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In the early sensory and motor areas of the cortex, individual neurons transmit information
about specific sensory features via a peaked response. This concept has been crystallized
as “labeled lines,” to denote that axons communicate the specific properties of their sen-
sory or motor parent cell. Such cells also can be characterized as being polarized, that is,
as representing a signed quantity that is either positive or negative. We show in a model
simulation that there are two important consequences when learning receptive fields using
such signed codings in circuits that subtract different inputs. The first is that, in feedback
circuits using labeled lines, such arithmetic operations need to be distributed across multi-
ple distinct pathways.The second consequence is that such pathways must be necessarily
dynamic, i.e., that synapses can grow and retract when forming receptive fields.The model
monitors the breaking and growing of new circuit connections when their synapses need to
change polarities and predicts that the rate of such changes should be inversely correlated
with the progress of receptive field formation.
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INTRODUCTION
Most neural sensory circuits are faced with the issue of represent-
ing negative quantities and there are different strategies for doing
so. One way is to have an individual neuron vary its firing rate: The
brainstem circuitry of the vestibulo-occular reflex (VOR) tracks
head velocity very precisely with firing rates that vary between
100 and 300 spikes/s (Fuchs and Kimm, 1975). By convention the
extreme negative value is 100 spikes/s and the extreme positive
value is 300 spikes/s. The logical “zero” is then at 200 spikes/s.

In contrast to the VOR’s spike rate encoding, the cortex uses
a very different coding strategy where two neurons represent the
different polarities of a quantitative feature, one for positive and
one for negative. In their original experiments, Wiesel and Hubel
(1966) characterized a cell’s peaked response to a stimulus feature
as a labeled line, and thus we use the phrase signed labeled lines to
specifically note that the quantities are part of a two-cell repre-
sentation for signed numbers. Signed labeled lines are ubiquitous
in cat and primate cortex. Simple edge cells, direction-sensitive
cells (Orban et al., 1986), opponent color cells (Livingstone and
Hubel, 1984), disparity cells (LeVay and Voight, 1988), motion
cells (Rodman and Albright, 1987), as well as many more types,
all use this coding strategy. However it turns out that this coding
strategy poses difficulties for feedback circuits that use subtrac-
tion, since the desired circuit depends on the relative magnitudes
of the minuend and subtrahend.

This paper introduces a methodology for dealing with signed
labeled lines that explicitly represents positive and negative quan-
tities in a way that allows us to demonstrate the consequences of
subtraction in bipolar pairs of cells. We model the feedback circuit
between the striate cortex and the lateral geniculate nucleus (LGN).
The model feedback circuit learns synaptic weights by training

itself on appropriately filtered natural image patches (Jehee et al.,
2006). The learning algorithm is based on matching pursuit (Mal-
lat and Zhang, 1993), which has a simple geometric interpretation.
This general class of algorithms originally modeled the formation
of simple cell receptive fields (Olshausen and Field, 1996) and
has been subsequently extended to cortical hierarchies (Rao and
Ballard, 1999). Its importance is that it does not specify connec-
tions in detail but instead relies on a general abstract principle
that the synapses should be chosen to minimize the number of
active neurons that are need to code any particular input pat-
tern. The predictive coding approach, in a slightly different form
that uses competition and divisive normalization, has been shown
to account for an impressive array of experimental observations
(Spratling, 2008, 2010, 2012).

Our concern has focused on extending the (Jehee et al., 2006)
algorithm to a lower level of abstraction that could account for
computation by individual spikes. In Jehee and Ballard (2009),
we showed that the predictive coding could model the rebound
effects observed in the reverse correlation of LGN cell responses.
In Ballard and Jehee (2011) we showed that the assumption of
multiplexing could reconcile timing and rate coding models. Here
the focus is on the impact of bipolar codes on subtractive feedback.

Translating the learning algorithm to the more realistic context
of separate signed inputs and synapses places additional demands
on the neural circuitry, but also allows simpler interpretations of
experimental observations. Our principal results are twofold. First,
the push-pull characterizations of the feedforward and feedback
pathways (Murphy et al., 1999; Hirsch, 2003; Martinez et al., 2005)
are both direct consequences of emergent connectivity driven by
a single algorithm for receptive field formation. This characteri-
zation is much simpler than other experimental descriptions in
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that a single cause explains both feedforward and feedback obser-
vations. The second result is that, in the feedback circuit learning
model, the synaptic “weights” regularly change sign. The conse-
quences for neurobiology are that synaptic contacts must be made
or retracted. While the fact of synaptic growth and retraction is
well established from experiments (Smythies, 2002; Trachtenberg
et al., 2002; Stettler et al., 2006; Bourne and Harris, 2007, 2008;
Yamahachi et al., 2009), we demonstrate how often it happens in
the context of an algorithm for receptive field formation that mon-
itors the synapse changes quantitatively throughout the receptive
field formation process. The result is a prediction that the rate of
change of new connections should be inversely correlated with the
progress of receptive field formation.

MATERIALS AND METHODS
The overall methodology has been developed in earlier papers
(Jehee et al., 2006; Jehee and Ballard, 2009). The novel contri-
butions of this paper are to (1) develop an explicit formalism
for characterizing the consequences of sign changes and (2) use
this formalism in the simulations to track synapse changes in the
circuits.

