
An XOR-Based Erasure-Resilient Coding SchemeJohannes Bl�omer�, Malik Kalfaney, Richard Karpz, Marek KarpinskixMichael Luby{, David ZuckermankAbstractAn (m;n; b; r)-erasure-resilient coding scheme consists of an encoding algorithmand a decoding algorithm with the following properties. The encoding algorithm pro-duces a set of n packets each containing b bits from a message of m packets containingb bits. The decoding algorithm is able to recover the message from any set of r packets.Erasure-resilient codes have been used to protect real-time tra�c sent through packetbased networks against packet losses. In this paper we describe a erasure-resilientcoding scheme that is based on a version of Reed-Solomon codes and which has theproperty that r = m: Both the encoding and decoding algorithms run in quadratictime and have been customized to give the �rst real-time implementations of PriorityEncoding Transmission (PET) [2],[1] for medium quality video transmission on SunSPARCstation 20 workstations.1 IntroductionMost existing and proposed networks are packet based, where a packet is a �xed lengthindivisible unit of information that either arrives intact upon transmission or is completelylost. This model accurately reects properties of Internet and ATM-based networks, wherelocal error-correcting codes can be used (and often are used) on individual packets toprotect against possible errors as the packet traverses the network. However, the timelyarrival of individual packets sent long distances over a variety of heterogeneous networksis a global property that seems to be harder to control on a local basis. Thus, it makessense to protect real-time tra�c sent through such networks against losses by adding amoderate level of redundancy using erasure-resilient codes.Algorithms based on this approach have been developed for applications such as multi-casting real-time high-volume video information over lossy packet based networks [2, 1, 4]�International Computer Science Institute, Berkeley, California. Research supported in part by ESPRITBR Grant EC-US 030 and by Deutsche Forschungsgemeinschaft (DFG), Habilitationsstipendium Bl 314/4-1 yComputer Science Division, University of California at Berkeley and International computer ScienceInstitute, Berkeley, CaliforniazComputer Science Division, University of Californai at BerkeleyxDepartment of Computer Science, University of Bonn and International Computer Science Institute,berkeley, California{International Computer Science Institute, berkeley, California and Computer Science Division, Univer-sity of California at Berkeley. Research supported in part by National Science Foundation operating grantsCCR-9304722 and NCR-9416101, United States-Israel Binational Science Foundation grant No. 92-00226,and ESPRIT BR Grant EC-US 030.kDepartment of Computer Science, University of Texas, Austin1

and other high volume real-time applications [8]. The two most important properties oferasure-resilient codes in these applications are the running times of the encoding anddecoding algorithms and the amount of encoding su�cient to recover the message. Anerasure-resilient code where any portion of the encoding equal to the length of the messageis su�cient to recover the message is called a maximal distance separable (MDS) code inthe literature (see for example [6]). An ideal erasure-resilient code would be a linear timeMDS code, but so far no such code is known.Theoretically the most e�cient MDS codes can be constructed based on evaluatingand interpolating polynomials over specially chosen �nite �elds using Discrete FourierTransform. Up to logarithmic factors these codes achieve a linear running time. However,they don't perform well in practice and are not competitive in practice with simpler,quadratic time methods except for extremely large messages.In this paper we show how to customize a version of Reed-Solomon codes so thatit yields a (quadratic time) MDS code that runs in real-time for medium quality videotransmission on existing workstations [2, 1], i.e., at the rate of a few megabits per second.The version of Reed-Solomon codes we use is based on Cauchy matrices over �nite�elds (see for example [6] and [11]). Every square submatrices of a Cauchy matrix isinvertible. Therefore Cauchy matrices can be used to implement linear, systematic codes.i.e., the encoding is a linear function of the message and the unencoded message is partof the encoding. Since typically the encoding size is only a constant multiple (between0:1 and 5) of the message size the last property helps implementing an e�cient encodingprocedure for these codes.On the decoding side we achieve running time that decreases with the amount of theunencoded message received. Since often the encoding is only moderately larger than themessage itself, this is one of the reasons the decoding procedure runs in real time for bitrates of up to a few megabits.However, the main gain compared to the method based on the evaluation and inter-polation of polynomials is achieved by using a well-known representation of elements in�nite �elds of the form GF[2L] by (L � L)-matrices over GF[2] (see [9]). This allows usto replace arithmetic operations on �eld elements by XOR's of computer words and inpractice XOR's of computer words are much more e�cient than multiplications in �nite�elds.The paper is organized as follows. In Section 2 we introduce the basic terminologyused throughout the rest of the paper. In Section 3 we present of more detailed outline ofthe XOR-code. Section 4 describes the matrix representation elements in �nite �elds. InSection 5 we state and partially prove the main properties of Cauchy matrices. In Section6 we combine Cauchy matrices with the matrix representation of �nite �eld elements toobtain the XOR-code. We also analyze the running times of the encoding and decoding al-gorithms. Section 7 contains information on the actual implementation of these algorithmsand we present some timing information for these implementations. In Section 8 we provea lower bound on the packet size needed by MDS codes. We show that the XOR codeachieves a nearly optimal packet size. Although the packet size is almost of no concern ifInternet packets (typically 1000 bytes) are used, it is a more serious constraint for ATMpackets (48 bytes). The lower bound we prove applies only to the payload of packets. Itdoes not include the space needed for the unique identi�er, we assume is included in everypacket.Finally, we should mention that recently [3] constructed erasure-resilient codes that2

