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Abstract

Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus
pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including
lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model
of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on
the LGN-V1 circuit and find that after training on natural images the model exhibits the brain’s LGN-V1 connectivity
structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround
cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling
the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of
feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease
their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of
influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general
coding strategy in the brain.
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Introduction

Cells in the LGN exhibit striking receptive field dynamics.

Besides their well-known center-surround organization, LGN

receptive fields are characterized by bright-excitatory (dark-

excitatory) regions that become dark-excitatory (bright-excitatory)

over time intervals that may be as short as 20 milliseconds [1–3].

Biphasic responses have been described not only in the LGN, but

seem to be characteristic of neurons in many visual areas. For

example, biphasic responses have been observed in primary visual

cortex [3,4], and also in MT, where the optimal stimulation

changes from one direction of motion to a 180u reversal in motion

preference with time [5,6]. What computational reason would

neurons have to change their preferred stimulus over such short

periods of time? Here, we argue that biphasic dynamics naturally

follow from neural mechanisms of predictive coding.

A longstanding approach to understanding early-level process-

ing has been to consider it in terms of efficient coding of natural

images [7–10]. Natural images are typically highly correlated in

both space and time, and a neural code that ignores these

correlations would be very inefficient. It has therefore been

postulated that early-level visual processing removes correlations

in the input, resulting in a more sparse and statistically

independent output.

Building along these lines, it has been suggested that early visual

areas remove correlations by removing the predictable, and hence

redundant, components in their input. For example, the center-

surround structure of LGN receptive fields can be explained using

predictive coding mechanisms [11,12]. Because a center pixel

intensity value in natural images can often be predicted from its

surrounding values, its value can be replaced with the difference

between the center value and a prediction from a linear weighted

sum of its surrounding values. This decorrelates the neuronal input

and removes redundancy in the outputs [7,13].

Predictive coding may have further value as a general principle

that works through interactions between all lower-order and

higher-order visual areas [14–16]. Low-order and high-order

visual areas are reciprocally connected [17], and responses of

neurons in these areas are often correlated due to their

overlapping receptive fields. To reduce redundancy and decorr-

elate the visual responses, low-level visual input could therefore be

replaced by the difference between the input and a prediction from

higher-level structures. Put another way, higher-level receptive

fields could represent the predictions of the visual world, while

lower-level areas could signal the error between predictions and

the actual visual input [14–16,18,19]. An advantage of feedback

interactions over local, within-area computations is that higher-

level cortical receptive fields are larger and encode more complex

stimuli, therefore allowing for complex predictions about large

portions of the visual field. This hypothesis has been shown to

account for steady state extra-classical receptive field effects such

as end-stopping [14].
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Here, we show by simulation that biphasic responses may result

from similar interactions with higher-order areas, which remove

redundancy by removing the predictable components in their

input. We focus on the LGN and V1, for which the feedforward-

feedback connectivity structure and bottom-up inputs are fairly

well-known. Although responses of LGN cells tend to follow many

of the characteristics of their retinal input [20], biphasic responses

are stronger in geniculate neurons than in the retinal neurons

driving their response [21]. We show that these stronger rebound

effects in LGN may result from predictive feedback interactions

with area V1. Moreover, after training on natural images, the

model exhibits the brain’s LGN-V1 connectivity structure, and it

displays a phase-reversed pattern of influence of feedback on LGN

cells. This phase-reversed pattern of influence was recently

observed in neurophysiology [22].

Results

Hierarchical model of predictive coding
The model consists of two layers (Fig. 1). The first layer, which

corresponds to part of the lateral geniculate nucleus, consists of

on-center and off-center type units, with on-center type units

coding for brighter stimulus regions and off-center type units

coding for darker regions. The model’s next higher level, which

corresponds to an orientation column in primary visual cortex,

receives input from the model LGN through feedforward

connections. After receiving its LGN input, the feedforward

V1 receptive field that best matches the input (i.e. the one that

makes the most likely prediction) is selected with high

probability, and the selected neuron feeds its prediction back

to model LGN. The layout of feedback connections follows the

structure of feedforward connections, as has been found

experimentally [22,23]. LGN neurons then compute the error

between the higher-level prediction and the actual input. This

error is sent forward to correct the higher-level prediction, and

the entire process is repeated in the next feedforward-feedback

cycle. Thus, a feedforward-feedback cycle comprises lower-level

error detectors correcting higher-level predictions, and higher-

level responses updating the lower-level error signals, similar to

some previous models [14,16,18,19,24]. We assume that a single

feedforward-feedback cycle takes around 20 milliseconds, but

our results do not critically depend on the value of this

parameter (see Methods).