The LGN-V1 circuit model consists of two layers shown by
Figure 1. The first layer, which models the lateral geniculate
nucleus, consists of ON-center type and OFF-center type units.
Similar to geniculate cells, ON-center type units code for brighter
stimulus regions and OFF-center type units code for darker
regions. We assume that either the ON-center unit or its OFF-
center counterpart coding for the same spatial location is active at
any given time step in the model. The model’s next higher level,
which corresponds to an orientation column in primary visual
cortex, receives input from the model LGN through feedforward
connections.

In each feedforward-feedback cycle of the model, the feedfor-
ward receptive field that best matches the input, or equivalently
the most likely prediction, is selected with high probability. The

FIGURE 1 | Hierarchical model for predictive coding. Higher-level units
attempt to predict the responses of units in the next lower level via
feedback connections, while lower-levels signal the difference between the
prediction and the actual input. Feedforward connections encode the
synaptic weights represented by a matrix W T. Higher-level units maintain
the current estimate of the input signal r and convey the top-down
prediction Wr to the lower level via feedback connections. Difference
detectors compute the difference I−Wr between current activity I and the
top-down prediction Wr.

selection is made on the basis of the projections of the image, seen
as a vector onto the synaptic weights, also see as vectors. The inputs
to the model are small image patches of size 8× 8 pixels selected
at random form a database of 16 images of natural scenes.

A specific projection between a specific input I= (x1,. . ., xn)
and a neuron with synapses w= (w1,. . ., wn) can be expressed as
a scalar β, i.e.

β =

N∑
i=1

xiwi

or equivalently as the dot product β= I·w. This expression has
some recent experimental evidence (Araya et al., 2006a,b). Vari-
ations impose some non-linearity on the result, e.g. (Pillow and
Simoncelli, 2006; Sharpee et al., 2006).

Once a neuron with weights w is chosen on the basis of its
projection, the learning rule moves it a little closer to the input
vector, i.e.

∆w = α (I− βw)

where β is the cosine of the angle between I and w. Note that by
grouping the responses of all the neurons into a vector r (of which
most of the components will be zero), one can summarize all the
individual values βw as W r, as is done in Figure 1. The scalar α is
a learning parameter that is set to .05

1+
p

1000

where p is the index of

the p-th input patch seen by the circuit. The feedback connections
are initially set to random values but are learned during the course
of being exposed to 10,000–20,000 image patches.

For each patch, after a particular coding neuron is selected, the
process repeats for 12 times, each time using the residual

I← (I− βw) .

A graphical interpretation of the algorithm is shown in
Figure 2. The depicted geometry readily translates into two kinds
of synapses. Feed forward synapses represent the input to V1 cod-
ing cells (or the residual of the input) and the feedback synapses
represent the inputs (in the form of residuals) to LGN cells.

Both of these synapses can use a Hebb rule implemented as
spike timing dependent plasticity (STDP) to make their synapses
more like their input. In the feed forward pathway, the input on the
first cycle will be the image, and the corresponding synapses are to
be more image-like. Adding the image values to the synapses and
normalizing accomplishes this. For the feedback pathway, consid-
ering the straightforward case of inhibition, if the cell fires, the
feedback synapse needs to be increased proportional to the differ-
ence between the cell’s input and the feedback signal. Here again
the synapses are made more like the input.

In our model we assume that every spike represents a scalar
value. There is emergent evidence that this can be achieved by a
latency code, where the time from spike arrival to a reference signal
is the information carrier (VanRullen and Thorpe, 2002; Womels-
dorf et al., 2007; Gollisch and Meister, 2008). Spikes can use a
gamma band frequency and communicate values by using small
(<5 ms) delays with respect to the reference. In a recent paper we
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FIGURE 2 | A geometrical explanation of the matching pursuit learning
model. (A) An 8×8 filtered image patch can be represented as a blue
vector with 128 coordinate values (in our notation). The neuron whose
receptive field is most like the patch, in this case w1, is chosen to represent
the patch. Since there are also 128 synapse strengths, or weights, these
can be represented as a vector also. The difference between them is termed
the residual (green) and is sent back to the LGN as feedback and the

process repeats. A very small number of repetitions produces an accurate
representation. (B) Four steps in the vector approximation. (C) The evolution
of the approximation in pictorial terms. The green vector is also the basis for
the learning algorithm. After each vector is chosen, it is moved closer to the
input by adding the residual into its synaptic weight vector. The weight
vectors are normalized to unity, reflecting a constraint that limits the total
strength of the synapses.

simulated a spike latency code in some detail (Ballard and Jehee,
2011) to test its statistical properties, but here we assume that the
gamma reference code is implicit and just use positive numbers
and a clocked update process.

It has been established for some time that in a system like ours,
the convergence of the feed forward and feedback pathways, where
both use Hebb rules, is guaranteed. Furthermore the two sets of
synapses, visualized together as a matrices, are such that the feed
forward and feedback matrix values in the converged state are
transposes of each other (Williams, 1985). Exactly how a neu-
ron would implement a Hebb rule is not completely settled at
this point, but our algorithm assumes that a STDP form of the
rule, implemented at every spike cycle, is appropriate. Because of
Williams’s result, in our simulation we take the shortcut of focus-
ing on the feedback synapses and clamp the feed forward synapses
to be the appropriate transpose of these.

