
On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

Piyush Khandelwal PIYUSHK@CS.UTEXAS.EDU
Elad Liebman ELADLIEB@CS.UTEXAS.EDU
Scott Niekum SNIEKUM@CS.UTEXAS.EDU
Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Science, University of Texas at Austin, 2317 Speedway, Stop D9500, Austin, TX 78712 USA

Abstract
Over the past decade, Monte Carlo Tree Search
(MCTS) and specifically Upper Confidence
Bound in Trees (UCT) have proven to be quite
effective in large probabilistic planning domains.
In this paper, we focus on how values are back-
propagated in the MCTS tree, and apply complex
return strategies from the Reinforcement Learn-
ing (RL) literature to MCTS, producing 4 new
MCTS variants. We demonstrate that in some
probabilistic planning benchmarks from the In-
ternational Planning Competition (IPC), select-
ing a MCTS variant with a backup strategy dif-
ferent from Monte Carlo averaging can lead to
substantially better results. We also propose a
hypothesis for why different backup strategies
lead to different performance in particular envi-
ronments, and manipulate a carefully structured
grid-world domain to provide empirical evidence
supporting our hypothesis.

1. Introduction
Planning under uncertainty, or probabilistic planning, is an
important part of many intelligent systems. Problems re-
quiring such planning can be represented as Markov De-
cision Processes (MDPs) (Sutton and Barto, 1998), and
solved using techniques such as Value Iteration (VI) (Bell-
man, 1957). More recent approaches such as RTDP (Barto
et al., 1995) and LAO* (Hansen and Zilberstein, 2001) can
solve MDPs more efficiently than VI by restricting traver-
sal of state-action space. While these approaches require
access to a full declarative model of an MDP, Monte Carlo
Tree Search (MCTS), or specifically Upper Confidence
Bound in Trees (UCT) (Kocsis and Szepesvári, 2006), is
an anytime planning algorithm designed for approximately

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume 48.
Copyright 2016 by the author(s).

solving MDPs that only requires generative samples from
the MDP. UCT was first popularized due to excellent per-
formance in Computer Go (Gelly and Wang, 2006; Chaslot
et al., 2008), and it has also performed well in large Par-
tially Observable MDPs (POMDPs) (Silver and Veness,
2010). The PROST planner (Keller and Eyerich, 2012),
based on UCT, won the probabilistic track of the Interna-
tional Planning Competition (IPC) in 2011 and 2014.

In this paper, we explore how complex backup techniques,
a longstanding focus of the Reinforcement Learning (RL)
literature that has not previously been considered in MCTS,
can improve the performance of MCTS in some domains.
In the original MCTS algorithm, the long-term expected
return of taking an action is averaged using Monte Carlo
backups. In contrast, it has been demonstrated that com-
plex backup strategies can speed up convergence of value
estimates in RL problems. Such complex backup strategies
include the λ-return (Sutton, 1988), γ-return (Konidaris
et al., 2011), and the Ω-return (Thomas et al., 2015),
where the last two approaches are parameter free. Moti-
vated especially by real-time applications that require find-
ing good policies within limited per-step computation time
(e.g. Khandelwal et al. (2015)), we evaluate these backup
strategies using benchmarks with limited planning time.

The main contributions of this paper are four novel MCTS
variants which utilize complex backup strategies for value
backpropagation in MCTS. We find that one proposed
parameter-free backup strategy, MaxMCTSγ , performs
equivalently to or better than Monte Carlo backups in
all probabilistic planning benchmarks from the IPC. An-
other novel strategy, MaxMCTS(λ), performs better than
all other backup strategies when an appropriate value of λ
is selected. Apart from experiments on IPC domains, we
also study how domain structure influences performance of
backup strategies in a grid-world domain, shedding some
light on the empirical results presented in this paper.

The remainder of this paper is organized as follows. We
first present a general overview of MCTS in § 2, followed
by how complex backup strategies can be applied to MCTS



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

in § 3. We then empirically evaluate and analyze different
backup strategies in § 4. Next, we discuss related work in
§ 5 before concluding in § 6.

2. Monte Carlo Tree Search
Given a simulator or a generative model of the environ-
ment, Monte Carlo Tree Search (MCTS) is an anytime al-
gorithm that runs simulations to estimate the action at the
current state that produces the highest return, i.e. the cumu-
lative reward over the planning horizon. MCTS maintains
a tree structure to store information about state-actions it
has encountered while performing simulations, with the
root node of the tree representing the current MDP state.
Algorithm 1 outlines the pseudocode for MCTS planning.
Within every simulation, there are 4 separate phases:

• Selection - An action selection strategy is recursively
applied at all nodes in the simulation trajectory start-
ing from the root node (Line 7). Strategies aim to re-
strict search to more important regions of the state-
action space, and are outlined in § 2.1. If a state has
not been previously visited, then the action is chosen
according to some default policy (Line 6), which can
be randomized or designed using expert knowledge.