Connection weights of the model are adapted to the input by

minimizing the description length or entropy of the joint

distribution of inputs and neural responses (Methods, see also

[25]). This minimizes the model’s prediction errors and improves

the sparseness of the neural code. Thus, for any given input, the

model converges to a set of connection weights that is optimal for

predicting that input. The model is trained on image patches

extracted from natural scenes, as receptive field properties might

be largely determined by the statistics of their natural input

[7,11,14,26].

LGN-V1 connectivity structure after training
To characterize V1 model receptive fields, feedforward

connection weights from on-center type and off-center type

LGN cells coding for the same spatial location are summed for

each of the model’s 128 V1 cells. These summed weights are

shown in Figure 2. This gives an indication of the V1 receptive

fields, as V1 responses in the model are linear across their on and

off inputs (Methods, equation 7). After training, the receptive fields

show orientation tuning as found for simple cells in V1.

In Figure 3, the relation between the learned receptive fields in

model V1 and the properties of LGN units is further investigated.

The figure depicts the connection weights from on-center type

cells to a given V1 model neuron, as well as those from off-center

type cells to the same V1 neuron. The on- and off-center units are

spatially aligned with the on- and off-zones of the model V1

receptive field, as first proposed by Hubel and Wiesel [27] and

later confirmed experimentally [22,28–30]. Similar results are

found for the connection structure of other V1 model neurons

(results not shown). Note that this alignment is not predetermined

in the model. The connections are initially random and are

adjusted as a consequence of the model’s learning rule together

with exposure to natural images.

Figure 1. Hierarchical model for predictive coding. Higher-level
coding units attempt to predict the responses of units in the next lower
level via feedback connections, while lower-level error detectors signal
the difference between the prediction and the actual input. Feedfor-
ward connections encode the synaptic weights represented by a matrix
UT . Higher-level units maintain the current estimate of the input signal
r and convey the top-down prediction Ur to the lower level via
feedback connections. Difference detectors compute the difference
I{Urð Þ between current activity I and the top-down prediction Ur.

doi:10.1371/journal.pcbi.1000373.g001

Author Summary

For many neurons in the early visual brain the optimal
stimulation for driving a response changes from one
stimulus pattern to the opposite stimulus pattern over
short periods of time. For example, many neurons in the
lateral geniculate nucleus (LGN) respond to a bright
stimulus initially but prefer a dark stimulus only 20 milli-
seconds later in time, and similar changes in response
preference have been found for neurons in other areas.
What would be the computational reason for these
biphasic response dynamics? We describe a hierarchical
model of predictive coding that explains these response
properties. In the model, higher-level neurons attempt to
predict their lower-level input, while lower-level neurons
signal the difference between actual input and the higher-
level predictions. In our simulations we focus on the LGN
and area V1 and find that after training on natural images
the layout of model connections resembles the brain’s
LGN-V1 connectivity structure. In addition, the responses
of model LGN neurons are biphasic in time, resembling
biphasic responses as found in neurophysiology. More-
over, the model displays a specific pattern of influence of
feedback from higher-level areas that was recently
observed in neurophysiology. These results corroborate
the idea that predictive feedback is a general coding
strategy in the brain.

Predictive Coding and Biphasic Responses
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Reversal of polarity due to predictive feedback
To ascertain whether biphasic responses can be interpreted as

the result of predictive feedback, we first consider a model with

non-biphasic inputs (Fig. 4A and 4C). The spatio-temporal

response of model on-center type geniculate cells is calculated

using a reverse correlation algorithm (Methods, see also

[1,2,31]). The time course of the model response is shown by a

series of receptive field maps calculated for different delays

between stimulus and response in Figure 4A. For comparison

Figure 4B shows results obtained from on-center type cells in cat

LGN [1]. As in cat LGN, model on-center type receptive fields

are arranged in center and surround, and the bright-excitatory

phase is followed by a dark-excitatory phase. Removing feedback

in the model causes the previously biphasic responses to

disappear (Fig. 4C), supporting the idea that predictive feedback

may be important for rebound effects in neural response profiles.

To determine whether predictive feedback can result in

geniculate biphasic responses stronger than those in the retina,

the model is modified to simulate biphasic retinal inputs

(Methods). The temporal response profile of model on-center

type cells is obtained using reverse correlation and illustrated in

Figure 4D. Predictive feedback interactions cause reversals of

polarity in LGN to be more pronounced than the retinal input,

as has been observed in physiology [21].