The main contribution of the paper is to show that, using
bipolar representations, the feedback signal requires six separate
feedback path ways. In the algorithm, for any particular learn-
ing update, we test for which of these cases causes a spike and
update only the synapses for that case accordingly. Since the other
synapses do not produce spikes, and we assume an STDP form of
Hebb rule, there is no need to update them.

Our previous work (Jehee and Ballard, 2009), that learned the
feed forward connections from cells in the LGN to a single cell
in V1, is depicted in Figure 3. The learning algorithm connects
a complete set of 128 synapses to the V1 cell initially, half from
the ON calls and half from the OFF cells. However after learning
only the appropriate set of LGN cells have large weights as shown

in the figure. This replicates the experimental finding of Alonso
and Reid (Reid and Alonso, 1995). They used antidromic simula-
tion in paired recordings to confirm this connection arrangement.
The experimental finding is very significant since it confirms the
original suggestion that the connections could be formed in this
manner by Hubel and Wiesel. What our simulation shows is that
a Hebbian learning rule based on sparse coding principles is able
to produce this arrangement.

To characterize these receptive fields, feedforward connection
weights from ON-center type and OFF-center type LGN cells
coding for the same spatial location are summed for each of
the model’s 128 V1 cells. These summed weights are shown in
Figure 3B. After training, the receptive fields show orientation
tuning as found for simple cells in V1.

The model does retain the all-important feature of separate
ON and OFF cells and, as a consequence, important structure
emerges. The feedforward connections to simple cells respect the
simple cells’ receptive field (Alonso et al., 2001) and the feedback
connections from a simple cell target the appropriate LGN cells
(Murphy et al., 1999). Both of these properties are observed as a
result of the learning process in our model. The lower right portion
of Figure 3 shows the detailed connectivity between 16 LGN cells
and one simple cell after training. Here the color blue codes the
synaptic strengths between OFF cells and red is used to code for
synaptic strengths between the ON cells and the simple cell. What
the figure shows is that for a representative learned receptive field,
all the LGN cells that connect to it from an 8× 8 array of OFF cells
and an 8× 8 array of ON cells connect to the appropriate part of
the V1 cell’s receptive field with the appropriate synaptic strength.
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FIGURE 3 | Learning receptive fields with signed labeled lines. (A) Subset
of natural images used for training. The small square immediate below
denotes model V1 receptive field size. (B) V1 receptive fields after training
where ON and OFF responses are combined to produce a gray scale image.

Black depicts off-regions in the model V1 receptive field, white depicts
on-regions. (C) A detail from the feed forward connections in the model
making the connections of different sign explicit. Blue denotes OFF-center
connections and red denotes ON-center connections.

One important difference between the model and the corti-
cal circuitry is that the model agglomerates what are known to
be many intermediate connections. Thus the LGN input to V1
terminates in layer IV and the feedback connections to the LGN
originate in layer V and VI. However this important distinction is
glossed over in the model which just has its LGN cells reciprocally
connected to V1 cells. Furthermore our model uses cells that can
have both excitatory and inhibitory synapses, even though this is
not possible biologically. The understanding is that to produce
inhibition, there must be an intermediate stage where the excita-
tory connection excites an inhibitory cell and vice versa. Rather
than complicate the circuit diagrams, we allow model cells to have
both kinds of connections.

RESULTS
The main result is that when using feedback that subtracts quan-
tities, in specific synapses that are modified depend on the relative
values of the minuend and subtrahend and that there are six dis-
tinct cases to consider. Furthermore, we show that, depending on
the individual cases that arise, the modified synapses may be on
different neurons. Subsequently we show in computer simulations
that all six cases are need to handle natural image data and in the
process of modifying synapses, the polarity of the needed con-
nection may change, thus requiring a new connection. Tracking
the rate of change of polarities shows that it is correlated with the
progress of receptive field formation.

SIGNED LABELED LINE NOTATION
We start by developing a notation for specifically denoting the
relevant synapses. The response of a V1 cell can be characterized
mathematically in terms of a function of the inputs multiplied

by synaptic “weights,” that are numbers representing the strength
of a synapse. Thus if the input to such a cell is represented by a
vector hbfx and the synapses as a vector w, the response β can be
given by

β = f (x · w) (1)

where f is a function that captures any non-linearities in the
response and w·x is the projection of x onto w or equivalently,
the dot product between x and w given by