• Simulation - Once an action is selected, a generative
model of the domain is used to generate a transition to
the next state (Line 8). The process of Selection and
Simulation are interleaved to generate a trajectory. A
user-specified parameter called planHorizon controls
the trajectory length (or MCTS tree depth). This hori-
zon is useful in domains where termination is rare.

• Expansion - The search tree is expanded using one or
many new states encountered while simulating. The
number of new states added per simulation can be
parametrized, and is typically set depending on mem-
ory constraints. In this paper, since there are few plan-
ning simulations, all new states are added to the search
tree (Line 9) to speed up convergence.

• Backpropagation - The trajectory is stored via a stack
(Line 10), and the return estimates of encountered
state-actions are updated via a backup strategy (Line
12). We study different backup strategies in § 3.

Once planning is complete, the action that maximizes the
return at the current state s is selected as:

a = arg max
a

[rootNode.Qs,a], (1)

where rootNode.Qs,a represents the long-term expected
value for action a, i.e. Q(s, a). When the agent takes this
action and reaches a new system state ns, the planning pro-
cess is repeated before taking the next action. Additionally,

Algorithm 1 MCTS starting at state s
1: rootNode← initNode(s)
2: for sim ∈ {1, . . . , numSimulations} do
3: node← rootNode
4: trajectory← new Stack
5: while trajectory.size() < planHorizon and

notTerminal(node) do
6: if node.ns = 0 then a← defaultAction(node)
7: else a← selectAction(node)
8: 〈ns, reward〉 ← simulate(node, a)
9: nextNode← getNode(node, a, ns)

10: trajectory.push(node, a, reward)
11: node← nextNode
12: BACKPROPAGATE(trajectory)

the appropriate sub-tree from the previous search can be
used to bootstrap search at this new system state.

2.1. Action Selection Strategies

Two action selection strategies are used during evaluation:

2.1.1. UNIFORM

The planning action is selected randomly from the set of all
K actions available at state s that have been tried the least.
The probability of selecting action a is:

pa =

{
1/K node.na ≤ node.na′ ∀ [a′ 6= a]

0 otherwise .

Since uniform action selection is parameter free and does
not depend on backpropagated values, it is well suited for
comparing different backup strategies.

2.1.2. UCT

The UCB1 algorithm is popular for action selection in
MCTS, and the resulting MCTS algorithm is known as
Upper Confidence bounds for Trees (UCT) (Kocsis and
Szepesvári, 2006). In UCT, uniform action selection is per-
formed until each action at a given state node is selected
once, and subsequent actions are selected as:

a = arg max
a

node.Qs,a + cp

√
ln(node.ns)

node.na

 ,

where node.ns is the number of visits to node , node.na
is the number of times action a was previously selected
during planning at this node, node.Qs,a is the current ex-
pected long term reward for taking action a, i.e. Q(s, a),
and cp =

√
2 when the MDP rewards are scaled between 0

and 1. cp can also be tuned empirically to yield better per-
formance by better balancing exploration versus exploita-
tion, especially when the number of simulations is small.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

3. Complex Backup Strategies
In this section, we briefly revisit complex backup strate-
gies as applied in RL problems (Sutton and Barto, 1998;
Konidaris et al., 2011). We then formally describe how
these backup strategies can be applied to MCTS.

Monte Carlo RL algorithms use the full return from a sam-
ple trajectory to update a given state-action value estimate.
A sample of of the state-action value estimate, i.e. the re-
turn sample, is computed as:

RMC
st,at =

L−1∑
i=0

γirt+i, (2)

where ai is the action taken at state si to yield reward ri
and a transition to state si+1. State st+L is terminal, and γ
is the MDP discount factor.

In contrast, SARSA (Sutton and Barto, 1998), a Tempo-
ral Difference (TD) learning approach, uses an on-policy
backup that bootstraps a one step reward transition with ex-
isting state-action value estimates. In SARSA, this one-step
return sample is computed as:

RSARSA
st,at = rt + γQst+1,at+1 , (3)

where Qs,a is the value estimate for 〈s, a〉, i.e. Q(s, a).

Both the Monte Carlo and SARSA return samples can be
described using a single generalized n-step return sample,
assuming the Q-value at the terminal state Qst+L,a

= 0:

R(n)
st,at =

n−1∑
i=0

γirt+i + γnQst+n,at+n , (4)

where R(n)
st,at is equivalent to the Monte Carlo return sam-

ple (2) when n = L, and it is equal to the SARSA return
sample (3) when n = 1.

Instead of using either the Monte Carlo or the one-step
return sample to estimate the state-action value estimate
Qst,at , learning algorithms that employ complex backup
strategies update the estimate using a combination of all n-
step returns. This combined complex return sample RCst,at
can be described as:

RCst,at =

L∑
i=1

wn,LR
(n)
st,at , (5)

where wn,L is the weight assigned to the n-step return sam-
ple,

∑L
n=1 wn,L = 1, and L is the length of the trajectory.

Different complex backup strategies use a different combi-
nation of weights, as follows.

