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Abstract

For every n and 0 < δ < 1, we construct graphs on n nodes such that every two sets of size nδ share an edge,
having essentially optimal maximum degree n1−δ+o(1). Using known and new reductions from these graphs,
we explicitly construct:

1. A k round sorting algorithm using n1+1/k+o(1) comparisons.

2. A k round selection algorithm using n1+1/(2k−1)+o(1) comparisons.

3. A depth 2 superconcentrator of size n1+o(1).

4. A depth k wide-sense nonblocking generalized connector of size n1+1/k+o(1).

All of these results improve on previous constructions by factors of nΩ(1), and are optimal to within factors
of no(1). These results are based on an improvement to the extractor construction of Nisan & Zuckerman:
our algorithm extracts an asymptotically optimal number of random bits from a defective random source
using a small additional number of truly random bits.

1 Introduction

1.1 Expanders

A graph is called an expander if any subset of its nodes of a certain size (or sizes) has many neighbors.
Varying the meaning of “certain size” and “many neighbors” give different notions of expansion, as we will
see below. Expander graphs have had numerous applications in a wide range of areas of computer science
(e.g. [AKS1, AKS2, FFP, GIL+, Tom, Val2]).

It is not hard to show that a random graph is an expander. Yet the problem of deterministically con-
structing expanders has proved to be difficult; the construction of constant-degree expanders was considered
a breakthrough [Mar, GG].

The eigenvalue method has proved particularly useful in designing expander graphs. This method works
by looking at the adjacency matrix A of an undirected graph G = (V,E). To simplify matters for the
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moment, suppose that G is d-regular, so A has d as its largest eigenvalue. Then G is an expander if and
only if the other eigenvalues of A are bounded away from d [Alo2, Tan, AM].

The problem with this equivalence is that it is not tight. For a random d-regular graph, small sets S have
roughly (d− 1)|S| neighbors, yet bounding the second eigenvalue can only be used to show the existence of
roughly (d/2)|S| neighbors [Kah].

The situation gets much worse for larger degree and stronger expansion. A definition that captures such
strong expansion is:

Definition 1.1 [Pip3] An undirected graph is a-expanding if any two disjoint sets of vertices, each contain-
ing at least a vertices, are joined by an edge. Equivalently, every set with a vertices has more than n − a
neighbors.

It is easy to see that every a-expanding graph must have d ≥ n
a , and it is not too hard to show that

random n
a log n-regular graphs are a-expanding. To see the best upper bound on d that can be obtained

using the eigenvalue method, let λ be the second largest eigenvalue of A, and E(S, T ) denote the number of
edges between S, T ⊆ V . The basic inequality (simplified slightly from the best inequality obtainable) is

E(S, T ) ≥ d|S||T |
n

− λ
√
|S||T | (1)

Thus if |S| = |T | = a, to ensure E(S, T ) > 0 we must have da ≥ λn.1 But it is known that if d ≤ n/2
then λ ≥

√
d/2, which forces d ≥ 1

2 (na )2. This is useless when a <
√
n, and even when a ≥

√
n, it forces

roughly a quadratic loss compared to the probabilistic existence bound d = n
a log n.

In this paper, we show how to construct graphs that come within an no(1) factor of optimal:

Theorem 1.2 There is a Logspace algorithm that, on input n (in unary) and δ, where 0 < δ = δ(n) < 1,
constructs nδ-expanding graphs on n nodes with maximum degree n1−δ+o(1).

Remark: In fact, our no(1) factors will be bounded by exp((log n)2/3+o(1)).
Our result is obtained by improving the extractor construction of [NZ]. The motivation for extractors is

that there are many fast and useful randomized algorithms. The extractor allows us to compute efficiently
if the random source is defective, as long as we have a small number of truly random bits available. (In fact,
even if we don’t have any truly random bits, we can cycle through all possibilities – see [NZ, Zuc2] for more
details.) Our model for defective random source will essentially be the most general:

Definition 1.3 [Zuc1] A distribution D on {0, 1}n is called a δ-source if for all x ∈ {0, 1}n, D(x) ≤ 2−δn.