w · x =
N∑

i=1

xiwi

While the above expression models neuronal responses, and has
experimental support for at least excitatory synapses (Araya et al.,
2006a,b), it is cast at a level of abstraction that avoids the crucial
issue associated with labeled lines and that is the representation
of positive and negative coefficients. Let us illustrate these issues
with the example of a single term in the expression in equation
(1) above. Suppose a neuron is receiving input at a single synapse
that can be expressed mathematically as the scalar product wx.
Figure 4A shows how this multiplication would be implemented
with signed quantities. Both the axonal input x and the synaptic
strength w can be signed quantities, so a single “synapse” suffices
to represent the calculation. However in the more detailed model
that respects the representation of positive and negative quantities
by separate cells the calculation cannot be done so easily. Besides
the separate inputs, a further complication (from the standpoint
of mathematical operations) is that biological synapses cannot
change sign. An inhibitory synapse cannot become excitatory and
vice versa.
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FIGURE 4 |The feed forward pathway connections. The dot product
computation illustrates the difference between conventional neural models
and signed labeled lines. In the diagram thick lines denote dendrites and
thin lines denote axons. Green circles=excitatory synapses. Black
circles= inhibitory synapses. (A) If synapses and inputs could change sign
then they could be handled simply with a single contact. (B) In the actual
case there are four possibilities, each of which needs a separate synapse.
Only one of x+w+ and x+w− can be non-zero at any one time and the same
holds for x−w+ and x−w−. Complementary pairs are required be non-zero
to faithfully represent a dot product as shown for the cases of B1: x+w+ > 0
and B2: x−w+ > 0.

Let us explore this complication in detail. The input x can be
either positive or negative,denoted with {x+,x−} as can w,denoted
with {w+, w−}. Thus to compute the product, four connections
are required, representing all the combinations of positive and
negative signs. Figure 4B shows these possibilities. Note that the
figure is still a level of abstraction above the biological implemen-
tation of this relationship since a given set of synapses from any
one neuron can only be excitatory or inhibitory. Thus at least one
additional cell is required to change the inhibition to an excitation
of an inhibitory cell. Note also that the ± notation is an algebraic
device for keeping track of opponent quantities. For example w+

denotes the strength of a synapse. Whether or not it turns out to be
excitatory or inhibitory depends on circuit and algorithm details.
In the feedforward pathway w+ is positive and w− is negative, but
in the feedback pathway they have to vary in sign.

When using signed labeled lines, the realization of elementary
operations is not so straightforward and requires some care. To see
this it helps to develop a notation for signed labeled line vectors.
In standard vector notation, an example of a vector with two com-
ponents is: x =

(x1
x2

)
. A simple example showing the subtraction

of two vectors is shown as follows(
1
−2

)
−

(
3
1

)
=

(
−2
−3

)
This is standard vector mathematics, but now let’s introduce

a convention that allows us to keep track of the fact that posi-
tive and negative components are represented by different cells. To
express the subtraction in terms of labeled line notation, let’s use
separate components for each of the positive and negative sides,
as illustrated in the dot product example. Thus

x =


x+1
x−1
x+2
x−2



and the above example becomes
1
0
0
2

−


3
0
1
0

 =


0
2
0
3


Note that each vector component must be either positive or

negative so that in the labeled line notation, one of the two corre-
sponding pairs is always zero. Furthermore note that in subtracting
two vectors the result can be arbitrary in the sense that the resultant
component that is non-zero depends on the signs and magnitudes
of the vectors.

FEEDFORWARD PROJECTIONS
In Figure 3 all the feed forward connections from the LGN to the
model V1 cell are trying to make that cell produce a spike, that
is they are all excitatory connections. What about inhibitory con-
nections? Reid and Alonso (1995) showed that ON and OFF cells
that did not connect to the appropriate parts of the V1 receptive
field did not make excitatory connections, but there remains the
possibility that they may make, by some route, inhibitory connec-
tions. Our model suggests that indeed this should be the case, and
why by using our notation for signed labeled lines.

A basic step in the model is to compute the projection

N∑
i=1

xiwi .

In terms of our new notation this can be rewritten as

N∑
i=1

(
x+i w+i + x+i w−i + x−i w+i + x−i w−i

)
but since all the inputs are treated identically, let’s just concentrate
on one such input and drop its subscript, so that the focus is on

x+w+ + x+w− + x−w+ + x−w−.

where in this case w+ is an excitatory synapse and w− is an
inhibitory synapse. Taken at face value, this implies that there are
four possible synapses that could be constructed to represent all
the different possibilities for a term in the original dot product as
shown in Figure 4. However when the receptive field is formed, on
any cell, ideally only one of (x+w+,x+w−) should be non-zero.
Furthermore the desired term in the dot product is positive and
that can result from either x+w+ or x−w+ but not both. This
results because, given the learning algorithm, in the dot product
the positive synapse must track the time average <> of either
<x+> or <x−>.

Let’s assume that the positive term that maximizes the pro-
jection is x+w+. Then for the projections to be calculated cor-
rectly, there needs to be a subtraction for the incorrect input x−.
Thus the synaptic connection x−w−needs to be included where
|w−|= |w+|. If it is not included, then inputs that should be dis-
counted will not be, and as a consequence, those inputs will be
recorded as better matches to a neuron’s receptive field than is in
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fact the case. This connection implies that feed forward inhibition
should be anti-correlated as first argued by Miller (2003). As a side
note, this inhibition can be handled in at least two ways. Either (1)
the four connections can be present at a single cell, as depicted in
Figure 4, or (2) two cells can be used one collecting x+w+ and
the other collecting x−w− followed by each cell laterally inhibiting
the other. Lateral connections between simple cells are known to
exist but the specificity implied by the need to represent the dot
product correctly has not been established. Nonetheless a predic-
tion of the signed labeled line model is that this specificity has to
appear in some form of which the two possibilities just discussed
are the prime candidates and there is evidence for both (Hirsch,
2003; Martinez et al., 2005; Wang et al., 2007).