SARSA(λ) (Rummery, 1995) is one such complex backup
learning algorithm that uses the λ-return to update state-
action value estimates. λ is a user-defined parameter (0 ≤

λ ≤ 1) that sets the different weights as:

wλn,L =

{
(1− λ)λn−1 1 ≤ n < L

λL n = L
. (6)

TDγ (Konidaris et al., 2011) is another complex backup
learning algorithm which uses the parameter-free γ-return
to update state value estimates, and defines the following
weights to compute the complex return in (5):

wγn,L =
(
∑n
i=1 γ

2(i−1))−1∑L
n=1(

∑n
i=1 γ

2(i−1))−1
, (7)

where γ is the MDP discount factor. While TDγ was origi-
nally designed to estimate state values (V (s)), the weights
used in the complex return can also be applied to estimate
state-action values (Q(s, a)).

It should be noted that the weights used by the λ-return are
not statistically sound, since weights should depend on the
variance of each n-step return, whereas the γ-return is more
statistically principled (Konidaris et al., 2011). However,
the λ-return is mathematically more convenient to imple-
ment than the γ-return and is thus more commonly used.

The returns defined in (4) and (5) describe on-policy value
estimation, i.e the state-action value estimates reflect the
planning/exploration policy. Since action selection after
planning is greedy [see (1)], an off-policy approach such
as one based on Q-Learning (Watkins, 1989) may produce
better results. In contrast to SARSA, Q-Learning uses the
following one-step off-policy bootstrapped return:

RQst,at = rt + γmax
a

Qst+1,a. (8)

Similar to (4) and (5), we can construct a generalized
off-policy n-step return MaxR(n)

st,at and complex return
MaxRCst,at as:

MaxR(n)
st,at =

n−1∑
i=0

γirt+i + γn max
a

Qst+n,a, and (9)

MaxRCst,at =

L∑
i=1

wn,LMaxR(n)
st,at . (10)

Using the weights for the λ-return from (6) with the
off-policy complex return described in (10) leads exactly
to Peng’s Q(λ) off-policy learning algorithm (Peng and
Williams, 1996). Similarly, the weights for the γ-return
from (7) with the off-policy complex return yields an off-
policy γ-return based approach.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

We have now described 4 different backup strategies: λ-
return, off-policy λ-return, γ-return, and off-policy γ re-
turn. Next, we describe how these strategies can be incor-
porated within the MCTS framework to produce 4 differ-
ent variants called: MCTS(λ), MaxMCTS(λ), MCTSγ , and
MaxMCTSγ , respectively. These algorithms combine the
tree structure and planning horizon of MCTS with different
value backup strategies. By doing so, these proposed algo-
rithms bridge a gap between the general problem of value
estimation in reinforcement learning, and the advantages of
accelerated exploration and planning in MCTS.

3.1. MCTS(λ) and MaxMCTS(λ)

After each planning trajectory in the MCTS tree is carried
out to termination, the value of each state-action encoun-
tered within the trajectory needs to be updated (Alg. 1 Line
12). This process, using the λ-return, is described in Algo-
rithm 2. Due to the nature of the λ-return, the update rule
for every state can make use of a single cumulative return
q backpropagated up the tree (Line 5), where q is equiva-
lent to (Max )RCst,at . The number of state and state-action
visits are stored for UCT action selection (Lines 3-4). The
state-action value is updated via averaging (Line 6).

Algorithm 2 BACKPROPAGATE(trajectory) for λ-return.
1: q ← 0 # Backup Value/Complex Return (Max )RCst,at .
2: for 〈node, a, r〉 = trajectory.pop() do
3: node.ns ← node.ns + 1
4: node.na ← node.na + 1
5: q ← q + r, δQ ← q − node.Qs,a
6: node.Qs,a ← node.Qs,a + (δQ/node.na)
7: if MCTS(λ) then q ← (1− λ)node.Qs,a + λq
8: else # MaxMCTS(λ)

q ← (1− λ) maxa′|node.na′ 6=0[node.Qs,a′ ] + λq

In MCTS(λ), λ is used to interpolate between the current
cumulative return and the existing Q-value of that state-
action (Line 7), effectively updating each state-action using
Eqns. (4), (5), and (6). In contrast, MaxMCTS(λ) interpo-
lates the current cumulative return with the max Q-value at
that state (Line 8), effectively updating each state-action in
an off-policy manner using Eqns. (9), (10), and (6). When
λ = 1, backpropagation in both algorithms is the same and
equivalent to Monte Carlo backups.

Comparing these two algorithms, we expect that the perfor-
mance of MCTS(λ) would not vary much with λ. Since the
number of planning simulations is limited, the number of
visits to a state-action pair further down the tree can often
be fairly low, and the state-action value estimate Q(s, a)
may not be informative. In contrast, the performance of
MaxMCTS(λ) is likely to vary more with λ if another ac-
tion at a tree node has significantly higher value.