Why do biphasic responses appear in the mapped model

LGN receptive fields? Recall that reverse correlation uses a

large number of white noise stimuli presented in rapid

succession, resulting in visual changes much faster than most

natural input the system would encode. Consider when a

stimulus consisting primarily of bright regions is presented to the

model (Fig. 4E). On-center type LGN cells will respond to the

onset of this stimulus. On zones in the LGN are linked to on

zones of receptive fields in V1, which soon start to increase

activation and make predictions. However, by the time that

predictions of the first stimulus arrive in lower-level areas, the

initial representation of the bright stimulus has been replaced by

a second white noise stimulus, and the prediction is compared

against a new and unexpected stimulus representation. Any

given second white-noise stimulus region can be of either high

or low luminance; however, the running average luminance will

lie in between. In reverse correlation, predictive processing

shows up as a comparison against this running average white-

noise stimulation. The predicted bright region is of higher

luminance than the average second stimulus, causing off-center

type cells to respond to the offset of the bright reference

stimulus.

Reversals in polarity of model LGN cells are most profound in a

small time window after presentation of the reference stimulus but

disappear gradually later on. This happens because the initial

prediction is dynamically updated to include predictions of stimuli

presented after the reference stimulus, bringing new predictions

closer to the average white-noise stimulation. Note that reversals in

polarity will appear as long as predictions deviate from the average

white-noise stimulation; the precise amount of overlap between

prediction and stimulus is not critical.

These findings suggest a specific pattern of influence of

feedback on LGN cells, in which the simple cell off-zones

mediate inhibitory influences to off-center LGN cells and

excitatory influences to on-center LGN cells. This effect is

further investigated and quantified in Figure 5. For all model on-

or off-center LGN receptive fields that are aligned over a V1

receptive field region of the same polarity, firing rates decrease

due to feedback (Fig. 5, top). Where the overlapping fields are of

reversed polarity, there is an increase in firing rate (Fig. 5,

bottom). This effect is consistent with recent results from

neurophysiology showing that the influence of V1 simple cells

on LGN on- and off-cells is phase-reversed [22], and further

corroborates the hypothesis that predictive feedback is important

in mediating responses of LGN cells.

Figure 2. Receptive fields of model V1 units after training on
natural images. (A) Examples of natural images used for training. The
square denotes model V1 receptive field size. (B) V1 receptive fields
after training. Plots are scaled in magnitude so that each fills the gray
scale, but with zero always represented by the same gray level. Black
depicts off-regions in the model V1 receptive field, white depicts on-
regions.
doi:10.1371/journal.pcbi.1000373.g002

Figure 3. Connection weights after training. The figure depicts
learned connection weights from 64 LGN off-center type units and from
64 LGN on-center type units to one representative V1 unit. Red:
connection weights from on-center type cells, blue: connection weights
from off-center type cells. Brighter values indicate higher connection
weights. The value zero is represented by the color black. The on- and
off-center units are spatially aligned with the on- and off-zones of the
model V1 receptive field.
doi:10.1371/journal.pcbi.1000373.g003

Predictive Coding and Biphasic Responses
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Discussion

We have shown that a model that encodes an image using

predictive feedforward-feedback cycles can learn the brain’s LGN-

V1 connectivity structure, in which the structure of V1 receptive

fields is linked to the spatial alignment and properties of center-

surround cells in the LGN [27,28,30]. In addition, the model

captures reversals in polarity of neuronal responses in LGN [1–3]

and a phase-reversed pattern of influence from V1 simple cells on

LGN cells [22]. These results corroborate the idea that the visual

system uses predictive feedforward-feedback interactions to

efficiently encode natural input.

The natural visual world is dominated by low temporal

frequencies [32], causing the retinal image to be relatively stable

over the periods of time considered in the model. However, under

certain conditions visual inputs do change rapidly—more rapidly

than most natural inputs the system would encode. One such

situation is brought about by reverse correlation mapping, in

which a white-noise stimulus is presented at a temporal frequency

much higher than the temporal dynamics of natural visual input.

In such a case, higher-level predictions of the reference stimulus

are compared against a new and unexpected white-noise stimulus,

which emerges in the responses of on-center type model cells as a

bright-excitatory phase followed by a dark-excitatory phase. We

hypothesize that similar predictive coding mechanisms are at play

in geniculate and cortical cells whose spatiotemporal response

profiles also display reversals in polarity over short periods of time

[3,5,6,33].

Geniculate cells receive many more feedback connections

(around 30%) than feedforward connections (around 10%) [34].