This notation allows the tracking of sign changes but has one
drawback. In the feedback connections, it turns out that when
using feedback, a value such as w+ sometimes can be the weight
of an inhibitory connection, and vice versa. The diagrams make
clear whether inhibition or excitation is intended.

FEEDBACK PROJECTIONS
The algorithm elaborated upon in the Materials and Methods
Section represents input by rapidly and sequentially selecting a
handful of neurons to represent it. The algorithm is conceptually
simple: one of the neurons that best matches the input is selected
first, then that neuron’s contribution is subtracted from the input
via a feedback signal with the result that the remainder is in the
form of new input and the process is repeated. However handling
negative feedback in the signed labeled line system is far from
straightforward and must be handled on a case by case basis. As
will be demonstrated, the net result is that the different cases need
to be realized in separate circuitry. To illustrate the signed labeled
line solution, consider the central calculation of the matching pur-
suit circuit described graphically in Figure 9. In the feed forward
pathway the projection of the input onto the largest vector must
be calculated. The result is given by x·w1 in standard notation
and we have termed this quantity β. The feedback is given by the
difference between the input vector x and its projection β into the
closest vector described by its synapses. Where w1 is the closest
such vector, this difference is given by:

x− βw1

Note that the need to deal with subtraction is a central requisite
of this algorithm but of course not specialized to it. Any algorithm
that required subtraction will have this issue.

Since all the components of the vector are treated identically,
for simplicity of both notation and exposition, again we will focus
on just one vector component. Thus in the subsequent calcula-
tions all the variables are scalars. The difference between the input
and vector projection for a single component can be indicated by
x − βw in standard notation. In signed labeled line notation this
becomes(

x+

x−

)
− β

(
w+

w−

)
where of course only one of x+ and x− can be non-zero at any
one time. Similarly only one of w+ and w− can be simultaneously

non-zero. We illustrate the circuitry for x+ non-zero. The circuitry
for x− non-zero is handled symmetrically. When x+ is non-zero,
there are a number of different cases, each of which require differ-
ent circuitry. For each such case, we indicate the resultant circuit
pathway with colored arrows, as shown in Figure 5.

Case I: x+ > βw+(
x+

0

)
− β

(
w+

0

)
=

(
x+ − βw+

0

)
This is a simple case. The feedback pathway is inhibitory and

has value w+.

Case II: x+ < βw+(
x+

0

)
− β

(
w+

0

)
=

(
0

βw+ − x+

)
This case is a little tricky but important. The result uses −x+.

To realize this, x+ has to be fed into the negative side, i.e., the
opponent neuron, with an inhibitory connection, and the feed-
back to that neuron has to be positive or excitatory. As shown by
Jehee and Ballard (2009), this component of the circuit can be a
form of rebound that introduces a temporal transient when the
inputs are suddenly disturbed.

Case III: w− > 0(
x+

0

)
− β

(
0

w−

)
=

(
x+ + βw−

0

)
This is another simple case. The feedback pathway is excitatory

and has value w+. By considering x−, the need for three more
pathways can be demonstrated for a total of six overall.

With six parallel feedback pathways, a concern is whether they
would interfere. A case by case analysis conforms that the circuit
will function as desired. Let’s examine the x+ three cases. Case I
does not interfere with Case II because when the values are appro-
priate for Case I, the circuitry on the complementary side is held
off. Similarly when Case II is appropriate, the circuitry for Case I
is held off by virtue of the relative values. As for Case III, when the
synapse w−> 0, its complement w+ is 0 so none of the circuitry
is needed. Thus the x+ feedback pathway is different depending
on whether <x+> or <x−> dominates. If the former, then the
feedback circuitry should look like Figure 5B1, if the latter then
the feedback circuitry should look like Figure 5B2. With regard
to this analysis, there are a very nice synergy between the latency
coding and STDP. In both STDP and our model, if the net input
to a cell is not sufficient to make it spike then the learning does not
occur. Thus the signal can be sent down three pathways at a time,
but only the correct pathway will produce a spike.

These relationships might be more complicated if the circuitry
had to operate in parallel with multiple, simultaneous feedback
pathways. However a fundamental property of the algorithm is
that only one coding (V1) neuron is analyzed per iteration. Owing
to this property, the cases hold for each of the model LGN neurons.

Figure 6 shows the result of the learned synapses of 512 V1
cells connecting to 100 LGN cells. Experiments have shown that
the feedback connections of cortical simple cells are inhibitory
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FIGURE 5 |The feedback pathway connections. (A) An inhibitory feedback
circuit is simple to describe with signed synapses and signals. (B) Special
care must be taken when using signed labeled lines. Analyzing the feedback
to a single cell requires treating x+ separately from x−, but here only the three
cases for x+ are analyzed as the cases for x− are symmetric. (B1) Case I: in

the simplest to understand case x+ > βw+ > 0, the feed forward circuit
computes the projection β and the feedback component is inhibitory. Case II:
when x+ < βw+, things are more complicated as the feedback must excite
the complementary LGN cell. (B2) Case III: when w− > 0 the feedback is
excitatory also but to the x+ cell.