In MaxMCTS(λ), the eligibility parameter λ balances
Monte Carlo (λ = 1) and Max Monte Carlo (λ = 0)
updates. At λ = 0, with the action selection strategy
as UCT, MaxMCTS(λ) is equivalent to MaxUCT (Keller
and Helmert, 2013). In Max Monte Carlo backpropagation,
even if an exploratory action is taken at a given state node,
the value of the action with the highest expected reward
is propagated higher up in the tree minimizing the effect
of exploratory actions taken further down in the tree on
value estimates. The backup diagrams for both MCTS(λ)
and MaxMCTS(λ) are illustrated in Figure 1 to show how
λ affects value estimation in the MCTS tree.

3.2. MCTSγ and MaxMCTSγ

The MCTSγ and MaxMCTSγ algorithms mirror MCTS(λ)
and MaxMCTS(λ), respectively, with two main differ-
ences. First, the rule updating state-action value estimation
uses the γ-return (7) instead of λ-return (6) while comput-
ing the complex combined return. Second, unlike the λ-
return approaches, the γ-return cannot be implemented us-
ing a single cumulative return that is backpropagated up the
tree, and all n-step returns must be computed.

Pseudocode for implementing both MCTSγ and
MaxMCTSγ is presented in Algorithm 3. The algo-
rithm keeps track of all n-step returns (Lines 8, 12, and
13), and then uses the weights for the γ-return to compute
the combined return sample (Line 9). The Q-value estimate
is then updated using sample averaging (Lines 10-11).
Lines 12-13 differentiate between on-policy (MCTSγ) and
off-policy (MaxMCTSγ) updates by varying whether (i)
the state-action value estimate, or (ii) the max state-action
value estimate at that state, respectively, is used while
computing the n-step return.

Figure 1. Backup diagram for MCTS(λ) and MaxMCTS(λ) (in
the style of (Sutton and Barto, 1998)). The figure demonstrates
how the complex return (Max )RCst,at is computed in the MCTS
tree using the weights for the λ-return (6). Each individual term
represents an n-step return using (4) and (9) for on-policy and off-
policy update, respectively. MCTSγ and MaxMCTSγ have simi-
lar backup diagrams, except weights for the γ return (7) are used.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

Algorithm 3 BACKPROPAGATE(trajectory) for γ-return.

1: nreturns← new List # List of (Max )R
(n)
st,at .

2: L← 1 # Trajectory length from current node.
3: for 〈node, a, r〉 = trajectory.pop() do
4: node.ns ← node.ns + 1
5: node.na ← node.na + 1
6: q ← 0 # Complex Return (Max )RCst,at
7: for i ∈ {1, . . . ,L} do
8: nreturns[i]← nreturns[i] + r
9: q ← q + wγi,L × nreturns[i]

10: δQ ← q − node.Qs,a
11: node.Qs,a ← node.Qs,a + (δQ/node.na)
12: if MCTSγ then nreturns.insertStart(node.Qs,a)
13: else # MaxMCTSγ

nreturns.insertStart(maxa′|node.na′ 6=0[node.Qs,a′ ])
14: L← L + 1

4. Experiments
We now empirically demonstrate that complex backup
strategies introduced in § 3 can often outperform Monte
Carlo backups (i.e. MCTS(1)) in MCTS, using benchmarks
from the probabilistic track of the International Planning
Competition (IPC). We then perform experiments in a grid-
world environment to better understand the relationship be-
tween domain structure and backup strategy (§ 4.2).

4.1. IPC Domains

IPC domains are described using RDDL (Sanner, 2010)1,
and parsed using the RDDL parser available with the
PROST planner (Keller and Eyerich, 2012). Each IPC do-
main includes 10 problems with different complexities and
reward structures. For ease of analysis, only one problem
of medium difficulty, problem 5 in all domains, is tested.

All the IPC domains have an intrinsic built-in horizon of 40
steps, i.e. states are terminal if and only if 40 actions have
been taken from the start, and MCTS planning is performed
until this horizon. Before taking each action, the agent
plans for 10,000 simulations (trajectories) while reusing the
appropriate sub-tree from the previous search. To evaluate
the effect of backup strategies in isolation, planning actions
are selected using uniform action selection (§ 2.1.1).

Performance results for all domains are illustrated in Fig-
ure 2, and a subset of these results are tabulated in Table 2.
Domains in Figure 2 have been ordered such that in those
on the left, MaxMCTS(λ) performs best with a low to mid-
range value of λ, and in domains on the right, a λ close to 1,

1Domains are available at https://github.com/ssanner/rddlsim.
This paper uses updated definitions for Recon and Skill Learning, as explained
in rddlsim/files/final comp/ERRATA.txt. In order to reduce the state-
action space, domain constraints have been added to collapse all actions which are
equivalent to the null action in that domain into to a single null action. These su-
perfluous actions can also be removed analytically using a declarative model of the
domain (Keller and Eyerich, 2012).

i.e. the Monte Carlo backup, performs best. All results are
averaged over 1,000 independent trials, and Welch’s t-test
(with p < 0.05) is used for significance testing.