Note that a particular type of δ-source is the uniform distribution on a subset A ⊆ {0, 1}n, |A| ≥ 2δn.
We can now define:

Definition 1.4 [NZ] E : {0, 1}n×{0, 1}t → {0, 1}m is called an (n,m, t, δ, ε)-extractor if for every δ-source
D, the distribution of E(x, y)◦y induced by choosing x from D and y uniformly in {0, 1}t is within statistical
distance ε of the uniform distribution. Here ◦ denotes concatenation.

For now, think of δ ≤ 1/2 as a fixed constant and ε = 1/nc for some constant c. In [NZ] an efficient
extractor was described requiring t = (log n)O(1) additional random bits and outputting m = Ω(n) nearly-
random bits. Here we show how to improve the output length to asymptotically the right value: our
construction gives t = (log n)O(1) and m = (δ− o(1))n. This near-optimal output length is necessary for our
graphs to have near-optimal expansion. We do pay a price, however, in that our t is larger than in [NZ].

The improvememnt allowing near optimal output length comes from a simple but crucial observation,
namely that we can apply a given extractor to a defective source until we get essentially all of its entropy out.
It is made precise in lemmas 2.4 and 2.5. This idea was key for later results as well, e.g. the near-optimal
samplers of Zuckerman [Zuc3].

The only tools we use are hash functions and k-wise independence. Our construction builds heavily
on the one in [NZ], which in turn builds upon ideas in [Zuc1, Zuc2]. Indeed, the explicit construction of
expanders that beat the eigenvalue bound in a different scenario were first obtained in [Zuc1].

1Actually, using Tanner’s inequality [Tan], it suffices to have the degree slightly less: da ≥ λn/(1 + λ/d).
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1.2 Applications

Our graphs improve many explicit constructions. In all cases, our results improve upon previous constructions
by factors of nΩ(1), and are optimal to within factors of no(1). Therefore, it will be convenient to ignore no(1)

factors using the following notation.

Definition 1.5 O∗(f(n)) denotes f(n)no(1).

Still, we stress that in our bounds the no(1) factor is really exp((log n)2/3+o(1)). In the probabilistic and
optimal bounds they are at most log2 n, so there is still a gap to close.

Sorting and Selecting in Rounds

Sorting and selecting in rounds has been an area of intensive study. This is the worst-case complexity in
Valiant’s comparison-tree model [Val1] using a constant number k of rounds. For sorting, Ω(n1+1/k(log n)1/k)
comparisons are necessary [AA], and O(n1+1/k log n) comparisons are sufficient [BT]. This last result, how-
ever, is non-constructive. Pippenger [Pip3] showed a slightly worse non-explicit construction ofO(n1+1/k(log n)2−2/k),
but his construction depends only on the existence of nδ-expanding graphs with an optimal number of edges.
Thus, applying our construction, we obtain a near-optimal explicit algorithm using O∗(n1+1/k) comparisons.
The best known previously was O∗(n1+2/(k+1)) [Pip3].

The situation for selecting is very similar. The non-constructive upper bound ofO(n1+1/(2k−1)(log n)
2− 2

2k−1 )

comparisons [Pip3] is close to the lower bound of Ω(n1+1/(2k−1)(log n)
2

2k−1 ) [AA]. Again we obtain a nearly

optimal constructive upper bound ofO∗(n1+1/(2k−1)), improving the previous best ofO∗(n1+2k−2/(3k−1−2k−2))
[Pip3].

A related problem is “almost-sorting” in 1 round: how many comparisons are necessary to find the
relations of all but r of the pairs of elements. Several papers have analyzed the case r = o(n2) (e.g.
[AKSS, AA]), but it is natural to study the question for general r, such as r = n2−ε, 0 < ε < 1. For such r,
the non-constructive upper bound of O(n1+ε log2 n) comparisons [AKSS, AA] is close to the lower bound of
Ω(n1+ε log n) [AA]. Here we give the first nearly optimal constructive upper bound of O∗(n1+ε), improving
the previous best of O(n1+2ε log n) [AKSS, AA].