FIGURE 6 | Case I feedback connections from cortical cells to LGN OFF
and ON cells obtained in a simulation of a larger system with 10 × 10
patches and 256 cortical cells. The Each LGN cell has a coordinate in all the
sub-matrices. If that coordinate is colored then it is receiving inhibitory input
from the cortical cell represented by the sub-matrix. OFF: if the input
connection to the LGN cell had an x+ input, i.e., was positive, then the

primary feedback to the ON cell and will be negative. ON: if the feedforward
connection came from an OFF cell (x− input and there fore positive), then the
primary feedback to that OFF cell and will be negative. Similar connection
patterns can be generated for the other four cases, but with appropriately
different connections and polarities as dictated by Figure 5. The color coding
convention follows Figure 3.
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when the “ON” field of a simple cell feedback connects to its cor-
responding input ON LGN cell, and excitatory when it connects to
the corresponding OFF LGN cell (Wang et al., 2006) and the Case
I connections in our simulation replicate the experimental result.

The analysis has revealed six separate cases but one can won-
der whether they are all used by the algorithm. In other words, is
image data such that some of the cases do not occur? The simula-
tion conforms that all six cases are used. Figure 7 shows this result.
Each time a V1 cell is selected, it must send feedback to each of the
8× 8× 2 LGN cells that it is connected to. For each of those cells,
only one of the six cases will come up. For this reason we can create
a color coded image with the rule that, for each V1 coding neuron,
the last time it was selected, for each of its feedback targeted LGN
neurons, we can color code the route that the feedback took. To
unpack this explanation a bit more, realize that each of the posi-
tions in Figure 7 can represent any of the six possible pathways to
the LGN at that location. The specific color displayed denotes, for
a particular feedback moment in time, which of the six pathways
was actually used. The colors in the top left of Figure 7 reveal
that typically all six cases are present. Furthermore they are used

extensively. Figure 7 (top right) shows a histogram of the routes
over a large sample of cells. Figure 3 tracked the Case I feedback
synapses, but all six cases learn. The bottom traces in Figure 7
shows the beginning of learning in all three cases for eight sets of
LGN synapses from the three x+ cases. Synapses in all three cases
have been updated. The Case II synapses are inhibitory.

TRACKING DYNAMIC SYNAPSES
Research on the formation of synapses is showing that their forma-
tion and maintenance is very dynamic (Trachtenberg et al., 2002;
Bourne and Harris, 2007, 2008; Yamahachi et al., 2009). Given that
we can explicitly represent signs of synapses, one very important
consideration is; Do the connections in the model circuitry need
to change from one polarity to another? The consequences are
significant because for example, if the dominant input to a coding
cell changes from <x+> to <x−>, then the feedback pathway
that was in the form of Figure 5B1 has to change somehow to that
of Figure 5B2. The simulations show that such polarity changes
are indeed the case; connections can be required to change from
inhibitory to excitatory and vice versa throughout the learning

FIGURE 7 |Tracking instantaneous feedback routes. Colors denote the six
different routes that feedback can travel. Top left: for each model neuron, the
last time it was chosen its feedback pathway for each of its synapses is
labeled with a color denoting the route to each of the LGN neurons selected.

The colors show that all six cases are realized. Top right: a histogram of the
frequency of usage of the different cases. Bottom: a small segment of 32
applications of learning shows the beginnings of synapse learning. 10×10
maps of the combined connection strengths to the LGN cells are shown.
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process. In the model, all possible connections are present initially
and just their strength is modulated by the algorithm. Perhaps
quite naturally, in the course of learning their final values, the
synaptic weights change sign fairly often. They start out by mak-
ing many changes and then gravitate to making fewer changes in
the final stages of synaptic convergence.

Figure 8 shows this by testing the polarity of the weights every
3,000 image samples. As is evident, a large fraction of the synapses
change their values. During the first 3,000 iterations about 4,000 of
the total of 8,192 feedforward synapses change their values. If they
are not needed they drift toward zero, but if they are needed an
excitatory contact may have to be replaced by an inhibitory con-
tact or vice versa. The figure shows the change from excitatory to
inhibitory as black and the opposite change as white. Most of the
changes are in the early stages, but the synapses can change even
near the end of the learning process. The model is non-committal
as to how synapse changes are accomplished. The synapses need to

change throughout the learning process, but the number decreases
to less than 0.05% per learning rule update (an update refers to
the selection of a neuron in the matching pursuit process – see
Materials and Methods). However at the beginning the rate of
sign changes may seem low at 5%, but remember that this is for
each neuron that is selected, so in fact the cortical connection
process needs to be very dynamic. What perhaps might have been
expected, but nonetheless is very interesting to observe, is that the
progress of receptive field formation is highly correlated (r = 0.97)
with the number of polarity changes, as shown in Figure 8F. This
hints that the rate of polarity change could be a highly informative
developmental measure.