There are several key observations we can make regard-
ing the experimental results across the IPC domains.
MaxMCTS(λ) with an appropriately selected λ typically
outperforms all other approaches, but typically also per-
forms the worst if λ is incorrectly selected. Optimal val-
ues of λ range from 0 (Elevators) to 0.3 (Recon) to
0.6 (Triangle Tireworld) to 0.7 (Academic Advising) to
1 (Skill Teaching). As Table 2 shows, while the Monte
Carlo (MCTS(1)) backup performs well in many domains,
MaxMCTS(λ) performs better with an intermediate value
of λ in 3 domains, and λ = 0 in one domain.

As Figure 2 shows, and as hypothesized in § 3.1, MCTS(λ)
does not show substantial difference in performance when
λ is varied. In Table 2, neither on-policy approaches,
MCTS(λ) and MCTSγ , perform significantly better than
Monte Carlo.

It is also important to note that MaxMCTSγ performs rea-
sonably well when compared to Monte Carlo, especially in
domains where MaxMCTS(λ) performs best with λ > 0.5.
As shown in Table 2, MaxMCTSγ always performs equiva-
lently to or significantly better than Monte Carlo (in Recon,
Triangle Tireworld, and Academic Advising), and should
always be preferred. This fact is useful, since MaxMCTSγ
is parameter free, and unlike MaxMCTS(λ) does not re-
quire selecting an appropriate λ value. As a result, in situa-
tions when it may be computationally intractable to try out
many different backup strategies, i.e. many different values
of λ, simply evaluating MaxMCTSγ and MaxMCTS(0) is
likely sufficient for getting near-optimal performance be-
tween one of these two proposed backup approaches.

The results thus far clearly establish that the type of backup
strategy used in MCTS can significantly affect perfor-
mance. One interesting question this result raises is how the
magnitude of the backup strategy’s effect compares to that
of action selection. In fact, whereas conventional wisdom
has been that using UCT (§ 2.1.2) for action selection is the
critical factor for improving performance compared to uni-
form action selection, we find that at least in some domains,
altering the backup strategy from the traditional MCTS(1)
can improve performance significantly more than changing
the action selection strategy.

Figure 3 illustrates the performance of UCT, where the
exploration/exploitation tradeoff parameter in UCT (cp) is
tuned via grid search, and uniform action selection in El-
evators and Recon. In Elevators (Fig. 3a), the action se-
lection strategy has no impact on performance with a pure
Monte Carlo backup (MCTS(1)), whereas MaxMCTS(0)
performs much better with either uniform or UCT ac-



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

(a) Elevators (b) Triangle Tireworld (c) Traffic (d) Tamarisk

(e) Recon (f) Navigation (g) Skill Teaching (h) Game Of Life

(i) Crossing Traffic (j) Academic Advising (k) Wildfire (l) Sysadmin

Figure 2. Results for each of the 12 IPC domains show the performance of different backup strategies when the action selection strategy
was Uniform. Only the standard error for MaxMCTS(λ) is shown as error bars for clarity; all methods have comparable error bars.

(a) Elevators (b) Recon

Figure 3. Results for 4 representative IPC domains show domain
performance of MaxMCTS(λ) and MaxMCTSγ with both uni-
form and UCT action selection. Only the best performing UCT
variants are illustrated.

tion selection. Similarly, in Recon (Fig. 3b), uniform ac-
tion selection with MaxMCTS(0.3) significantly outper-
forms Monte Carlo (MCTS(1)) backups with UCT. In other
words, in domains similar to these two, selecting the appro-
priate backup strategy is more important than tuning the
action selection strategy with Monte Carlo backups.

Now that we have demonstrated that the choice of backup
strategy can significantly impact performance, we also
compare the computational costs of different backup strate-
gies. Table 1 compares the average time per episode across
6 representative domains. Since each IPC domain has 40
action-selection steps per trial, and 10,000 simulations are
performed per selection step, these results represent the cu-
mulative time difference across 400,000 planning simula-
tions. All the code is implemented in C++ and all backup
strategies have been implemented efficiently. In general,
backpropagation takes between 15-25% of total planning
time. The overall difference in computational cost among
different backup strategies is less than 10%.

Elev Nav Recon ST TT Wildfire

Monte Carlo 196 95 246 225 176 638
MaxMCTS(λ) 202 107 252 230 192 676
MaxMCTSγ 202 98 250 224 190 694

Table 1. Average time per episode in seconds for different backup
strategies given a fixed number of planning simulations.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

AA CT Elev GOL Nav Recon ST Sysadm Tam Traffic TT Wildfire

Monte Carlo -131.88 -22.27 -109.67 299.69 -37.27 0.0 8.07 614.09 -579.73 -49.22 40.78 -571.13

MaxMCTS(λ) -127.78 -21.49 -83.95 299.69 -36.79 1.67 8.07 614.09 -577.62 -48.71 65.94 -551.25
at λ-value 0.7 0.4 0.0 1.0 0.8 0.3 1.0 1.0 0.8 0.9 0.7 0.9

MaxMCTSγ -128.53 -22.3 -109.67 298.4 -36.87 0.53 6.16 610.43 -582.33 -48.77 64.19 -578.05

MCTS(λ) -131.69 -22.1 -109.67 299.97 -37.16 0.04 8.83 615.68 -573.07 -49.17 44.4 -515.8
at λ-value 1.0 0.4 0.0 1.0 0.5 0.0 1.0 1.0 0.1 1.0 0.7 0.6

MCTSγ -132.19 -22.5 -109.67 297.97 -37.3 0.0 9.29 614.33 -572.2 -49.16 40.11 -557.74

Table 2. Mean performance of different backup strategies for all 12 IPC domains. A value is bold if it is significantly better than Monte
Carlo, i.e. MaxMCTS(λ = 1). A value is italicized if it is significantly better than MaxMCTSγ .