are almost MDS and that have linear time encoding and decoding algorithms. In thesecodes the number of packets needed to recover the message is (1 + �)m, where � is anarbitrary positive constant. It yet needs to be determined whether these codes performwell in practice.It remains an interesting open question to design an MDS code with linear time en-coding and decoding algorithms.2 TerminologyFor our applications we utilize the following de�nitions of erasure-resilient codes and MDScodes.De�nition 2.1 An erasure-resilient code, speci�ed by a quadruple (m;n; b; r); is a func-tion E that maps messages M = (M1; : : : ;Mm) of m packets each of size b onto encod-ings E(M) = (E1(M); : : : ; En(M)) of n packets each of size b; such that any r packetsEi1(M); : : : ; Eir(M) of E(M) together with the indices ij uniquely determine the messageM: Here packets of size b are bit strings of length b: The code is said to be maximumdistance separable (MDS) i� r = m:It is easy to see that a code is MDS if the encoding of two di�erent messages di�ers inat least n�m+ 1 packets. Hence our de�nition coincides with the standard de�nition ofMDS codes (see for example [6]).As opposed to error-correcting codes, where bits can be corrupted and the locationsof corrupted bits are not known in advance, in an erasure-resilient code the indices ofcorrupted packets are known. The corrupted packets are treated as being lost. In appli-cations of erasure-resilient codes like robust data transfer on packet-based networks [1],information dispersal [8], or secret sharing [10], this is a realistic assumption.An important subclass of error-correcting or erasure-resilient codes are linear codes.For a linear erasure-resilient code over the �eld GF[2L] the b bits of a packet are consideredas describing b=L elements in the �nite �eld GF[2L]: A message is viewed as an element ofthe vector space (GF[2L])mb=L: A code is called linear, if the function E is linear. Hencethe code can be described by a (nb=L�mb=L)-matrix over GF[2L]: This matrix is calledthe generator matrix of the code.An erasure-resilient code is systematic, if the �rst m packets of the encoding of amessage M are the packets of the message M itself. The �rst m packets of the encodingwill be called information packets . The remaining n � m encoding packets are calledredundant packets .A linear code over GF[2L] is a systematic code if the �rst mb=L rows of its generatormatrix form the identity matrix. For two matrices A;B, where A is a (k�m)-matrix andB is a (l �m)-matrix denote by (AjB) the (K + l) �m)-matrix whose �rst k rows arethe rows of A and the last l rows are the rows of B: Let Im denote the (m�m)-identitymatrix over an arbitrary �eld. A proof of the following theorem can be found for examplein [6].Theorem 2.2 Let C be a an (n�m�m)-matrix over GF[2L]: The matrix (ImjC) is thegenerator matrix of a systematic MDS code with packet size L if and only if every squaresubmatrix of C is invertible. 3

The main goal of this paper is to describe a systematic linear MDS code over GF[2] suchthat the time needed to decode a message M from m given encoding packets decreaseswith the number of information packets among these encoding packets. We �rst give anoutline of the construction.3 Outline of the XOR-CodeThe goal of this paper is to construct a systematic, linear erasure-resilient MDS code overGF[2]: As it turns out there is a general method to turn any systematic, linear code over a�nite �eld GF[2L] with packet size b into a systematic, linear code over GF[2] with packetsize b:This method is based on the fact that for each element of a �nite �eld GF[2L] thereis a representation as a column vector of length L over GF[2] and a representation asan (L � L)-matrix over GF[2] such that the matrix-vector multiplication of the matrixrepresentation of an element � with the vector representation of an element � yields thevector representation of the product ��. Moreover, the addition of the vector or matrixrepresentations of two elements � and � results in the vector or matrix representation ofthe sum �+ �:This suggests the following method to transform a linear code over GF[2L] into a linearcode over GF[2]: Replace each element in the generator matrix by its matrix representationto obtain the new generator matrix. Replace each �eld element in a message by its vectorrepresentation. It is not hard to see using the above mentioned facts that the encoding ofa message using the new code is exactly the encoding using the original code with each�eld element in the encoding replaced by its vector representation.The systematic, linear codes to which we apply this general method are based onCauchy matrices. As required by Theorem 2.2, every square submatrix of a Cauchymatrix is nonsingular. Cauchy matrices are easier to invert than general matrices. This isimportant to achieve e�cient decoding algorithms. MDS codes based on Cauchy matricesare a variant of Reed-Solomon codes (see for example [11]). We will describe Cauchymatrices in detail in Section 5.In practice it turns out to be more e�cient to de�ne packets as containing b wordsconsisting of w bits each than to de�ne them in terms of single bits. In our implementationswe chose w to be 32; the word size on a Sun SPARCstation. For a code over GF[2]; amessage of m packets is then considered to be an (mb� 32)-matrix M over GF[2]. Usingthe same generator matrix as in the single bit case, the encoding is now given by thematrix product of the generator matrix with M:Using this slight variation of the XOR-code, encoding a message of size 32m � L bitsrequires m � L coordinate-wise XOR's of 32-bit words. In the original scheme encoding amessage of the same length requires 32m �L XOR's of single bits. This yields a signi�cantimprovement, since the XOR of a computer word of size 32 turns out as fast as the XORof single bits.In practice, packets can often be very large. For example, IP packets contain up to2000 bytes. In this case, it is more e�cient to further split the packets into segments ofsize 32 �L rather than increasing the parameter L: We then treat the ith segments in eachmessage packet as the packets of a single message with the parameters as described above.To this partial message we apply the XOR-code and put its encoding into the ith segments4