Superconcentrators and Nonblocking Networks

Our graphs are also useful in explicitly constructing various networks. An (n,m)-network is a directed
acyclic graph with n distinguished vertices called inputs and m other distinguished nodes called outputs.
An (n, n)-network is also called an n-network. The size of a network is the number of edges, and the depth
is the length of the longest path from an input to an output.

One important example is a superconcentrator. An n-superconcentrator is an n-network such that for
every subset A of the inputs and B of the outputs such that |A| = |B|, there exist vertex-disjoint paths
joining the vertices in A to the vertices in B. Superconcentrators have proved very useful in complexity
theory (e.g [Tom, Val2]). Indeed, superconcentrators were the original motivation for constructing expander
graphs.

While linear-sized superconcentrators have been explicitly constructed (e.g. [GG]), these all have loga-
rithmic depth. The best known explicit constructions for depth 2 is O(n3/2) [Mes], and for depth 2k+ 1 are
of size O(n(k+3)/(k+2)) [Alo1]. On the other hand, non-explicit constructions were known of size O(n log2 n)
for depth 2 [Pip2], and O(nλ(k, n)) for depth 2k, k ≥ 2, for an extremely slowly growing λ(k, n) (e.g.
λ(2, n) = log∗ n) [DDPW].

Here, we give an explicit construction for depth 2 of size O∗(n). This is our biggest improvement: a factor
of O∗(

√
n). We use this construction to give the first explicit construction of a linear-sized superconcentrator

with sublogarithmic depth (namely, depth (log n)2/3+o(1)).
The main tool in most superconcentrator constructions is the concentrator, which is interesting in its

own right (e.g. [Mor]). An (n,m, l)-concentrator is an (n,m)-network such that every set of at most l inputs
is connected by vertex-disjoint paths to outputs. Concentrators of depth 1 are usually built with expanders,
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with the exception of [Mor]. The best previous construction of depth 1 (n, nδ,Ω(nδ)) concentrators has size
O(n1+min{δ/2,(1−δ)}) (see e.g. [FFP]). Here we construct a generalization of these concentrators with size
O∗(n).

We use this generalized construction to give a construction of wide-sense nonblocking generalized connec-
tors. To motivate this, think of routing telephone calls from inputs to outputs: any input-output pair can
be requested at any time and the callers may “hang up” at any time, at which time these new inputs and
outputs are free to be requested. A wide-sense nonblocking generalized connector, roughly speaking, is one
where the router need never be stuck (we define it precisely later). Feldman, et.al. [FFP] gave non-explicit
constructions for depth k wide-sense nonblocking generalized connectors of size O(n1+1/k(log n)1−1/k), es-
sentially matching the Ω(n1+1/k) lower bound [PY]. They also gave explicit constructions for depth 2 of size
O(n5/3), for depth 3 of size O(n11/7), and for depth k of size O(n1+2/k). Here we give an explicit construction
for depth k of size O∗(n1+1/k).

2 The Construction

For ease of reading, we ignore integrality constraints, assuming when needed that a number is an integer.
It is not hard to see that this does not affect the validity of our arguments. We start by clarifying what we
mean by “within statistical distance ε of the uniform distribution” in the definition of extractor.

Definition 2.1 A probability distribution D on a set S is uniform within ε if for all X ⊆ S, |D(X)− |X|/|S|| ≤ ε.
Here D(X) denotes the probability of the set X according to distribution D.