In addition, it is known from both cat and monkey neurophys-

iology that feedback signals from primary visual cortex affect the

response properties of LGN cells ([35,36] see for review

[34,37,38]). For example, feedback from V1 seems to affect the

strength of center-surround interactions in LGN ([34,37,38] but

see [39]). Geniculate cells respond strongly to bars that are roughly

the same size as the center of their receptive field, but responses

are attenuated or eliminated when the bar extends beyond the

receptive field center [35,40]. Neurons that respond in this way are

also known as end-stopped neurons, and this property has been

found to depend on feedback signals from primary visual cortex

[35,40].

A previously published model has successfully captured end-

stopping and some other modulations due to surround inhibition

in terms of predictive feedback [14]. Like here, the predictive

feedback model was trained on natural images, in which lines are

usually longer rather than shorter, resulting in higher-level

receptive fields optimized for representing longer bars. Thus,

Figure 4. Spatio-temporal response of LGN on-center type cell. The response was mapped with the reverse correlation algorithm, using
either non-biphasic retinal inputs (A–C,E) or biphasic retinal inputs (D). (A) Spatio-temporal response of an on-center type cell in model LGN.
Responses were obtained by cross-correlating stimulus and response at the time intervals given below the figures. Red: response to bright stimulus
at that location, blue: response to dark stimulus at that location. Note the change in sign after 50 milliseconds. Similar results were obtained for other
LGN on-center type units. (B) Spatio-temporal response profile of on-center type cells in cat LGN obtained with the reverse correlation algorithm [1].
(C) The removal of feedback in the model causes the previously biphasic responses to disappear. (D) Temporal response profile of on-center type cell
in a model with biphasic retinal inputs. Model activity is normalized by the initial response magnitudes. The biphasic response in LGN is more
pronounced in the presence of predictive feedback compared to a situation in which the LGN response is fully determined by biphasic retinal input
(for comparison, see e.g. [21]). (E) Average model LGN and V1 representations after reference stimuli consisting of bright stimulus regions have been
presented. Black depicts off regions, white depicts on regions. When V1 predictions of the bright reference stimulus arrive in model LGN, they are
compared against a new and unexpected stimulus representation. The difference between the predicted bright region and the second stimulus is
negative, exciting LGN off-center type cells.
doi:10.1371/journal.pcbi.1000373.g004

Predictive Coding and Biphasic Responses
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when presented with shorter bars, the model’s higher-level units

could not predict their lower-level input, and error responses in the

lower-level neurons could not be suppressed. This resulted in more

vigorous responses for shorter bars than for longer bars, similar to

end-stopping in geniculate neurons [35]. Here, we have extended

the predictive feedback framework to also include rebound effects

in LGN. Although responses of LGN cells tend to follow many of

the characteristics of their strongest retinal inputs [20], biphasic

responses are stronger in geniculate neurons than in the retinal

neurons driving their response [21], suggesting that the cells may

receive further sources of input. Our simulations indicate that

these stronger components in the biphasic geniculate response may

result from predictive feedback interactions, similar to end-

stopping and some other inhibitory effects [34,37,38]. Reversals

in polarity have also been described for several cortical areas that

do not receive direct input from biphasic retinal cells [3–6] and

that are too complex to result from retinal responses (e.g., for

orientation or motion [4,6]). We hypothesize that these response

profiles result from similar mechanisms of predictive feedback.

Indeed, neurophysiological studies have ascribed some cortical

rebound effects to network interactions [4,6], and computational

work similarly suggests the involvement of cortical projections

[41]. Our work extends these studies by providing a computational

explanation for these effects.

Previous authors have suggested mechanisms that could account

for the stronger biphasic responses in the LGN, such as higher

LGN thresholds [42], inhibitory feedback from the perigeniculate

nucleus, or feedforward inhibition [20]. In addition, a variety of

models has been proposed to account for orientation selectivity in

early visual cortex [9,43–45]. However, our model differs from

earlier work in that it offers a computational, not a mechanistic,

explanation of these early visual response properties [8].

Furthermore, the framework provides a parsimonious explanation

for a number of neurophysiological effects. For example, the

model not only captures biphasic responses and orientation

selectivity, but also a phase-reversed influence of cortical feedback

to LGN, as well as end-stopping and some other modulations due

to surround inhibition in V1 and LGN [14]. Reversals in polarity

have also been described for many areas in cortex [3–6].

Consistent with our interpretation, neurophysiological studies

have ascribed some of these biphasic responses to network

interactions [4,6]. While a number of mechanisms can be

proposed to account for many of these effects individually, the

computational explanation proposed here offers a simple, unifying

framework in which to understand all of these effects.