of the encoding packets. In other words, if the number of segments in each packet is Nwe apply the code in parallel to N messages.More formally, a message M consisting of m packets of size 32 �L �N is considered asa (mL � 32N)-matrix over GF[2]. The encoding is obtained by multiplying this matrixby the generator matrix de�ning the original XOR-code. The jth packet of the encodingis given by the jth block of L consecutive rows of the resulting matrix.In this version the XOR-code has been implemented. A more detailed description ofthe implementation and some experimental results will be described in Section 7. In thenext sections we will describe and prove the correctness of the XOR-code, for the casewhere the number of segments in a packet is 1:4 The matrix representation of �nite �eldsLet p(X) be an irreducible polynomial of degree L in GF[2][X]: The �eld GF[2L] is iso-morphic to GF[2][X]=(p(X)); the �eld of polynomials in GF[2][X] taken modulo p(X):Elements in GF[2L] can be identi�ed with polynomials f(X) = PL�1i=0 fiX i; fi 2 GF[2];of degree at most L � 1: The column vector (f0; : : : ; fL�1)t in GF[2]L will be called thecoe�cient vector of the element f(X) =PL�1i=0 fiX i:Construction 4.1 (Matrix representation of �nite �elds) For any f 2 GF[2L] let�(f) be the matrix whose ith column is the coe�cient vector of X i�1f mod p(X):Lemma 4.2 � is a �eld isomorphism from GF[2L] to �(GF[2L]): In particular,(i) �(0) is the all-zero-matrix.(ii) �(1) is the identity matrix.(iii) � is injective.(iv) For any two �eld elements f; g; �(f + g) = �(f) + �(g):(v) For any two �eld elements f; g; �(fg) = �(f)�(g):Proof: It su�ces to prove (i)� (v): (i); (ii) and (iii) are obvious. (iv) follows fromX i(f + g) � X if +X ig mod p(X):To prove (v) denote by f (i) the ith column of �(f): Also let �g(j)0 ; : : : ; g(j)L�1�t be the jthcolumn of �(g); hence L�1Xi=0 g(j)i X i � Xj�1g mod p(X):The jth column of �(f)�(g) is PL�1i=0 g(j)i fi: This is the coe�cient vector ofL�1Xi=0 g(j)i (X i�1f) � f L�1Xi=0 g(j)i X i�1 mod p(X):5

PL�1i=0 g(j)i X i�1 � Xj�1g mod p(X); hence the jth column of �(f)�(g) is the coe�cientvector of Xj�1fg; which is the jth column of �(fg):Observe that the de�nition of � is constructive. �(f) can easily be computed usingpolynomial multiplication and division with remainder. However, in the implementationof the XOR-code we will store all coe�cient vectors of �eld elements in a table and usetable look-ups to compute �: Details of the table will be given in a later section.5 The main properties Cauchy matricesIn this section we describe the main properties of Cauchy matrices. Cauchy matrices havealso been used in [8],[5]. They can be used to de�ne one variant of Reed-Solomon codes[11]).De�nition 5.1 Let F be a �eld and let fx1; : : : ; xmg; fy1; : : : ; yng be two sets of elementsin F such that(i) 8i 2 f1; : : : ; mg 8j 2 f1; : : : ; ng : xi + yj 6= 0:(ii) 8i; j 2 f1; : : : ; mg; i 6= j : xi 6= xj and 8i; j 2 f1; : : : ; ng; i 6= j : yi 6= yj :The matrix 266666664 1x1+y1 1x1+y2 : : : 1x1+yn1x2+y1 1x2+y2 : : : 1x2+yn. . .1xm�1+y1 1xm�1+y2 : : : 1xm�1+yn1xm+y1 1xm+y2 : : : 1xm+yn 377777775is called a Cauchy matrix over F:Theorem 5.2 Let C be a Cauchy matrix. Every square sub-matrix of C is nonsingular.If C=266666664 1x1+y1 1x1+y2 : : : 1x1+yn1x2+y1 1x2+y2 : : : 1x2+yn. . .1xn�1+y1 1xn�1+y2 : : : 1xn�1+yn1xn+y1 1xn+y2 : : : 1xn+yn 377777775then det(C) = Qi<j(xi � xj)Qi<j(yi � yj)Qni;j=1(xi + yj) :A proof of this theorem can be found in [7]. Note that the �rst part of the theorem followsfrom the second part, since any sub-matrix of a Cauchy matrix is itself a Cauchy matrix.Theorem 2.2 and Theorem 5.2 imply that if C is an (n�m�m)-Cauchy matrix overGF[2L] then (ImjC) is the generator matrix of a systematic code with packet size L:Over the �nite �eld GF[2L] a (2L�1 � 2L�1)-Cauchy matrix can be constructed asfollows. As a set GF[2L] can be identi�ed with the set of all binary strings of length L: The6

