 Avatar simulation
environment. a A frame from
the human embedded vision
system simulation. The insets
show the use of vision to guide
the humanoid through a
complex environment. The
lower inset shows the particular
visual routine that is running at
any instant. This instant shows
the detection of target objects.
The upper inset shows the visual
field in a head-centered viewing
frame. b Corresponding state
space parameterization of the
modules for target approach,
obstacle avoidance, and
walkway following
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where |Sd | is the dimensionality of the distance state space.
See Fig. 3 for a depiction of this discretization of the state
space.

Heading angles are −50 ≤ θ ≤ 50 degrees, with linear
spacing. The parametrization used for the distance to the
walkway is:

+|Sd |(0.5 + 0.5(1− (2−0.5∗|ρ)|)))sign(ρ)),

where ρ is the signed distance from the center line of the
walkway. Given these representations, data can be collected
for a given walk on the sidewalk for each of the three mod-
ules. For the current study, this results in a total of 121 states
for each of the three component tasks giving a total of 363
states. Note that the full joint state space would give a total
of more than 1.7 million states. Accordingly, the Q-functions
have 605 state–action pairs, resulting in a total of 1815 state–
action pairs for the four component tasks, compared with over
8 million state–action pairs for the joint Q-function. Accord-
ingly, we are not aware of a current IRL method capable of
inferring the full joint reward function.

First, it is necessary to determine how expressive this
model is, i.e., what range of different behaviors can be
obtained. Different values of reward for the modules lead to
radically different behaviors. For example, Fig. 2 shows the
different avatar trajectories for three different reward sets.
In the topmost traces, the avatar is rewarded for all three
component tasks, such that obstacles are avoided, targets are
approached, and the path is maintained on the walkway. In
the second case, the avatar is only rewarded for approach-
ing targets, resulting in trajectories that leave the walkway
and also walk through obstacles. Finally, in the third case,

the avatar is only rewarded for avoiding obstacles, and he
accordingly wanders off to the corners of the defined area.
Note that although the trajectories in this latter case show a
high degree of variability, they are all obtained by a single set
of task weights. This demonstrates the importance of a com-
putational model of visuomotor behavior that does not aver-
age over individual trajectories but accommodates a proba-
bilistic relationship between behavioral goals and observed
behavior.

6 Experimental results

The first and essential question to ask is: how well can the
algorithm recover known rewards? To answer this question,
we choose reward sets and have the avatar learn MDP mod-
ules. The important assumption here is that the learning
avatar is allowed to have the state space of the avatar gen-
erating the data. This assumption may seem quite restric-
tive, but it is the common assumption in IRL (including Ng
and Russell 2000; Ramachandran and Amir 2007; Lopes
et al. 2009). Furthermore, for basic ambulatory behaviors,
the agents in question operate under very similar constraints
owing to common physical environments and movement sys-
tems. The experimental protocol for each individual episode
has multiple steps:

1. Chosen rewards are used by the avatar to learn module
MDP policies using Eqs. 2 and 3.

2. Runs using the learned policy are made to generate tra-
jectories for the data sequences.

Fig. 2 Comparison of
trajectories of the agent with
different sets of task weights.
a Target approach, obstacle
avoidance, and walkway
navigation are weighted as
(0.5, 0.3, 0.2). b With only
incentive to pick up targets, the
avatar wonders off the walkway
and hits obstacles. When targets
are valuable, a large number of
targets (pink) are collected.
c With reward only being given
for avoiding obstacles, there is
neither an incentive to stay on
the walkway nor to pick up
targets (color figure online)
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3. The IRL algorithm uses the data sequences to estimated
the Q-functions’ parameters solving the minimization
problems of either Eq. 20 or 24.

4. The avatar uses the estimated rewards, which may not be
exactly the same, to learn a new policy.

5. The avatar is given the same initial points and uses the
computed policy to generate new trajectories that can be
compared to the originals.