Figure 8 summarizes synaptic changes but it is of interest to
track the dynamics of synapses in detail. In the learning algo-
rithm, every time a cortical neuron is chosen to represent a signal, a
small adjustment is made in the synaptic strengths. Corresponding
adjustments have to be made in the feedback pathway. Although

FIGURE 8 |The changes in polarity of receptive fields during learning.
A change from positive to negative is denoted by black and a change from
negative to positive is denoted by white. (A) After the first 3,000 image
patches. (B) After the second 3,000 image patches. (C) After the third 3,000
image patches. (D) After the forth 3,000 image patches. (E) The points plotted
show the average number of synapses that had to change from a base of

256. Fifty samples are used in computing the standard error bars. Thus
initially, on every learning update, about 5% of the synapses need to change
signs. At the end of learning this number is down to less than 0.5%. (F) The
change in synapse polarity is tightly correlated with the residual error in fitting
receptive fields (r =0.97), suggesting that the changes in polarity can be used
to track the progress of receptive field formation.
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FIGURE 9 | Detailed tracks of the feed forward synapse to the cortical
cell during the learning process. The shaded area delimits the region
wherein the connection is inhibitory. The synapse changing sign signifies that
the B1 connections have to change to those in B2 in Figure 5. (A) A synapse

that if briefly positive in two instances but ends up negative. (B) A synapse
that is positive for most of the learning process but ends up slightly negative.
(C) A synapse that starts out positive but very soon becomes negative and
remains so. (D) A synapse that decreases in strength but is always positive.

the amount the synaptic strength changes in each update is a user-
set parameter, it is still instructive to chart the progress of the
synapses as a function of updates, as shown in Figure 9. Four feed
forward synapses coding the x+ signal from a randomly selected
cortical neuron reveal very different dynamic trajectories. How-
ever each time one of these synapses changes polarity from positive
to negative, the circuitry representing x+ must switch from the
Case I/II configuration to the Case III configuration and vice versa.

The sign changes for all the synapses in a single V1 cell are
summarized in Figure 10. Each time any neuron is updated the
number of sign changes in its synapses are recorded and the model
allows us to inspect these changes. To demonstrate this capabil-
ity, we track the behavior of model neuron #54 (out of 128) in
Figure 10 which shows the course of each of its 64 synapses. The
x-axis records the updates, that is each time that particular neuron
was selected for modification (in the course of the learning algo-
rithm there were intervening periods where other neurons were
chosen). The simulation data for model neuron #54 shows that
for the first 100 updates, 19 of 64 synapses changed from one
polarity to another. For example synapse location (4,3) started out
as excitatory (+1), switched to inhibitory (−1) around update 50
and then switched back to excitatory and finished as an inhibitory

connection. By comparison, synapse (4,4) was always inhibitory
and synapse (1,6) was always excitatory.

DISCUSSION
Most neural network simulations ignore the detailed constraints
of real neurons, blithely assuming that synapses can change signs
and that huge precision is available in the intracellular signal-
ing. The assumption is that the mathematics is important and the
implementation issues are just unimportant details. Our simula-
tions support this by showing that when these details are taken
into account, the results that have been obtained with the more
abstract models do indeed extend to the more detailed setting.
However the labeled line model provides an important new vista
into neural coding of dynamical circuits in several aspects.

MULTIPLE, SEPARATE FEEDBACK PATHWAYS ARE REQUIRED
Surprisingly, from the standpoint of the model its feedback travels
along different pathways depending on whether it is negative or
positive. This is at least testable and may have already been tested.
Sillito et al. (Murphy et al., 1999) has observed that cortical feed-
back to the LGN is phase reversed, meaning that if the cortical
simple cell connects back to an LGN cell of the opposite polarity
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FIGURE 10 |Tracking the polarity of connections to a single cell.
(A) The black portion of the legend denotes the polarity of a synapse
(in this case inhibitory) as a function of the number of updates. (B)
The state of all 128 possible synapses for a particular model simple
cell as a function of the times that it was chosen to represent an input

image stimulus. The figure represents two possible synapses at each
location. Most locations can be represented by a single synapse that
does not change sign, but at 19 positions the synapses need to
change sign during the computation, some several times such as
synapse position (8,7).

as measured with respect to the cortical cell’s receptive field, then
that connection is excitatory. They recognize that this is a push-
pull circuit, and speculate on its function as “gain control and
linearity in the transfer of input to the cortex,” but from our per-
spective a potential function is much simpler. The phase-reversed
connections occur as Case II of our signed labeled lines feedback,
and thus are a direct consequence of an algorithm, which is trying
to represent stimuli in an economical way and compute synapse
strengths via negative feedback.

EXCITATORY AND INHIBITORY SYNAPSES ARE EXCHANGED IN RF
FORMATION
Learning in the labeled line model can require that an excitatory
synapse be replaced by an inhibitory one and vice versa. This means
that these synapses must be coupled somehow, so that the state of

one can be available in some form to its complement. The simula-
tions herein do not address the mechanism for accomplishing this
but it needs to be done. This observation is not as evident from
signed representations. Furthermore the number of synapses that
have to change sign from iteration to iteration is substantial, being
about 3%, and, if there were a way of measuring synaptic dynamics
en mass, this could be tested.

One issue that is not simple to explain is that the synapses can
be set with so few updates. After about 400 updates per model
neuron the synapses have converged to their final values. Given
that an update in our simulation might only take 20–100 ms, it
is hard to explain why the biological process seems to take much
longer. One way this could arise is if there were overhead in setting
up the synapses in the first place; our model does not represent
this difficulty. Another slowdown factor might be that the amount
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a synapse can change per update is much less than assumed by the
model. In any case the model provides the beginning of a processes
of simulating alternate hypotheses.