addition of two elements is the component-wise XOR of the corresponding bit-strings. Foreach i = 1; : : : ; 2L�1; let xi be the element whose binary expansion is the binary expansionof the integer i� 1 and let yi be the �eld element whose binary expansion corresponds tothe binary expansion of 2L�1 + i � 1: Properties (i) and (ii) of De�nition 5.1 are easilyveri�ed.The following theorem can also be found in Rabin's paper [8].Theorem 5.3 The inverse of an (n � n)-Cauchy matrix over a �eld F can be computedusing O(n2) arithmetic operations in F .Proof: Assume the Cauchy matrix C is as in Theorem 5.2. Let C�1 = (dij); i; j = 1; : : : ; n:The entry dij is given by dij = (�1)i+j det(Cji)det(C) ;where Cji is obtained from C by deleting the jth row and the ith column. For eachk = 1; : : : ; n; let ak = Yi<k(xi � xk)Yk<j(xk � xj);bk = Yi<k(yi � yk)Yk<j(yj � yk);ek = nYi=1(xk + yi);and fk = nYi=1(yk + xi):By Theorem 5.2 det(C) = Qnk=1 akbkQnk=1 ekfkand det(Cji) = det(C)ejfiajbi(xj + yi) :Hence dij = (�1)i+j ejfiajbi(xj + yi) :The 4n quantities ak; bk; ek; fk; k = 1; : : : ; n; can be computed using O(n2) arithmetic op-erations. Given these quantities, each dij can be computed using a constant number of�eld operations. This proves the theorem.This theorem shows that inverting Cauchy matrices is signi�cantly simpler than invertingan arbitrary matrix. However, multiplications and divisions in a �nite �eld GF[2L] usingthe arithmetic of polynomials over GF[2] is rather ine�cient. In the implementation ofthe XOR-code we avoid polynomial arithmetic by transforming multiplications and divi-sions into additions and subtractions of exponents by using a table of discrete logarithms.Details of the table of logarithms and the matrix inversion algorithm will be given in alater section. 7

6 An XOR-based MDS codeIn this section we construct the XOR-code and analyze its encoding and decoding time.A description of some of the implementation details will be given in a later section.We will describe the code for messages that consist of m packets each containing of Lwords of size w: The parameter w can be chosen arbitrarily.Construction 6.1 (XOR-Code) Assume L � maxflog(m); log(n � m)g. Consider amessage M = (M1; : : : ;Mm)t of m packets containing L words of size w as an elementof (GF[2])mL�w Let C be an (n � m � m)-Cauchy-matrix over the �nite �eld GF[2L]:Let (cij); i = 1; : : : ; n; j = 1; : : : ; m; be the matrix (ImjC): The generator matrix E of theXOR-code is given by E = (�(cij)); i = 1; : : : ; n; j = 1; : : : ; m:The jth packet Ej of the encoding of M consists of the rows rjL+1; : : : ; r(j+1)L of the matrixproduct E �M:Theorem 6.2 The XOR-code is an MDS code.Proof: Assume that m packets of the encoding E �M = (E1; : : : ; En)t are given. LetI � f1; : : : ; mg be the set of indices of the information packets among these m packets,I = f1; : : : ; mgnI: J � fm + 1; : : : ; ng is the set of indices of the redundant packets thatare given. Hence jJ j = jIj and jI j+ jJ j = m:We need to show that the matrixD = (�(cji)); j 2 J; i 2 I is invertible. By assumptionthe matrix (cji); j 2 J; i 2 I is invertible. It follows from Lemma 4.2 that the inverse of Dis given by replacing each entry of the inverse of (cji) by its matrix representation.Theorem 6.3 The encoding for the XOR-code can be done using O(m(n�m)L2)) XOR'sof words of size w:The decoding is also not very di�cult.Theorem 6.4 The decoding for the XOR-code can be done using O(mkL2) XOR's ofwords of size w and O(k2) arithmetic operations in the �eld GF[2L]; assuming that m� kinformation packets and k redundant packets are given.Proof: Let I; J be as in the proof of the previous theorem.The decoding proceeds in three steps.Step 1 Compute ~Ej = Ej +Pi2I �(cji)Mi for all j 2 J:Step 2 Compute D�1; D = (�(cji)); j 2 J; i 2 I:Step 3 Compute D�1 ~E; where ~E is the matrix whose (jL+ i)th row (i = 0; : : : ; b� 1) isthe ith row of ~Ej : 8