First, Q-functions are learned by solving the individual
component task for a reward of 1, i.e., the Q-functions are
precomputed solving the corresponding MDP and assigning
a reward value of 1 to all rewarded states. Figure 3a shows
the value functions corresponding to these Q-functions for
the three modules’ state spaces. The next step is to gener-
ate trajectories through different courses using this policy to
provide data for testing the IRL algorithm. A new layout is
sampled and the avatar is run for 300 time steps on this layout
before a new layout is sampled. The state–action pairs con-

stitute the data D that is used in the IRL algorithm. Figure 3b
shows the recovered values for each of the component task,
i.e., the value functions multiplied by the respective estimated
weight w(n). Finally, Fig. 3c shows that the log-likelihood of
the parameters given the data is well behaved and convex
for the given example so that the global maximum is easily
computable.

To get a more complete picture of the accuracy of the
recovered reward weights we ran one hundred simulations
for each possible reward weight vector on a reward grid of
size 0.1 and quantified the estimation error by computing
the root mean square (RMS) error of the estimated reward
weights. The results are shown in Fig. 4a. Note that the two
axes show the weights for the obstacle avoidance and target
tasks, and the corresponding weight for walkway navigation
can be obtained by computing the weight value that brings the
sum of all weights to one. Therefore, the plot is on a simplex
over the task weights. As can be seen, the accuracy of the
estimation is quite good with an RMS error not exceeding

A

B

C

Fig. 3 a The value functions obtained for a reward of one unit. b The
scaled value functions as recovered by the IRL algorithm, where the
weights for the tasks are represented as (target approach, obstacle avoid-

ance, walkway following) w = (0.5, 0.3, 0.2). c Log-likelihood for the
weights given the demonstrator’s data
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0.3 and being around 0.1 reward units for the majority of
reward weights. The improvement of using the regularized
problem formulation is significant as can be seen in Fig. 4b.
The RMS error of the estimated reward weights is below 0.15
for almost all tested reward weights, despite the relatively
modest amount of observed data.

Similarly, it is important to explore the estimates’ sensi-
tivity to the number of active behaviors. Ideally one would
like to have a match between the number of active behaviors
used by the trainer and the number assumed by the learner.
But what are the consequences of a mismatch? Figure 4
also shows results relevant for answering this question, as
it shows the cases in which the reward values for the obsta-
cle avoidance or target approach are set to 0, i.e., cases
in which the demonstrator only follows two of the three
tasks. The plot demonstrates that again the RMS error is
smaller than 0.08 and that the estimated reward weights are
close to the true ones, also in the case of modules’ rewards
being 0.

Given that the reward functions are well estimated, one
may now explore the extent to which the generated trajec-
tories match. Figure 5a shows the original trajectory used
to generate the data overlain with ten trajectory generated
by starting from the same initial condition and using Q-
functions scaled with the estimated weights. For compari-
son, we also show trajectories obtained by perturbing the
true reward weights with uniform noise corresponding to 5,
10, and 20 % changes in the reward values.

To gain further insight in the variability of the trajecto-
ries, we again ran 100 simulations per reward weight vector

obtained by considering all possible reward weights on a grid
of step size 0.1. We first computed the RMS errors between
the demonstrator trajectory and 100 trajectories sampled with
the exact same weights. The results are shown in Fig. 6a.
This was compared to the RMS error in both spatial dimen-
sions between the demonstrator’s trajectory and the trajec-
tory obtained using the estimated weights. The correspond-
ing plot is shown in Fig. 6b. The results show that large
variability is present in the trajectories obtained from the
simulated avatar especially under conditions in which the
overall navigation behavior is dominated by obstacle avoid-
ance. This agrees well with the observation made in Fig. 2c.
Note that the same data on which Fig. 6b is based were used
to estimate the reward weights in Fig. 4b. This shows that
even if the variability in the trajectories may be large, this
does not necessarily mean that the estimated reward weights
are highly variable, capturing the intuition that variability in
the trajectories can nevertheless be reflecting a clear behav-
ioral goal. Accordingly, the differences between the observed
trajectories and the trajectories carried out when utilizing
the estimated reward weights show the largest deviation for
behavior emphasizing obstacle avoidance. The total devia-
tion of the trajectories for the vast majority of reward weights
by contrast is small, as confirmed by the observations in
Fig. 5.