From the definition of extractor, it is clear that the smaller δ and ε are, the harder it is to construct
an extractor. In [NZ] (see the final version for slightly improved parameter dependence), an extractor is
constructed for essentially all reasonable δ and ε (although upper bounds are placed to make the expressions
simpler):

Lemma 2.2 [NZ] For any parameters δ = δ(n) and ε = ε(n) with 1/n ≤ δ ≤ 1/2 and 2−δn ≤ ε ≤ 1/n, there
exists a polynomial-time, linear-space computable (n,m, t, δ, ε)-extractor E : {0, 1}n × {0, 1}t → {0, 1}m,
where t = O(log ε−1 log2 n log δ−1/δ) and m = Ω(δ2n/ log δ−1).

The idea for constructing our graphs is fairly simple, and described by the following lemma:

Lemma 2.3 If there is an (n,m, t, δ, 1/4)-extractor computable in linear space, then there is an Nδ-expanding
graph on N = 2n nodes with maximum degree N21+2t−m constructible in Logspace.

Proof: An extractor E naturally defines a bipartite graph H on V ×W , where V = {0, 1}n and W =
{0, 1}m. Namely, connect x ∈ {0, 1}n to z ∈ {0, 1}m if and only if there is a y ∈ {0, 1}t such that E(x, y) = z.
Let N = |V | = 2n and M = |W | = 2m. Then E being an extractor implies that a subset A of V of size at
least Nδ has at least (1−ε)M = 3M/4 neighbors. Otherwise, if more than εM vertices in W have probability
0 of being hit, then E(x, y) cannot be uniform within ε, for x chosen uniformly from A and y from {0, 1}t.
Thus, any two sets of size Nδ have a common neighbor (in fact, at least M/2 common neighbors). In other
words, the graph H2, with vertex set V and edges corresponding to paths of length 2 in H, is Nδ-expanding.

We must be somewhat careful, however. Nothing in the definition of extractor prevents every vertex in
V from having the neighbor 0m (say) in H, making H2 a clique. We therefore form the graph G from H
by deleting vertices in W that have degree more than twice the average for nodes in W , i.e. more than
2N2t/M . In this way, we retain a set of undeleted nodes W ′, which has size M ′ ≥ (1−ε)M = 3M/4 (if more
than εM nodes had twice the average probability of being hit, then E(x, y) could not be uniform within ε).
Moreover, any two subsets of V of size Nδ have at least M/4 common neighbors. Thus the graph G2 is the
one we seek. 2

Substituting in the extractor of [NZ] gives a construction which beats the eigenvalue bound, but is not
near-optimal. To get a near-optimal construction, we need to make m close to δn, while keeping t small. The
idea for doing this is to repeatedly apply existing, sub-optimal extractors to the same defective source, with
fresh values of y. As long as we didn’t get all the entropy out from the source, even when we condition on
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what we output so far, some entropy remained and we can apply the extractor again to get more out. This
idea is formalized in the next two lemmas. In them, the word “efficient” can have almost any reasonable
meaning, such as computable in Logspace, NC, or polynomial-time.

Lemma 2.4 Given an efficient (n,m1, t1, δ, ε1)-extractor E1and an efficient (n,m2, t2, δ − (m1 + k)/n, ε2)-
extractor E2, we can construct an efficient (n,m1 +m2, t1 + t2, δ, ε1 + ε2 + 2−k)-extractor E.

Proof: We define E(x, y1 ◦ y2) = E1(x, y1) ◦ E2(x, y2). Suppose X is output according to a δ-source on n
bits, and Y1 ◦ Y2 is chosen uniformly from {0, 1}t1+t2 . Let D denote the distribution of the random variable
W1 = E1(X,Y1) ◦ Y1, which is uniform within ε1. Clearly, the probability a random value w of W1 chosen
according to D has probability weight D(w) ≤ 2−(m1+t1+k) is at most 2m1+t1 · 2−(m1+t1+k) = 2−k. But
for w satisfying D(w) ≥ 2−(m1+t1+k), when we condition on E1(X,Y1) ◦ Y1 = w, the distribution of X is
a (δ − (m1 + k)/n)-source, so W2 = E2(X,Y2) ◦ Y2 is uniform within ε2. Removing the conditioning, we
conclude that W1 ◦W2 is uniform within ε1 + 2−k + ε2, as required. 2