Remark that the ~Ej's, Ej 's and Mi's are (L�w)-matrices over GF[2] and the �(cij)'s are(L�L)-matrices over GF[2]: Hence additions and multiplications in the steps above haveto interpreted as matrix additions and multiplications.Assuming jI j = k and jJ j = jIj = k; Step (i) requires O(k(m� k)L2) XOR's of wordsof size w: Step (iii) requires O(k2L2) XOR's. Hence, together these two steps requireO(mkL2) XOR's of words of size w.D�1 can be computed by �rst computing the inverse of (cji); j 2 J; i 2 I; over GF[2L];and then replacing each element in the resulting matrix by its image under �: Since Dis a (k�k)-matrix, by Theorem 5.3 this requires O(k2) arithmetic operations in GF[2L]:In Step 2, instead of computing D�1 using the isomorphism � and the procedure forinverting Cauchy-matrices we could also use Gaussian elimination over GF[2]. This wouldrequire O((m� k)3L3) bit operations. It turns out that in practice the method describedin the proof of Theorem 6.4 is faster.7 Implementation details and timing informationThe XOR-code was implemented in C, and runs on most Unix platforms, including HPworkstations running HP/UX and Sun workstations running SunOS and Solaris.The driver used to test the program was structured as follows:� Generate a random message.� Initialize the �eld structures needed by the erasure-resilient code.� Encode the data into packets using the XOR-based erasure-resilient code.� Destroy some of these packets.� Decode the message from the remaining packets.� Compare the retrieved message to the original to ensure that the decoding wascorrect.The main computation time is spent in the encoding and decoding routines. Less than1% of the time is spent in the other parts of the program. The �eld initialization consistsof building two tables that allow us to go back and forth between the following two possiblerepresentations of an element of the �nite �eld GF[2L]:� The exponent to which one needs to raise a given generator of multiplicative groupof the �nite �eld to obtain the particular element. This representation is very usefulto multiply two elements, as one just needs to add their exponents (modulo 2L� 1).� As an L-dimensional vector over GF[2]. This representation is useful to add elements,as well as to generate the matrix representation of the element.9

7.1 EncodingThe encoding routine consists of three steps:� Set the identi�er in each packet being sent, so that, on the decoding side, the packetscan be identi�ed.� Copy the appropriate message parts into the information packets.� Compute the values of the redundant packets.More than 99% of the time is spent in computing the contents of the redundant packets, asthe �rst two steps are just linear in the number of packets sent. To compute the redundantpackets, we create a Cauchy matrix over GF[2L], and replace the elements of this matrixby the matrix representation described in Section 4. This gives us the generator matrixof the XOR-code.The parameters for computing the redundant packets are:Mpackets This is the number of message packets sent.Rpackets This is the number of redundant packets sent.L�eld This will also be referred to as L. The �eld we use is GF[2L].Nsegs This is the number of segments in our packet. Since we use a word size of 32 bitsthe size of our packets is: 32 �L �Nsegs bits.The redundant packets are computed as follows:/* The variables that are defined prior to computing the redundantpackets are:MultField: The size of the multiplicative group of the finite field.ExpToFieldElt: A table that goes from the exponent of an element, interms of a previously chosen generator of themultiplicative group, to its representation as avector over GF[2].FieldEltToExp: The table that goes from the vector representation ofan element to its exponent of the generator.Bit: An array of integers that is used to select individual bits:(A & Bit[i]) is equal to 1 if the i-th bit of A is 1, and 0otherwise.*/For row = 0 to Rpackets-1 /* The number of rows in our Cauchy matrixis equal to the number of redundantpackets. */For col = 0 to Mpackets-1 /* The number of columns in our Cauchymatrix is equal to the number ofinformation packets. */10

/* exponent is the multiplicative exponent of the element of theCauchy matrix we are currently looking at. XOR computes thecoordinatewiswise exclusive-or of the bit representation of twointegers. % is the remainder operator. */exponent =(MultField - FieldEltToExp[row XOR col XOR MultField]) % MultFieldFor row_bit = 0 to Lfield-1 /* Each element of our finite fieldis now represented as a Lfield byLfield 0-1 matrix. */For col_bit = 0 to Lfield-1/* Check if the current bit of the matrix element is 1. */If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])For segment = 0 to Nsegs-1/* (a^=y) is short for (a = a XOR b). */redundant_packets[row][segment+row_bit*Nsegs] ^=message[segment+col_bit*Nsegs+col*Lfield*Nsegs]The running time for this algorithm is directly proportional to Mpackets, Rpackets,Nsegs, and L2. However, we can signi�cantly reduce the running time by computing andstoring before the execution of a loop all the values used in that loop that are invariantduring the execution of the loop. The further up in the above loop structure that we cancompute a value, the greater the performance gain we achieve by eliminating redundantcomputations. The above algorithm is therefore actually implemented as:For row = 0 to Rpackets-1packet = redundant_packets[row]For col = 0 to Mpackets-1exponent =(MultField - FieldEltToExp[row XOR col XOR MultField]) % MultFieldFor row_bit = 0 to Lfield-1local_packet = packet + row_bit*NsegsFor col_bit = 0 to Lfield-1If (ExpToFiedlElt[exponent+row_bit] & Bit[col_bit])local_message = message + col_bit*Nsegs + col*Lfield*NsegsFor segment = 0 to Nsegs-1local_packet[segment] ^= local_message[segment]11