While predictive coding could work through local computations

between neighboring neurons (providing a possible explanation for

biphasic responses in the retina [13,46]), we argue that it would be

computationally advantageous to (also) implement predictive

operations through feedback projections. Feedback mechanisms

allow the system to remove redundancy and decorrelate visual

responses between areas. Moreover, higher-level cortical receptive

fields are larger and encode more complex stimuli, allowing for

predictions of higher complexity and larger regions in the visual

field. A strong prediction of the model would therefore be that

biphasic responses are attenuated in the LGN, or absent in cortex,

without cortical feedback.

The model uses subtractive feedback to compare higher-level

predictions with actual lower-level input. In physiology, this

process could be mediated by, for example, local inhibitory

neurons in the same-level area together with long-range excitatory

connections from the next higher-level area (for a similar

connectivity scheme, see e.g. [34]). Here we have shown that

these comparisons can result in reduced as well as enhanced lower-

level responses. Support for a dependence of some inhibitory and

excitatory effects on top-down feedback has been found in

neurophysiology [47–50].

We have considered only two hierarchical levels but the model

could easily be extended to include more cortical areas. In an

extended model, each level would have both coding units and

difference detecting units (for a concrete example, see Figure 2 in

[15]). Coding units would not only predict their lower-level input

but also convey the current estimate to the error detectors of the

same-level area. Error detectors then signal the difference between

their input and its prediction to the next higher level, until finally

one prediction becomes dominant in the entire system. The model

suggests that more accurate higher-level predictions, or equiva-

lently greater overlap between the visual input and higher-level

receptive fields, results in reduced activity of lower-level difference

detectors. In contrast, when top-down predictions in the model are

off, lower-level difference detectors enhance their responses.

Consistent with this, recent fMRI studies have shown that

increased activity in higher-level areas accompanies decreased

responses in lower-level areas, presumably due to feedback

processing [51–53]. Other imaging studies have found supporting

evidence for predictive feedback as well [54,55].

The predictive feedback framework suggests that higher-level

coding neurons enhance their activity when stimuli are presented

Figure 5. Effects of feedback on LGN on-center and off-center
type cells. Dashed: probability that the LGN cell coding for this
location is active (i.e. response.0) in the first feedforward sweep of the
model when a V1 region will subsequently be selected that codes for
the same or opposite polarity, blank: probability that the LGN cell is
active after the first feedforward-feedback pass (i.e. when feedback
exerts its effect) when a V1 region is selected that codes for the same or
opposite polarity. Red: on-center type cell, blue: off-center type cell. The
results were obtained after presenting the model with a white-noise
stimulus every 100 milliseconds for a total of 10,000 images. Comparing
initial feedforward activity with subsequent LGN activity shows that
feedback has a negative influence on cells of similar sign, and a positive
influence on cells of opposite sign. Thus, the probability that an LGN
off-cell is active increases after feedback from a V1 on-region (lower
right, blue), and the probability that an LGN on-type cell is active
decreases after feedback from an on-region in V1 (upper left, red).
doi:10.1371/journal.pcbi.1000373.g005

Predictive Coding and Biphasic Responses
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that match their receptive field properties (rather than decrease

[56]), in accordance with neurophysiology [27,57–59]. Subsequent

feedforward-feedback passes refine the initial predictions, until

finally the entire system settles on the mostly likely interpretation.

Coding an image using recurrent cycles of processing incurs a cost

in time, but has the advantage of resolving error signals in even the

earliest sensory areas. Moreover, recurrent cycles of processing are

less costly in time when the system forms a hierarchy. The most

likely predictions are computed first and sent on to higher-level

processing areas, which do not have to wait to begin their own

computations, enabling initial rapid gist-of-the-scene processing

and subsequent feedforward-feedback cycles to fill in the missing

details. In accordance with this, psychophysical studies have

shown that some global aspects of a stimulus can be detected very

rapidly while detailed aspects are reported later in time [60–62],

and neurophysiological studies have found dynamic changes in

tuning properties of both lower-level and higher-level neurons

consistent with these ideas ([33,63,64] see also [65,66]).