When learning the rewards from data, one obvious point is
that there must be sufficient data to produce accurate reward
estimates. However the number of data points required can
vary due to the different sensitivities to distal rewards in dif-
ferent parts of the data space. To elucidate this point, we

A B

Fig. 4 RMS error of the estimated weight vector across possible
reward weights. The weights were varied in steps of 0.1 reward units.
The RMS error was computed on the basis of 100 trials with different

object arrangements on the walkway for each weight value. a Results for
maximum likelihood estimation using Eq. 20. b Results for regularized
maximum likelihood estimation using Eq. 24 with λ2 = 10−4
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Fig. 5 Comparing trajectories
generated from policies using
recovered rewards with original
trajectories. a Original trajectory
for w = (0.5, 0.3, 0.2) and ten
simulated trajectories obtained
using the estimated reward
weights. b trajectories obtained
by perturbing the original
reward weights
w = (0.5, 0.3, 0.2) with
different amounts of uniform
noise. From top to bottom: 5,
10, and 20 % noise added.
c Original trajectory and ten
sample trajectories using
estimated reward weights for
w = (0.55, 0, 0.45). d Original
trajectory and ten sample
trajectories using estimated
reward weights for
w = (0, 0.55, 0.45)

A B

Fig. 6 Error in the trajectories. a Mean squared deviation between trajectories obtained with the same reward weights. b Mean squared deviation
between the demonstrator’s trajectory and trajectories obtained from the estimated weights

explore the sensitivity of the reward estimates to the size of
the data by varying the total number of state–action pairs
in the simulation together with different starting points and
object arrangements. Thus, we simulated the avatar 100 times
with different object arrangements, initial conditions, and
reward weights. We then unitized different amounts of the
observed data to estimate the reward weights. Using this data,

we then calculate the mean and standard deviation of the
learned reward values. Figure 7a shows that the estimation
error for the reward weights on average are within an RMS
error of 0.02 given only a single observed trajectory of 300
state–actions pairs.

The core property of the parameterization that emerges
from our Q-function set is that the different reward values
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Fig. 7 Accuracy and precision
of estimated reward weights.
a Effect of the amount of data on
the values of recovered rewards.
Mean squared error of reward
weights for different numbers of
state–action samples, where a
single trajectory of length 40 m
along the walkway consists of
300 samples. b Testing the
robustness to state estimation
errors. Root mean squared error
in the estimated reward vectors
for different probabilities α of
changing a state estimate
weighted by the respective
compression of the state spaces.
c RMS error in weights
estimates as a function of the
total number of targets along the
walkway. d RMS error in
weights estimates as a function
of the total number of obstacles
along the walkway

A B

C D

for each behavior are just scaled version of each other. In
effect, the assumption is that the joint reward functions and
transition functions can be factorized. In the current navi-
gation tasks, these assumptions are fulfilled. But the ques-
tion arises, how many different states in each module’s state
space need to be visited in the data available for estimation
to obtain accurate weight estimates? We ran the simulations
with 10 to 100 target objects or obstacles and estimated the
Q-functions weights for 100 examples per number of objects.
Fig. 7c, d compares the RMS error in the reward estimates
given different numbers of obstacles or targets. These figures
demonstrate that the algorithm is very robust even when the
number of interactions with the respective objects are small.
Only when the number of objects is smaller than about 20,
the avatar visits only a small subset of states in the respective
state space and the estimates are significantly off.

The final issue we tackle is that of noise. Up to this point,
the state values have all been assumed to be accurate to the
precision used by the Q-tables, but in any practical system,
there will be measurement errors so there remains a ques-
tion as to their significance. While it is possible to incorpo-
rate a specific measurement noise model, this is beyond the

scope of this paper. Instead, here, we establish empirically
the robustness of the introduced algorithm. One reason that
noise might be unimportant is that the basic sensory system
that we assume logarithmically compresses the space around
the avatar. This has the consequence of generating accurate
measurements for near distances and headings to objects and
less accurate measurements for those measurements to dis-
tant objects. The overall effect of these uncertainties will in
the end be that the estimated state of the observer is not the
correct state of the demonstrator. To that end, we model the
noise in the observer’s system by perturbing the current state
of the observed agent by randomly changing individual state–
action pairs to adjacent values with a uniform probability α