For typical values of the parameters, such as Mpackets=100, Rpackets=50, Nsegs=25,and L=10, we get a speedup of about 4 times (700 msec vs 3.00 seconds).The running time of this algorithm is no longer directly proportional to Mpackets,Rpackets, Nsegs, and the L2, because the operations that are performed early are com-puted only once for each execution of the inner loops, so that their cost is amortized overeach iteration of the inner loops. In particular, for the inner most loop, we �nd that thecost of the �rst iteration is much higher than the the cost of following iterations. Theseiterations reuse many of the values that are computed for the �rst one. We thereforeexpect the running time to be an a�ne function of the number of segments, rather thanlinear as in the original algorithm.The savings we get for the two loops depending on L�eld are much more modest, sincethe operations moved outside the loops are fairly simple. We only get an improvementof about 10% from this, so the running time is still essentially proportional to L2. Fromthe data we collected for the actual running time of the algorithm, we come up with thefollowing formula for the running time:T (Mpackets;Rpackets; L;Nsegs) = 4:5�10�5msec�Mpackets�Rpackets�L2�(Nsegs+6):Using the fact that the message size is given by Mpackets � L � Nsegs, that themessage to packet ratio is given by Mpackets, and that the redundancy is given byRpackets=Mpackets, we can rewrite the equation above in terms of the parameters Ms-gSize, which is the message size, Ratio, which is the message to packet ratio, and Red,which is the redundancy (expressed as a fraction). Also note that L will usually be equalto log(Ratio) + 1. The above equation now becomes:T (MsgSize;Ratio;Red; L; �) = 4:5� 10�5msec �MsgSize � Ratio � Red � L� (1 + �)where � is a correction factor due to the fact that T is a�ne in Nsegs: � = 6=Nsegs.Figure 1 below gives some timing information for the encoding procedure. The numberof segments varies between 1 and 100: Mpackets was chosen to be 100, Rpackets is 50and L�eld is 10: Thus, the message size varies between 32Kbits and 3:2Mbits, and theredundancy is 50%: The information was collected on a Sun SPARCstation 20, with aSuperSPARC Model 61 SPARCmodule CPU's running at 61 MHz, and 64MB of mainmemory.
12

Encoding Time vs Number of Segments
msec x 103

Segments

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

0.00 20.00 40.00 60.00 80.00 100.00Figure 17.2 DecodingThe decoding routine consists of the following steps:� Check if enough packets were received to recover the message. If not, then return.� Collect all the information packets that were received, and then pick enough redun-dant packets to decode the message.� Copy the information from the information packets into the appropriate parts of theoutgoing message.� Compute the square submatrix M of the original Cauchy matrix over GF[2L]; whoserow indices are given by the indices of the redundant packets used and whose columnindices are given by the indices of the missing information packets.� Compute the inverse of M and replace each entry in the matrix by its matrix repre-sentation. Call this matrix D:� Update the contents of each redundant packet as described in Section 6.� Multiply the updated redundant packets by D to obtain the missing informationpackets. 13

For typical input parameters, over 99% of the time is spent in the last three steps. Theparameters for the decoding time are:Mpackets, L�eld, Nsegs These are exactly the same as for the encoding.Nextra This is the number of extra packets needed to decode the message, which is equalto the number of message packets that were not received. Nextra can range between0 and Rpackets (the total number of redundant packets sent on the encoding side).The matrix inversion algorithm is implemented as follows:/* The variables FieldEltToExp, MultField and MultField are as describedin the encoding algorithm.The following variables are computed in the decoding routinebefore the matrix inversion step is called:RowInd: An array that keeps track of the extra packets received:RowInd[i] is the identifier of the i-th extra packet thatwas received.ColInd: An array that keeps track of the message packets received:ColInd[i] is the identifier of the i-th message packetthat was received.M: The submatrix of the original Cauchy matrix.The inverted matrix is stored in variable InvMat. The algorithm weuse to invert the Cauchy matrix M is explained in Section 4.*/For row = 0 to Nextra-1For col = 0 to Nextra-1/* != is the Not-Equal operator. */If (col != row)/* (a+=b) is short for (a = a+b) */C[row] += FieldEltToExp[RowInd[row] XOR RowInd[col]]D[col] += FieldEltToExp[ColInd[row] XOR ColInd[col]]E[row] += FieldEltToExp[RowInd[row] XOR ColInd[col] XOR MultField]F[col] += FieldEltToExp[RowInd[row] XOR ColInd[col] XOR MultField]For row = 0 to Nextra-1For col = 0 to Nextra-1InvMat[row][col] = E[col] + F[row] - C[col] - D[row]- FieldEltToExp[RowInd[col] XOR ColInd[row] XOR MultField]14