Next, we study the connection between domain structure
and choice of backup strategy using a grid-world domain.

4.2. Grid World

It is evident from the results across the IPC domains that
the same complex backup strategy can lead to vastly dif-
ferent performance across particular domains. How is do-
main structure linked to different performance for different
backup strategies, and can we use this structure to inform
our choice of backup strategy? To shed more light on these
questions, we perform multiple tests on a controlled grid-
world environment, and obtain a deeper understanding of
the MCTS mechanics given different conditions.

All of our tests are conducted on a grid-world environment
of size 9x9 which has to be navigated by an agent, as de-
picted in Figure 4a. The agent’s start and goal locations
are fixed and labeled as S and G in the figure, respec-
tively. The domain supports 4 non-deterministic actions:
up, down, left, and right with the following transitions:

p(nsa|a, s) = 0.925, and p(nsa′ |a, s) = 0.025 | a′ 6= a,

where a, a′ ∈ {up, down, left , right}, s is the agent’s cur-
rent cell, nsa is the adjacent cell in direction a. If the agent
is next to an edge, the probability mass of moving into the
edge is mapped into the current cell of the agent. When the
agent reaches the goal state, it is given a reward of +100,
and all other actions result in a reward of -1. The MCTS
search depth parameter, planHorizon, is set to 100. Plan-
ning is done using 10,000 simulations with uniform action
selection, and the previous search tree is reused.

Our main hypothesis regarding the performance of differ-
ent backup strategies revolves around value estimation dur-
ing exploration. More exactly, we believe it is a matter
of how many optimal or close-to-optimal trajectories ex-
ist in the tree. In the grid-world environment, there are
cases when there are a lot of paths in the search tree that
the agent can use to get to the goal. Consequently, using a
Monte Carlo backup produces the best results (Figure 4b,
λ = 1 with no 0-reward terminal states), as other backup

(a) Grid

#0-Term 0 3 6 9 12 15 18

λ = 1 90.4 11.3 0.9 -1.3 -2.1 -2.2 -2.2
λ = 0.8 90.2 28.0 10.7 5.9 0.3 -1.4 -2.0
λ = 0.6 89.5 62.8 45.3 30.6 17.5 8.5 3.3
λ = 0.4 88.7 85.1 77.6 62.2 41.7 24.1 10.1
λ = 0.2 87.7 82.6 78.1 69.9 51.3 28.4 13.2
λ = 0 84.5 79.8 74.1 67.0 50.2 31.8 15.75

γ 90.1 25.7 15.3 13.2 8.2 4.7 2.3

(b) Varying 0-Reward Terminal States

Figure 4. The gray cells in (a) indicate the cells that can become
0-reward terminal states. (b) tabulates average episodic reward as
the number of 0-reward terminal states is varied. The highest per-
forming backup strategy for each domain setting is bold, and also
italicized if significantly better than all other column entries.

approaches have a greater likelihood of getting stuck in
suboptimal trajectories due to an off-policy update.

On the other hand, if there are very few successful paths
to the goal, then averaging out multiple rollouts can easily
drown value backups from rare close-to-optimal trajecto-
ries. We test this hypothesis by introducing a number of
additional terminal states, or barriers, between the start and
goal locations in the grid formulation. These barriers are
chosen at random from the grey cells in Figure 4a. If the
agent transitions to one of these cells, it receives a reward
of 0, and the episode terminates. The average episodic re-
ward obtained by MaxMCTS(λ) and MaxMCTSγ as the
number of terminal states varied is tabulated in Figure 4b.

When the number of obstacles is 0, Monte Carlo or MaxM-
CTS(1) significantly outperforms all other approaches.
However, with only three obstacles, the performance
of MaxMCTSγ and MaxMCTS(λ ≥ 0.6) deteriorates
sharply, and MaxMCTS(0.4) significantly outperforms all
other approaches. The deterioration in performance for



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

MaxMCTS(λ) is inversely related with the number of ob-
stacles. At 9 obstacles, MaxMCTS(0.2) significantly out-
performs all other approaches, and at 15 MaxMCTS(0)
performs best (with a p-value of 0.075). The fact that
MaxMCTSγ behaves similarly to MaxMCTS(λ) with high
λ conforms with our observations from the IPC domains.