HEBBIAN LEARNING RULES
Learning is also impacted by the signed labeled line representa-
tion. Although the rules are Hebbian in that they are local, their
actual implementation must be different in the feed forward and
feedback pathways. In the feed forward pathway the desired modi-
fication is carried by an error signal in the spike code itself whereas
in the feedback pathway the modification is a result of the dif-
ference between the feedback and other inputs. An additional
complication is that, owing to the fact that, for each model neuron,
there is no signal for one or other of the polarities, only one side of
the correction can be actively implemented. This makes the signed
labeled line learning system compatible with spike timing depen-
dent plasticity (STDP; Bi and Poo, 1998; Dan and Poo, 2004), but,
in that scheme negative corrections to synaptic strength are sig-
naled with spike timing advances, a feature that is not used by our
model. One implication is that STDP plays some additional roles
in the management of cortical circuits.

SIGNED LABELED LINES MAKE SQUARING SIMPLE
Some abstract models of motion detection require a squaring
function to overcome the fact that while the signed signal may be
uncorrelated, its absolute value is usefully correlated (Simoncelli
and Heeger, 1996). However, just how does neurobiology come
up with such a function? In the labeled line representation, this
is much less of a problem than in signed representations as the
signal is easily rectified by treating the “negative” part of the signal
as positive.

FITTING THE TIME COURSE OF LEARNING TO DATA
The model makes the intriguing prediction that the number of
changes in synaptic polarity over time tracks that progress of recep-
tive field formation but does not ground this progress in terms of
observed time courses in neural development. However it may be
that the observed progress of visual perception in humans can
serve to bracket a possible correspondence. The ability to per-
ceive kinetic depth occurs in the first months of development and
stereo depth perception occurs at about 4 months (Yonas and Ater-
berry, 1987). Thus in terms of early visual cortex the predominant
changes should be observed with a time constant of a few months.

CONCLUSION
New techniques that allow the elucidation of the details of corti-
cal circuitry are showing that the cortical matrix of cells is very
detailed (Yoshimura et al., 2005; Nassi et al., 2006; Luo et al., 2008)
and under considerable genetic control (Cubelos et al., 2010), so
to decipher it, it is likely that all useful constraints will need to be
brought to bear. We show here that the interaction of a standard
algorithm with the basic cortical coding of signed information can
explain experimental observations of push-pull circuitry in both
feed forward and feedback pathways.

An important point to note is that, even at its chosen level
of abstraction, the feedback circuit is not the only way of mod-
eling the formation of receptive fields by learning natural image

statistics. Spratling (2008) has shown that feedback can equiva-
lently modeled by lateral inhibition at the cortical level, and which
of these two methods are used will have to be settled experimen-
tally. However wherever subtraction is used in a circuit with signed
labeled line encodings, the issues addressed in this paper will arise.

It is possible to design model circuits that use division (divi-
sive normalization) instead of subtraction. The model by Ozeki
et al. (2009) sheds light on the constraints governing the cortical
implementation of inhibition, but at the same time sidesteps larger
issues tackled herein such as learning receptive fields. The design
by Spratling (2010) provides an excellent fit to a very large number
of experimental observations, and has recently been extended with
learning algorithms (Spratling, 2012) for its synapses. In compar-
ison, the learning algorithm used here is a variant of that of Jehee
et al. (2006) and has a formal Bayesian grounding. Furthermore
Ballard and Jehee (2011) show that it has a potential explanation
of the observed Poisson randomness observed in cortical spikes.
The simulation of the learning algorithm here shows that it is
still effective, despite the overhead produced by a bipolar coding
strategy.

A final important thing to keep in mind is that although the
model is much more detailed than the majority of neural models
that used signed representations for synapse and neuronal out-
puts, it is still very abstract in that it ignores many of the still more
detailed aspects of cortical architecture (Reichova and Sherman,
2004). This architecture is obviously used for many functions in
the course of implementing complex behaviors and those func-
tions must be represented in additional circuitry to that assumed
by our model. Furthermore it is well known that the feedback loop
from striate cortex to LGN is complicated by many intermediate
connections. For example the input to striate cortex terminates
in layer IV whereas the output to the LGN originates from layers
V and VI. In our model this complexity is summarized in sin-
gle model neurons that receive both input and provide output.
Along these lines there is another area in the simulation would
need to be refined, and that is the fact that in the cortex the num-
ber of excitatory synapses outnumbers the number of inhibitory
synapses. One estimate (Sherman and Guillery, 2003) is that the
ratio of excitatory synapses to inhibitory synapses is on the order
of 84:16. Since the ratio in the model is very close to 1:1, this
means that there must be a pooling of inhibition where by mul-
tiple network inhibitory connections are handled by registering
them as excitatory on an intermediate cell that then has a single
inhibitory connection of the net value on the original destination
cell.

Cortical circuitry is extremely complex, and in order to com-
pletely understand and integrate its structure and function, a wide
variety of data from different sources will have to be synthesized
into a coherent picture. In that effort, the constraints in this paper,
which relate the dynamics of synapse formation to both the basic
cortical representation of signals and a promising algorithm for
understanding the representation’s formation, may turn out to be
a very important component.
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