It is likely that top-down signals serve many computational

functions, of which the sparsifying mechanism suggested here is

but one. Also, the effect of top-down signals in general is not best

described as either inhibitory or excitatory. The effect can be of

many different kinds, depending on the specific computational

goals the top-down interaction fulfills. For example, it has been

proposed that higher-level areas feed anticipatory signals back to

earlier areas, enhancing neural responses to a stimulus that would

otherwise fall below threshold [67]. This is probably best

implemented as an excitatory interaction between higher-level

anticipation and the incoming lower-level signal. Feedback could

also act as a bayesian style prior [68–70], and adapt early level

signals according to different sensory or behavioral conditions

[71]. In view of these previously suggested roles of feedback, the

mechanism presented here should be regarded as a relatively low-

level mechanism that automatically creates sparser solutions,

rather than the more flexible, higher-level mechanism that sets

specific behavioral demands.

In conclusion, rebound effects are a common feature in reverse

correlation mapping and have been described in several visual

areas. For example, biphasic responses have been found for

neurons in LGN [1–3], as well as in primary visual cortex [3,4],

and reversals in selectivity in the motion domain have also been

found for neurons in MT [5,6]. Here, we have explained these

biphasic sensory responses in terms of predictive feedback.

Moreover, we have shown that a model that processes its inputs

using predictive feedback can learn the brain’s LGN-V1

connectivity structure [27,28,30] and captures a phase-reversed

pattern of influence of feedback [22]. These results corroborate the

idea that predictive feedback is a general principle used by the

visual system to efficiently encode its natural inputs.

Methods

Model dynamics
Here we briefly discuss model equations and parameters. The

interested reader is referred to [25]. The input is obtained from

768 by 768 pixel black-and-white images of natural surroundings

(Fig. 2A), filtered with a zero-phase whitening/lowpass filter [7,9]:

~IIfiltered vx,vy

� �
~ vj jexp { v=f0j j4

� �
~II vx,vy

� �
ð1Þ

where the tilde represents the fourier transform in 2D, and

f0 = 300 cycles/image. The initial activation values of on-center

type cells are obtained from the filtered images by subtracting the

mean and taking positive values:

On x,yð Þ~ Ifiltered x,yð Þ{meanð Þz ð2Þ

The initial activation values of off-center type cells are obtained

from negative pixel values that are rectified:

Off x,yð Þ~ Ifiltered x,yð Þ{meanð Þ{
� �

z
ð3Þ

We limit the LGN input into the model’s second layer to 8 by 8

(64) on-center type cells and 8 by 8 (64) off-center type cells. This

LGN ‘patch’ is randomly selected from the filtered image and

represented as a single vector (128 values), unless described

otherwise. At any given time step in the model, either the on-

center cell or its off-center counterpart coding for the same spatial

location is active.

The second layer, which would correspond to an orientation

column in cortical area V1, is represented by 128 units. In the

language of the model, the synaptic weights between LGN and V1

units form basis vectors that represent the preferred stimulus of the

model V1 neurons (Fig. 6A). Model V1 predicts its LGN input I as

a linear combination of N active basis vectors, where the

weighting coefficient of each basis vector ui is given by the

response ri of its corresponding V1 neuron:

I~
XN

i~1

riuizn ð4Þ

in which n is a stochastic noise process. The 64 on-type and 64

off-type connections are combined to form a single basis vector

of 128 values, unless described otherwise. To choose the N V1

neurons that best predict a given input (i.e., neurons that are

active), we use a modified version of the matching pursuit

algorithm [72]. Matching-pursuit uses the least number of basis

vectors or equivalently the least number of active V1 neurons to

accurately predict its input [72]. In a deterministic version of the

algorithm, the first vector is chosen as the vector ui1 that

minimizes

DI1~I{ri1 ui1 ð5Þ

At the next time step, an additional vector is chosen that

minimizes

DI2~DI1{ri2 ui2 ð6Þ

and so on, where the response rik of the vectors is given by

rik ~uon,ik
: DIon,k{1{DIoff ,k{1

� �

zuoff ,ik
: DIoff ,k{1{DIon,k{1

� � ð7Þ

and the vectors are subdivided into 64 on-values and 64 off-values.

This deterministic version was modified for the learning algorithm

to be optimal in terms of sparseness [25]. Thus, after learning not

only do the V1 units make more accurate predictions, but also few

of them participate in any given prediction. The modification is as

follows: at each time step, a V1 unit is selected randomly from the

distribution
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Pr ik~j DIk{1jð Þ~
H rjk

� �
earjk

Z a,rjk

� � ð8Þ

where jk is the index of the jth unit in the kth iteration, rjk is given

by equation (7), H xð Þ is the Heaviside function, a{1~1=15 is a

temperature parameter and Z a,rjk

� �
is a normalizing term given

by:

Z a,rjk

� �
~
X

j

H rjk

� �
earjk ð9Þ

Thus, the probability with which a unit is selected increases

when its receptive field structure better predicts the lower level

input and its response is higher. To guarantee optimality, the

response of a selected unit rik should be drawn from a normal

distribution N a DIon,k{1{DIoff ,k{1

� �
: uon,ik {uoff ,ik

� �
,s2

� �
with

small variance [25], but the effect of this process is negligible so

that in practice the response of a neuron in the modified model is

given by equation (7). The selected basis vector weighted by its

neuronal response is then subtracted from the input. This

subtraction represents the predictive feedback process assumed

to take place between V1 and LGN, and is essential to the

predictive coding theory: it reduces output redundancy by

allowing LGN difference detectors to represent only the error

signal, and no longer the predicted components now represented

in V1. Furthermore, it optimizes the higher-level predictions (or

equivalently, minimizes the prediction error). For a further

discussion of the effectiveness of this approach, see [25]. The

LGN on-center type cell and LGN off-center type cell code for two

opposite sides of the same dimension. Thus, wherever the

subtraction process results in negative LGN values, or equivalently

when the value crosses the dividing edge between the two

dimensional sides, the value is rectified and added to the activation

value of the unit’s counterpart (i.e. negative value of on-center unit

is rectified and added to activation value of off-center unit coding

for the same location, and vice versa). The feedforward-feedback

cycle is then repeated on the residual input so that after k
iterations the residual LGN input is given by

DIk~I{
Xk

l{1

ril uil ð10Þ

In words, the number of active V1 neurons increases at each

time step in the model, and their combined prediction is

subtracted from the actual LGN input. To see how combining

active V1 units results in better predictions of the input, consider

when a bar of a certain orientation is presented to the model,

together with a small dot next to the bar. A likely first prediction

could capture the bar, but not necessarily also the dot. However,

this initial prediction will be updated in later feedforward-feedback

cycles when other V1 neurons become active, so that the neurons

will together represent both the bar and the dot. This is what

combining V1 neurons represents, a prediction that is updated in

each cycle to better capture the V1 input (see also Fig. 6B and 6C).

We assume model V1 responses to be stable and non-decaying

over the time scales considered. Note that feedback connections in

the model follow the alignment of feedforward connections, which

has been observed experimentally [22,23]. We assume delays of

20 milliseconds for predictive feedback effects to set in, which

complies with the usual response lag of about 10 milliseconds in

the next higher-order visual area [73,74] together with similar

conduction times for feedforward and feedback connections [75].

Although this estimate is likely at the longer end of the range [76],

the model does not critically depend on the value of this parameter

and similar results would have been obtained using shorter time

Figure 6. Predictive feedback using the matching pursuit algorithm. (A) Model receptive fields (RFs) are represented as basis vectors. When
the input (blue vector) arrives in model V1, a basis vector that has high overlap with the input is selected (red vector u1). The V1 basis vector weighted
by its response is then subtracted from the input and the selection-subtraction process is repeated on the residual LGN representation (green vector).
(B,C) Model V1 prediction and residual LGN representation over time. (B) The blue vector represents the actual input, its prediction is represented by
the red dot. (C) Black depicts off-regions, white depicts on-regions. A prediction is obtained by summing the selected V1 basis vectors weighted by
their response. LGN difference detectors represent the error between V1 prediction and actual input. (B,C) Subsequent feedforward-feedback cycles
refine the higher-level prediction of the input. Without predictive feedback, the model would represent just the initial, less accurate prediction.
doi:10.1371/journal.pcbi.1000373.g006
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delays. As the model does not incorporate neural structures earlier

than the LGN, we added 30 milliseconds to the data points in the

figures to account for the delays before the LGN [73].

Learning rule
To enhance the sparseness of the neural code and better capture

the input statistics, basis vectors are updated in each feedforward-

feedback cycle. This is done by minimizing the description length

(MDL) or entropy of the joint distribution of inputs and neural

responses [25]. MDL chooses as the best model the one that

enables the shortest code length for both prediction error and

model parameters in bits (in base e) [77,78]. As a consequence, it

favors accurate, yet sparse, neural representations. However, the

same learning rule can also be obtained from the gradient of the

error function for the kth feedforward-feedback cycle [25]:

Duik ~cSrikDIk{1T ð11Þ

where c~0:3= 1zbð Þ is the learning rate, in which b is initially

equal to 1 and increases by 1 every 1000 image patches. V1 basis

vectors are normalized, and initialized using 64 random values with

zero mean: positive values are taken as the initial values of the entries

coding for on-type inputs, negative values are rectified and taken as

the initial values of the off-type entries of the basis vector, the

remaining 64 entries are initialized with value zero. Initializing all

128 entries of the basis vector with random values gives similar

results. Because neuronal receptive field properties might be largely

determined by the statistics of their natural input [7,11,14,16], the

basis vectors are trained on 10,000 image patches extracted from 16

natural scenes. The model receptive fields are trained using static

natural images (for receptive fields obtained from time-varying

natural inputs see [45], and see [15] for a description within the

predictive coding framework). The model is allowed to process each

image for four feedforward-feedback cycles, which corresponds to

around 100 milliseconds (see above). Parameter values are kept

constant throughout all simulations. While natural input is not

expected to be completely static, even over the short time scales

considered here, we argue that this is not highly relevant to the

general results of the simulation. The critical factor for our results is

that reverse correlation stimuli are presented on a time scale much

faster than the system’s typical inputs. The temporal dynamics used

in reverse correlation mapping are, indeed, much faster than most

natural inputs, as the natural visual world is dominated by low

temporal frequencies [32]. Including time-varying V1 receptive

fields and/or training the system on natural dynamical images

presented for seconds would therefore result in similar biphasic

responses, given natural dynamics that are slower than the temporal

dynamics of reverse correlation. For example, Kiebel et al. [16] use a

predictive feedback framework to model temporal receptive fields,

resulting in similar lower-level error signals when the actual input

deviates from the expected temporal dynamics.

Interpretation of model activation values
To model the spatiotemporal response of LGN neurons, we have

to relate model scalar activation values directly to biology. Several

possibilities exist; we emphasize, however, that the model does not

explicitly implement any of these interpretations and is, in fact, very

general. One possibility is that activation values of model units stand

for the mean firing rate of a group of functionally similar neurons in

physiology [79–82]. This interpretation is corroborated by most

neurophysiological studies that show a correlation between increased

firing rates and behavioral measures. The model is also compatible

with the idea that neurons code information in the precise timing of

their spikes. This view has received increasing attention over the past

years [83–85] as more data is becoming available suggesting that

spike timing may be important for neural communication [86–89].

Specifically, scalar activation values in the model can be interpreted

as indicating the time from spike arrival to a reference signal, taking

this small delay in time between a single spike and the reference as the

information carrier [85,90]. Direct neurophysiological evidence for

this signaling strategy has been obtained in hippocampus [91,92] and

in human somatosensory system [93]. Here, we interpret the model’s

activation values along the spike timing lines and take scalar

activation values of model units as information transmitted using

one spike. We do not implement the reference signal explicitly but

argue that the model could easily be amplified to take this into

account. We emphasize, however, that we obtain similar results if we

interpret the model’s activation values as firing rate (i.e. indicating a

number of spikes).

Reverse correlation
The spatio-temporal response of on-center type units in model

LGN (Fig. 4) was calculated using a reverse correlation algorithm

([1,2,31] see also C.-I. Yeh et al., Soc. Neurosci. Abstr. 163.21,

2008). This algorithm presents neurons with an image sequence of

white-noise stimuli (where each pixel is either maximally black or

white with equal probability), records the stimuli that precede a

response (i.e. the activity value of the recorded model neuron is

above zero) by a fixed time interval, and then averages across the

recorded stimuli; the receptive field is defined as this average stimulus

that preceded the response by the given time interval. Following [1],

the model was presented with a new white-noise stimulus every

20 milliseconds for a total of 50,000 presentations. We used time

intervals between response and stimulus of 30, 50, 70 and

90 milliseconds (see also Fig. 4A), and obtained a composite

receptive field by taking the difference of responses to bright stimuli

and dark stimuli [2]. We used a spike timing interpretation of model

responses and recorded stimuli when activation values in the model

were above zero. However, we obtain similar results if we interpret

model activation values as firing rates and weigh recorded stimuli by

the unit’s activation value.

Biphasic retinal input
In the modified model, the initial feedforward input into on-

center type LGN cells is obtained using equation 2, and then this

bottom-up input is updated in each feedforward-feedback cycle as

follows:

On x,y,kð Þ~ Ifiltered x,y,kð Þ{meanð Þz{0:2On x,y,k{1ð Þ ð12Þ

where k~1,2, . . . N is the number of feedforward-feedback cycles in

the model. The retinal input into off-center type LGN cells is

initialized using equation 3, and then updated in a similar fashion in

each feedforward-feedback cycle. When mapped with reversed

correlation, this results in retinal input that is biphasic in structure

(Fig. 4D).
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