These results support our hypothesis. As reaching the goal
becomes increasingly harder, it becomes necessary to re-
tain more information from the few instances where the
goal is reached. Off-policy complex backup strategies can
do so by repeatedly backpropagating the best subtree at a
node instead of the Monte Carlo backup value. In the gen-
eral case, when there are few paths in a domain that lead to
good long term reward values, it may be more suitable to
use MaxMCTS(λ) with a lower value of λ. We can further
corroborate this observation by looking at the specific IPC
domains where MaxMCTSλ with low λ values did well,
such as Elevators and Recon, where only a few successful
trajectories exist. In other words, these are domains where
it is easier, given limited simulation experience, to learn a
successful yet suboptimal trajectory fast, than to try and ob-
tain a more accurate statistical estimate by averaging noisy
returns from multiple trajectories.

5. Related Work
Since its modern introduction in 2006 (Kocsis and
Szepesvári, 2006; Coulom, 2007; Chaslot et al., 2008),
many different versions and variations of the Monte Carlo
Tree Search (MCTS) architecture have been proposed and
studied empirically. For example, variants such as UCB-
tuned have modified the upper confidence bound of UCB1
to account for variance, in order to perform better ex-
ploration (Auer et al., 2002). Tesauru et al. proposed a
Bayesian version of UCT, which engenders better estima-
tions of node values and uncertainties given limited ex-
perience, but is more computation-intensive (Tesauro et
al., 2012). Various modifications have been proposed to
improve the exploration strategy under UCT (Gelly and
Wang, 2006; Wang and Gelly, 2007) and its value estima-
tion (Gelly and Silver, 2007; 2011; Helmbold and Parker-
Wood, 2009; Feldman and Domshlak, 2014b). Additional
work has combined temporal-difference-like offline learn-
ing with online learning in Monte Carlo Tree Search (Gelly
and Silver, 2007; Silver et al., 2008; Osaki et al., 2008).

By and large, the majority of previous work related
to MCTS has focused on the action selection strategy.
Nonetheless, The idea of applying more sophisticated
backup strategies in planning is not new. Hester presented
a variation on UCT similar to MaxMCTS(λ) as part of the
general TEXPLORE framework, and applied it to various
domains without analyzing the effect of varying the λ pa-
rameter (Hester, 2012). Silver et al. applied the idea of el-

igibility traces to planning in Dyna2 (Silver et al., 2008).
While it may be possible to adapt Dyna2’s approach to
MCTS, this approach is unsuitable for deterministic action
selection algorithms such as UCT, since it is possible that
values of nodes closer to the root may not change when
λ < 1 in Dyna2, which would cause UCT to under-explore
by selecting the same action at these nodes.

Keller and Helmert also proposed several variants to UCT
apart from MaxUCT, such as DP-UCT, which performs
partial backpropagation proportionately to successor prob-
abilities, and UCT*, which combines DP-UCT with heuris-
tic search (Keller and Helmert, 2013). These algorithms re-
quire access to a declarative model of the MDP, whereas
variants presented in this paper do not. Feldman and
Domshlak have compared Monte Carlo to Bellman updates
in MCTS, and were able to show formal regret bounds for
both (Feldman and Domshlak, 2014a).

Several previous papers have comparatively studied dif-
ferent components of the MCTS architecture. As in the
general literature, most of these surveys focused on the
action selection strategy component of MCTS. Helmbold
and Parker-Wood studied different AMAF heuristics for
Monte Carlo Go (Helmbold and Parker-Wood, 2009). Per-
ick et al. compared different exploration strategies in Monte
Carlo Tree Search for the game of Tron (Perick et al.,
2012). More closely related to this paper, Coulom ana-
lyzed several domain-specific and hand designed backup
strategies in MCTS, tailored exclusively for Crazy Stone,
an agent for 9X9 GO (Coulom, 2007). To the best of our
knowledge, we are the first to rigorously analyze the usage
of principled backpropagation strategies in MCTS.

6. Conclusion
The main contribution of this paper has been the intro-
duction of complex backup strategies to the MCTS algo-
rithm. Specifically, 4 novel MCTS variants are proposed:
MCTS(λ), MaxMCTS(λ), MCTSγ , and MaxMCTSγ . Us-
ing various benchmarks from the IPC, we’ve demonstrated
that the choice of backup strategy can have significant im-
pact on performance. One of the proposed approaches,
MaxMCTSγ , is parameter-free and performs as well or
better than Monte Carlo backups in all domains tested.
Another proposed approach, MaxMCTS(λ), outperforms
all other proposed and existing MCTS variants. In many
domains, an intermediate value of λ between 0 and 1
is necessary to obtain best performance, whereas exist-
ing algorithms are equivalent to using one of the extreme
values. We have hypothesized that the backup strategy
MaxMCTS(λ) with a low value of λ outperforms other
backup strategies in domains where trajectories with high
rewards are rare, and provided empirical evidence to sup-
port this hypothesis.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

Acknowledgments
The authors would like to thank Todd Hester and Samuel
Barrett for numerous discussions and their work on UCT
that has culminated in the publication of this paper.

This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory,
The University of Texas at Austin. LARG research is sup-
ported in part by grants from the National Science Founda-
tion (CNS-1330072, CNS-1305287), ONR (21C184-01),
AFRL (FA8750-14-1-0070), and AFOSR (FA9550-14-1-
0087).