If (InvMat[row][col] >= 0)InvMat[row][col] = InvMat[row][col] % MultFieldElseInvMat[row][col] =(MultField - ((-InvMat[row][col]) % MultField)) % MultFieldThis algorithm is quadratic in Nextra, and the formula for its running time is:T (Nextra) = 7:5� 10�4msec � (Nextra)2For typical input parameters, this time is negligible compared to the time spent in thesteps that update the redundant packets and that eventually retrieve the missing infor-mation packets. For instance, if we use values such as Nsegs=25, L=10, Mpackets=100,Rpackets=50, and Nextra=35, the time for the matrix inversion is about 0.2% of the timespent in the overall decoding algorithm (1 msec vs. 500 msec).The algorithm for the second last step is:/* Variables MultField, FieldEltToExp, RowInd, MultField, Bit, andExpToFieldElt are as previously defined.M is a matrix containing the values from the redundant packetsthat are being used to decode the message.RecMsg is the array where the message is to be stored. Theinformation contained in the message packets that were receivedhas already been copied to this array.*/For row = 0 to Nextra-1For col = 0 to Mpackets-1/* If the message packet was received, then process it. */If (RecIndex[col] == 1)exponent =(MultField - FieldEltToExp[RowInd[row] XOR col XOR MultField])% MultFieldFor row_bit = 0 to Lfield-1For col_bit = 0 to Lfield-1If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])For segment = 0 to Nsegs-115

M[row_bit + row*Lfield][segment] ^=RecMsg[segment + col_bit*Nsegs + col*Lfield*Nsegs]The algorithm for the last step is:/* InvMat is the inverted matrix computed during the matrix inversionstep.ExpToFieldElt, Bit, RecMsg, ColInd, and M are as described above.*/For row = 0 to Nextra-1For col = 0 to Nextra-1exponent = InvMat[row][col]For row_bit = 0 to Lfield-1For col_bit = 0 to Lfield-1If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])For segment = 0 to Nsegs-1RecMsg[segment + row_bit*Nsegs + ColInd[row]*Lfield*Nsegs]^= M[col_bit + col*Lfield][segment]Again, these two algorithms were modi�ed by introducing local variables that store when-ever possible values that can be computed before the execution of a loop. This results ina similar performance gain to the one we obtained for the encoding. The formula for thetotal running time for the resulting two algorithms combined is almost exactly the sameas the corresponding formula for the encoding algorithm, with Nextra replacing Rpackets.Nextra is bounded above by Rpackets, and in general will be less than Rpackets. For in-stance, if we send 100 message packets and 50 redundant packets, and we lose 50 packets,we expect to use 33 redundant packets for decoding, which means that the total decodingtime will be 2=3 of the encoding time.The formula for the running time of the last two steps is:T (Mpackets;Nextra; L;Nsegs) = 4:5� 10�5msec�Mpackets�Nextra� L2 � (Nsegs + 6)As we did for the encoding, we can rewrite the above equation using the fact that themessage size is given by Mpackets � L � Nsegs. Using the parameter MsgSize for themessage size, we get:T (MsgSize;Nextra; L; �) = 4:5� 10�5msec�MsgSize� Nextra� L� (1 + �)where � is a correction factor due to the fact that T is a�ne in Nsegs: � = 6=Nsegs.Figure 2 below gives some timing information for the decoding procedure. The numberredundant packets used in the decoding procedure varies between 1 and 50:Mpackets was16

chosen to be 100, Nsegs is 25 and L�eld is 10: Thus, the message is 800Kbits and theredundancy used varies between 1% and 50%: Again the information was collected on aSun SPARCstation 20, with a SuperSPARC Model 61 SPARCmodule CPU's running at61 MHz, and 64MB of main memory.
Decoding Time vs Redundant Packets needed

msec

Packets
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

0.00 10.00 20.00 30.00 40.00 50.00Figure 28 A lower bound for the packet size of MDS codesIn this section a lower bound for the packet size of MDS codes is shown. The bound issigni�cantly better than the bound shown in [1]. The bound almost matches the leastpossible packet size of the Cauchy-code and the XOR-code. For slightly better bounds forthe case of special linear MDS codes see [6].Theorem 8.1 For any MDS code E that encodes a message consisting of m packets intoan encoding E(M) consisting of n � m + 2 packets the packet size b has to satisfy theinequality 2b + 1 � maxfm;n�mg:Proof: In the �rst part it will be shown that if there is an MDS code that encodes messagesof m packets of size b into encodings of n packets of size b than there is also a systematiccode with the same parameters. Hence it su�ces to prove the lower bound for systematiccodes. This is done in the second part of the proof.Without loss of generality we view a packet as describing some element of S =f0; : : : ; 2b � 1g: 17