normalized by the inverse area of the corresponding state.
Thus, the probability of obtaining a perturbed state instead
of the correct state variable is larger for states with a large
surface area, i.e., states that are far away from the center of the
obstacles or targets. This means that if α = 1, the probability
of changing a state variable for the states most distant to the
targets or obstacles is 1, while the probability of changing
the states closest to the target are 0.09, corresponding to the
respective ratio of state space element areas. Fig. 7 shows the
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results of these simulations by plotting the RMS error across
all weights for each trajectory and confirms the robustness of
the presented algorithm to state estimation errors. Because
of the logarithmic state compression and the shape of the Q-
functions as shown in Fig. 3, even severely perturbed state
estimates still lead to small errors in the estimated weights.

7 Discussion and conclusions

Expressive and accurate models of agent behavior are
required in many scientific fields, ranging from the need
to quantify agent behavior to learning from other agents’
behavior. While mathematical models of human navigation
behavior are available, which describe the average trajecto-
ries across subjects and conditions well (Schöner and Dose
1992; Fajen and Warren 2003), these models are not framed
in cognitive or behavioral quantities. As substantial research
has demonstrated that visuomotor learning and behavior can
be understood as an optimization process in the framework
of reinforcement learning, it is desirable to develop meth-
ods connecting these approaches. This would also establish
a connection to data in biological agents that has revealed
that neuronal activity is correlated with several quantities in
the above RL models.

In the present paper, we developed a methodology to
estimate the relative reward contributions of multiple basic
visuomotor tasks to observed navigation behavior. We intro-
duced a modular IRL algorithm based on a parameteriza-
tions of Q-functions that reduces the IRL problem to the
estimation of linear weights. This allows estimating the
respective contributions of several goals such as obstacle
avoidance, target approach, and path following in visuo-
motor behavior. The modular formulation uses additional
assumptions on the shape of the reward functions to con-
strain the problem and makes inference computationally
tractable even with small amounts of data. Specifically,
instead of estimating the reward function for the full joint
state space, we infer the relative weighting of the component
Q-functions, which can be obtained by assuming that the
shape of the reward function and the environment dynam-
ics are known. For example, in the considered navigation
task, we assume that the reward associated with obstacle
avoidance is obtained when not intersecting with the obsta-
cle, the reward associated with target approach is obtained
when intersecting with the target, and the reward associated
with walkway following is obtained when the agent is on
the walkway. Together with known dynamics, this deter-
mines the shape of the Q-functions. Implicitly, as in other
IRL methods, we assume that we know the state and action
spaces required for the representations of the Q-functions.
Based on these assumptions, we derived methods for doing
maximum likelihood estimation of the respective task con-

tributions. Finally, we derive a regularized formulation that
uses an )1 norm to obtain sparse reward component weights,
which favors only a small number of weights to be different
from zero.

The simulations demonstrate that reward functions used
by the agent that mimic human’s performance on the task of
traversing a walkway with multiple independent goals can
be well recovered with modest amounts of observation data.
An important result of the empirical evaluations is that the
inherently probabilistic formulation of the walking task leads
to variability in the trajectories, depending on the weight-
ing of the component tasks. Despite this large variability of
the trajectories, the corresponding weights can be recovered
well. This means that models describing agent navigation
behavior on the basis of average trajectories (Schöner and
Dose 1992; Fajen and Warren 2003) may not capture the
common behavioral goals underlying the agent’s trajectories.
Thus, variability in trajectories may reflect a very succinct
task, which cannot be captured by modeling the trajectory
themselves without reference to latent cause of the observed
behavior, the composite behavioral goal.

The presented methodology has further appeal because it
is based on the assumption of a modular cognitive architec-
ture. Direct recent empirical support for such a modularity in
reward-mediated visuomotor behavior gives further credence
to this approach. Importantly, the computational framework
naturally allows interpretation of the observed navigational
behavior as the consequence of balancing costs and benefits
in visuomotor tasks and can readily accommodate algorithms
for the learning of these task solutions. We therefore hope
that this methodology has broad appeal in cognitive science
and neuroscience, where it can quantify behavior in terms
of underlying costs and benefits with respect to behavioral
goals.
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