This allows us to recurse as in the following lemma:

Lemma 2.5 Fix positive integers n and k. Suppose there is a family of efficient (n,m(δ), t(δ), δ, ε(δ))-
extractors Eδ, one for each δ ∈ [η, 1], where t and ε are non-increasing functions of δ. Let f(δ) = m(δ)/(δn),
and suppose f is non-decreasing. Then we can construct an efficient (n, (δ−η)n−k, r · t(η), δ, r(ε(η)+2−k))-
extractor, where r = 1 + ln(δ/η)/f(η). If f grows at least linearly (i.e. f(cδ) ≥ cf(δ) for c > 1), then we
can take r = d1/f(η)e.
Proof: We recurse using Lemma 2.4 with parameter k, defining extractors inductively as follows. Let
E(1) = Eδ, and for i > 1 let

E(i+1)(x, y(i) ◦ yi+1) = E(i)(x, y(i)) ◦ Eδi+1
(x, yi+1),

where we define δi+1 inductively as follows. Namely, let E(i) output m(i) bits. Then δi+1 = δ− (m(i) +k)/n.
We stop recursing at the integer s where δs+1 < η, and hence m(s) > (δ − η)n− k.

Let mi, ti, εi denote m(δi), t(δi), and ε(δi), respectively, so that Eδi is an (n,mi, ti, δi, εi)-extractor.

Applying Lemma 2.4 inductively shows that E(i) is an (n,m(i), t(i), δ, ε(i))-extractor, where m(i) =
∑i
j=1mj ,

t(i) =
∑i
j=1 tj ≤ r · t(η), and ε(i) = (

∑i
j=1 εj) + (r − 1)2−k ≤ r(ε(η) + 2−k).

We show that s ≤ r, from which the lemma follows. Subtracting expressions for δi+1 and δi gives
δi+1 = δi−mi/n = δi(1−f(δi)). To see s ≤ 1+ln(δ/η)/f(η), we use f(δi) ≥ f(η), so δ(1−f(η))s−1 ≥ δs ≥ η.

If f grows at least linearly, let γ = f(η)/η. By the linear growth of f , f(δi) ≥ δiγ, and hence δi+1 ≤
δi(1− γδi). Now let bi = 1/δi. Then bi+1 ≥ bi(1− γ/bi)−1 ≥ bi(1 + γ/bi) = bi + γ. Hence bs ≤ 1/η implies
s ≤ d(γη)−1e = d1/f(η)e, as required. 2

We can now prove our main theorem, which we restate:

Theorem 1.2: There is a Logspace algorithm that, on input N (in unary) and δ, where 0 < δ = δ(N) < 1,
constructs an Nδ-expanding graph on N nodes with maximum degree O∗(N1−δ).

Proof: Assume without loss of generality that N is a power of 2, so N = 2n. Set η = (log5 n/n)1/3,
ε = 1/n, and k = log n. If δ < η, then the complete graph satisfies the theorem.

Otherwise, apply Lemma 2.5 to the extractor given by Lemma 2.2. Since f(δ) = Ω(δ/ log δ−1), which
grows at least linearly, r = O(log η−1/η) = O(log n/η). Therefore Lemma 2.5 yields an (n,m, t, δ, ε)-extractor
with m = (δ − η)n− log n, t = O(log5 n/η2), and ε = o(1). Then Lemma 2.3 gives an Nδ-expanding graph,
where the logarithm of the maximum degree is

n+ 1 + 2t−m = (1− δ)n+O((log5 n)/η2 + ηn) = (1− δ)n+ n2/3+o(1),

as needed. 2
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3 Sorting and Selecting in Rounds

The following is implicit in Pippenger’s work:

Lemma 3.1 [Pip3] Suppose that for all 1/2 ≤ δ < 1 there are explicitly-constructible nδ-expanding graphs
with maximum degree n1−δf(n). Then there are explicit algorithms for sorting and selecting in k rounds

using O(n1+1/kf(n) log n) and O(n1+1/(2k−1)f(n) log n) comparisons, respectively.