Let E be an MDS code that maps messages of m packets onto encodings of n packets.The set of messages is Sm and the set of encodings is a subset T of Sn of size 2mb: Since Eis an MDS code, any two elements in T agree in at most m� 1 coordinates. This impliesthat(i) Any other bijection of Sm onto T is also an MDS code.(ii) The projection of the elements in T onto their �rst m coordinates is a bijectionbetween T and S:Combining (i) and (ii) shows that the bijection that maps an element M in Sm onto theelement in T whose projection onto its �rst m coordinates is M; is an MDS code. This�nishes the �rst part of the proof.To prove the lower bound for any systematic code, let E be a systematic code thatmaps a message (M1; : : : ;Mm) onto E(M) = (M1; : : : ;Mm; E1(M); : : : ; En�m(M)); whereeach Ei is some function mapping messages onto single packets.First it is shown that the packet size of this code has to satisfy the inequality2b + 1 � m:For a pair (x; i); x 2 S; x 6= 0; i 2 f1; : : : ; mg; let M(x; i) be the message whose ith packetis x and whose remaining packets are 0: For any two distinct pairs (x; i); (y; j)(E1(M(x; i)); E2(M(x; i))) 6= (E1(M(y; j));E2(M(y; j))): (1)Otherwise the encodings of two di�erent messages M(x; i) and M(y; j) agree in at leastm packets and E is not an MDS code.Since there are m(2b � 1) pairs (x; i); x 2 S; x 6= 0; i 2 f1; : : : ; mg; and each Ej cantake on only 2b di�erent values, (1) implies22b � m(2b � 1) or 2b + 1 � m: (2)Next it is shown that the packet size of E also has to satisfy2b + 1 � n�m;For any pair (x; y) 2 S2 let M(x; y) be the message (x; y; 0; 0; : : : ; 0): Any two of thesemessages must be distinguishable from the last m � 2 information packets and any tworedundant packets. This implies that for (x; y) 6= (x0; y0) and i; j 2 f1; : : : ; n�mg; i 6= j(Ei(M(x; y); Ej(M(x; y))) 6= (Ei(M(x0; y0); Ej(M(x0; y0))): (3)For a �xed i 2 f1; : : : ; n�mg and for any k 2 S; let nk be the number of messagesM(x; y)such that Ei(M(x; y)) = k: The number of pairs of messages (M(x; y);M(x0; y0)) such thatEi(M(x; y)) = Ei(M(x0; y0)) is 2b�1Xk=0 nk2 !:This sum is minimized if nk = 2b for all k; in which case its value is 2b�2b2 �: Hence for eachi 2 f1; : : : ; n �mg there are at least 22b�2b2 � pairs of messages (M(x; y);M(x0; y0)) suchthat Ei(M(x; y)) = Ei(M(x0; y0)): 18

Assume n �m > 2b + 1: This implies 22b2 ! < (n�m)2b 2b2!:Since there are only �22b2 � di�erent pairs of messages this implies that there is a pair ofmessages (M(x; y);M(x0; y0)) such that for two di�erent indices i; j 2 f1; : : : ; n�mgEi(M(x; y)) = Ei(M(x0; y0)) and Ej(M(x; y)) = Ej(M(x0; y0)):This violates (3). Hence 2b + 1 � n�m; which �nishes the proof.For n = m + 1 a packet size of 1 su�ces. The encoding contains the bits of the messageand the XOR of all bits in the message.References[1] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby, M. Sudan, Priority Encoding Trans-mission, in Proc. 35th Symposium on Foundations of Computer Science (FOCS), 1994.pp. 604{613.[2] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby, Priority Encoding Transmission, Tech-nical Report TR-94-039, International Computer Science Institute, Berkeley, 1994.[3] N. Alon J. Edmonds, M. Luby, Linear Time Erasure Codes with Nearly Optimal Re-covery , in Proc. 36th Symposium on Foundations of Computer Science (FOCS), 1995.[4] E. Biersack, \Performance evaluation of forward error correction in ATM networks",Proceedings of SIGCOMM '92, Baltimore, 1992.[5] D. Grigoriev, M. Karpinski, M. Singer, Fast Parallel Alogorithms for MultivariatePolynomial over Finite Fields , SIAM Journal on Computing, Vol. 19, 1990, pp. 1059-1063.[6] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes , North-Holland, New York, 1977.[7] L. Mirsky, An Introduction to Linear Algebra, Dover, New York, 1982.[8] M. O. Rabin, E�cient Dispersal of Information for Security, Load Balancing, andFault Tolerance, J. ACM, Vol. 36, No. 2, April 1989, pp. 335{348.[9] S. Roman, Coding and Information Theory, Springer-Verlag, New York, 1992.[10] A. Shamir, How to Share a Secret , C. ACM, Vol. 22, No. 11, November 1979, pp. 612-613.[11] S. B. Wicker, V. K. Bhargava, Reed-Solomon Codes and their Applications , IEEEPress, New York, 1994. 19