References
Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-

time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2-3):235–256, 2002.

Andrew G Barto, Steven J Bradtke, and Satinder P Singh.
Learning to act using real-time dynamic programming.
Artificial Intelligence, 72(1):81–138, 1995.

Richard Bellman. Dynamic programming, 1957.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter
Spronck. Monte-Carlo tree search: A new framework for
game AI. In Artificial Intelligence for Interactive Digital
Entertainment Conference (AIIDE), 2008.

Rémi Coulom. Efficient selectivity and backup operators
in Monte-Carlo tree search. In Computers and Games,
pages 72–83. Springer, 2007.

Zohar Feldman and Carmel Domshlak. Monte-Carlo tree
search: To MC or to DP? In European Conference on Ar-
tificial Intelligence (ECAI), volume 263, page 321. IOS
Press, 2014.

Zohar Feldman and Carmel Domshlak. Simple regret
optimization in online planning for Markov decision
processes. Journal of Artificial Intelligence Research,
51:165–205, 2014.

Sylvain Gelly and David Silver. Combining online and of-
fline knowledge in UCT. In International Conference on
Machine Learning (ICML), pages 273–280. ACM, 2007.

Sylvain Gelly and David Silver. Monte-Carlo tree search
and rapid action value estimation in computer Go. Arti-
ficial Intelligence, 175(11):1856–1875, 2011.

Sylvain Gelly and Yizao Wang. Exploration exploitation in
Go: UCT for Monte-Carlo Go. In Conference on Neural
Information Processing Systems (NIPS), 2006.

Eric A Hansen and Shlomo Zilberstein. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artifi-
cial Intelligence, 129(1):35–62, 2001.

David P Helmbold and Aleatha Parker-Wood. All-moves-
as-first heuristics in Monte-Carlo Go. In International
Conference on Artificial Intelligence (ICAI), pages 605–
610, 2009.

Todd Hester. TEXPLORE: Temporal Difference Reinforce-
ment Learning for Robots and Time-Constrained Do-
mains. PhD thesis, The University of Texas at Austin,
Austin, Texas, USA, December 2012.

Thomas Keller and Patrick Eyerich. PROST: Probabilistic
planning based on UCT. In International Conference
on Automated Planning and Scheduling (ICAPS), pages
119–127. AAAI Press, June 2012.

Thomas Keller and Malte Helmert. Trial-based heuris-
tic tree search for finite horizon mdps. In Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS), 2013.

Piyush Khandelwal, Samuel Barrett, and Peter Stone.
Leading the way: An efficient multi-robot guidance sys-
tem. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), May 2015.

Levente Kocsis and Csaba Szepesvári. Bandit based
Monte-Carlo planning. In European Conference on Ma-
chine Learning (ECML), 2006.

George Konidaris, Scott Niekum, and Philip S Thomas.
Td gamma: Re-evaluating complex backups in temporal
difference learning. In Advances in Neural Information
Processing Systems (NIPS), pages 2402–2410, 2011.

Yasuhiro Osaki, Kazutomo Shibahara, Yasuhiro Tajima,
and Yoshiyuki Kotani. An Othello evaluation function
based on temporal difference learning using probability
of winning. In Computational Intelligence and Games
(CIG), pages 205–211. IEEE, 2008.

Jing Peng and Ronald J Williams. Incremental multi-step
Q-learning. Machine Learning, 22(1-3):283–290, 1996.

Pierre Perick, David L St-Pierre, Francis Maes, and
Damien Ernst. Comparison of different selection strate-
gies in Monte-Carlo tree search for the game of Tron.
In Computational Intelligence and Games (CIG), pages
242–249. IEEE, 2012.

Gavin Adrian Rummery. Problem solving with reinforce-
ment learning. PhD thesis, University of Cambridge,
1995.

Scott Sanner. Relational dynamic influence diagram lan-
guage RDDL: Language description. Unpublished. Aus-
tralian National University, 2010.



On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search

David Silver and Joel Veness. Monte-Carlo planning in
large POMDPs. In Conference on Neural Information
Processing Systems (NIPS). 2010.

David Silver, Richard S Sutton, and Martin Müller.
Sample-based learning and search with permanent and
transient memories. In International Conference on Ma-
chine Learning (ICML), pages 968–975. ACM, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. Cambridge University Press,
1998.

Richard S Sutton. Learning to predict by the methods
of temporal differences. Machine Learning, 3(1):9–44,
1988.

Gerald Tesauro, VT Rajan, and Richard Segal. Bayesian
inference in Monte-Carlo tree search. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2012.

Philip S Thomas, Scott Niekum, Georgios Theocharous,
and George Konidaris. Policy evaluation using the Ω-
return. In Advances in Neural Information Processing
Systems (NIPS), pages 334–342. 2015.

Yizao Wang and Sylvain Gelly. Modifications of UCT and
sequence-like simulations for Monte-Carlo Go. In Com-
putational Intelligence and Games (CIG), volume 7,
pages 175–182, 2007.

Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards. PhD thesis, University of Cambridge
England, 1989.