Proof: Use a = n1−1/k/ log n and a = n1−1/(2k−1) in Pippenger’s proofs of Theorems 2 and 1, respectively.
2

This immediately yields:

Theorem 3.2 There are explicit algorithms for sorting and selecting in k rounds using O∗(n1+1/k) and

O∗(n1+1/(2k−1)) comparisons, respectively.

Proof: Use Lemma 3.1 with the graphs constructed in Theorem 1.2. 2

The following lemma about almost-sorting in 1 round appears in [AKSS]:

Lemma 3.3 [AKSS] If G is an a-expanding graph, then after performing the comparisons according to G,
all relations will be known except for O(an log n).

This immediately gives:

Theorem 3.4 There are explicit algorithms to find all relations except n2−ε in one round using O∗(n1+ε)
comparisons.

Proof: Perform comparisons according to a cn1−ε/ log n-expanding graph constructed via Theorem 1.2. 2

4 Superconcentrators

In this section, we explicitly construct superconcentrators of depth 2 and size O∗(n). In order to construct
our networks, we use as building blocks nδ-expanding weak concentrators:

Definition 4.1 An a-expanding weak (n,m)-concentrator is an (n,m)-network of depth 1 in which every
subset of the inputs of size a expands to more than m− a outputs.

Note that these are not concentrators in the usual sense.

Lemma 4.2 For all n, 0 < δ = δ(n) < 1, 2 ≤ r = r(n) ≤ O(n1−δ), there are explicitly-constructible
nδ-expanding weak (n, rnδ)-concentrators of size O∗(rn)

Proof: By Theorem 1.2, we can construct an nδ-expanding graph G on n+rnδ nodes with maximum degree
O∗(n1−δ). Form an (n, rnδ)-network H = (V ∪W,E) by letting the outputs W be any rnδ vertices, and V
the rest. Remove all edges not between V and W . Since G is nδ expanding, H is an nδ-expanding weak
(n, rnδ)-concentrator. Moreover, |E| ≤ rnδO∗(n1−δ) = O∗(rn). 2

It is convenient to use the following characterization of depth 2 superconcentrators, due to [Mes]. Let
N = (I ∪M ∪O,F ) be an n-network of depth 2 with inputs I, middle layer M , and outputs O. For X ⊆ I
and Y ⊆ O, define

Γ+(X) = {z ∈M : (x, z) ∈ F for some x ∈ X},

Γ−(Y ) = {z ∈M : (z, y) ∈ F for some y ∈ Y }.

Lemma 4.3 [Mes] N is a superconcentrator if and only if for any 1 ≤ k ≤ n and X ⊆ I, Y ⊆ O such that
|X| = |Y | = k, |Γ+(X) ∩ Γ−(Y )| ≥ k.

This motivates the following definition.

Definition 4.4 An (a, b)-partial n-superconcentrator of depth 2 is an n-network N = (I ∪M ∪ O,F ) of
depth 2, such that for any a ≤ k ≤ b and X ⊆ I, Y ⊆ O with |X| = |Y | = k, |Γ+(X) ∩ Γ−(Y )| ≥ k.
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Lemma 4.5 For all n, 0 < δ = δ(n) < 1, 2 ≤ r = r(n) ≤ O(n1−δ), there are explicitly-constructible
(nδ, rnδ)-partial n-superconcentrators of depth 2 having size O∗(rn).

Proof: By Lemma 4.2, we can constructH, an nδ/2-expanding weak (n, (r+1)nδ)-concentrator of sizeO∗(rn).
The network N = (I∪M∪O,F ) satisfying the conditions of the lemma will have a copy of H between I and M
and a copy of the reverse of H between M and O. Suppose X ⊆ I, Y ⊆ O with |X| = |Y | = k, nδ ≤ k ≤ rnδ.
Then both |Γ+(X)| and |Γ−(Y )| are at least (r + 1)nδ − nδ/2. Thus |Γ+(X) ∩ Γ−(Y )| ≥ rnδ ≥ k. 2

Theorem 4.6 For all n, there are explicitly-constructible n-superconcentrators of depth 2 and size O∗(n).

Proof: Construct the union of (2i−1, 2i)-partial n-superconcentrators of depth 2, i = 1, . . . lg n. Lemma 4.3
implies that this is a superconcentrator. 2

We now show how this construction can be used to achieve linear-sized superconcentrators with sublog-
arithmic depth.

Lemma 4.7 If there are explicitly-constructible n-superconcentrators of size an and depth k, then there are
explicitly-constructible n-superconcentrators of linear size and depth k +O(log a).

Proof: (Sketch) Use the recursive superconcentrator construction developed by Pippenger [Pip1]. After
O(log a) levels, we need an n/a-superconcentrator. Assuming a = a(n) is a non-decreasing function of n, we
use the n/a-superconcentrator of size at most n. 2

Theorem 4.8 For all n, there are explicitly-constructible n-superconcentrators of linear size and depth
(log n)2/3+o(1).

Proof: Use Lemma 4.7 and Theorem 4.6. 2

5 Concentrators and Non-Blocking Networks

In this section we show how similar ideas can be used to explicitly construct non-blocking networks. Before
we do this, we define wide-sense nonblocking generalized connectors, following [FFP].

A route in a network is a directed path from an input to an output. A state of a network is a set of
vertex-disjoint routes. The states of a network are partially ordered by inclusion; above and below refer to
this partial order. A connection request is an input-output pair. A connection request (v, w) is legal with
respect to a state s if v and w are not in any route contained in s. A connection request (v, w) is satisfied
by a route if the route begins at v and ends at w.

Finally, a wide-sense nonblocking generalized n-connector is an n-network for which there exists a set of
distinguished states, called safe states, with the following properties:

1. the empty set is safe;

2. any state below a safe state is safe;

3. given any safe state s and any legal connection request (v, w) with respect to s, there exists a safe state
above s containing a route satisfying (v, w).

The key to our result is to construct a certain generalization of concentrators, and then apply a lemma
of [FFP].

Definition 5.1 An (n,m, l)-concentrator with expansion e is an (n,m)-network such that every set of t ≤ l
inputs expands to at least et outputs.

Note that a concentrator with expansion 1 is a concentrator in the usual sense.

Theorem 5.2 For all n, 0 < δ = δ(n) < 1, 1 ≤ e = e(n) ≤ n1−δ/2, there are explicitly-constructible
(n, 2enδ, nδ)-concentrators with expansion e of size O∗(en) and depth 1.
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Proof: The concentrator C we seek is the union of 2i-expanding weak (n, 4e2i)-concentrators Ci, i =
0, . . . , lg(nδ/2); the outputs of Ci are, say, the first 4e2i outputs of C. Suppose we have a set of t inputs,
and say t ∈ [2i, 2i+1]. Then in Ci this set must expand to (4e− 1)2i > et. 2

The following lemma is implicit in [FFP]:

Lemma 5.3 [FFP] If for all 1/2 ≤ δ < 1 there are explicitly-constructible (n, 4nδ, nδ)-concentrators with
expansion 2 and size O∗(n), then there are efficiently constructible wide-sense nonblocking generalized n-
connectors of size O∗(n1+1/k) and depth k.

Thus, the following theorem is immediate.

Theorem 5.4 For all k and n, there are efficiently constructible wide-sense nonblocking generalized n-
connectors of size O∗(n1+1/k) and depth k.

6 Subsequent Work

Subsequent to this work, the no(1) factors have been improved twice [SZ, TS96], by constructing stronger
extractors and applying our methods. In the most recent improvement, Ta-Shma [TS96] obtained expanders
where the no(1) factors are exp((log log n)O(1)). Hence all the applications have these new no(1) factors and
the depth of the linear-sized superconcentrator is (log log n)O(1).
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