To appear, Proceedings of the International Conference on Computer Vision (ICCV), 2011.

Actively Selecting Annotations Among Objects and Attributes

Adriana Kovashka

Sudheendra Vijayanarasimhan

Kristen Grauman

University of Texas at Austin

{adriana, svnaras, grauman}@cs.utexas.edu

Abstract

We present an active learning approach to choose im-
age annotation requests among both object category labels
and the objects’ attribute labels. The goal is to solicit those
labels that will best use human effort when training a multi-
class object recognition model. In contrast to previous
work in active visual category learning, our approach di-
rectly exploits the dependencies between human-nameable
visual attributes and the objects they describe, shifting its
requests in either label space accordingly. We adopt a dis-
criminative latent model that captures object-attribute and
attribute-attribute relationships, and then define a suitable
entropy reduction selection criterion to predict the influence
a new label might have throughout those connections. On
three challenging datasets, we demonstrate that the method
can more successfully accelerate object learning relative to
both passive learning and traditional active learning ap-
proaches.

1. Introduction

Many state-of-the-art object recognition systems inte-
grate robust visual descriptors with a supervised learning
algorithm. This basic framework entails having humans
“teach” the machine learner about objects through labeled
examples, which makes the data collection process itself
of critical importance. As such, recent research explores
interesting issues in gathering large datasets of Web im-
ages [21, 24, 10, 3], mining external knowledge sources [19,
1, 2], creating benchmark challenges [7], and developing
new methods to reduce the expense of manual annotations.
Active learning methods in particular are a promising way
to focus human effort, as the system can request labels only
for those instances that appear most informative based on
its current category models [17, 25, 26, 13, 12, 23].

In spite of such progress, however, substantial challenges
remain. First of all, most existing techniques assume that
the labels of interest are the object category names, yet re-
cent work shows the need to move “beyond labels” to even
richer annotations such as descriptive attributes or relation-
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Figure 1. Object and attribute labels affect the current model’s
understanding of each training image in distinct ways. This ex-
ample illustrates how the different label requests about the image
(left) will influence the different components of the learned models
(right, color coded by type of impact). For example, whereas get-
ting the ‘panda’ label may reduce uncertainty about that class and
refine the model’s distinctions with other bear classes (top), getting
the ’spotted’ label could have even greater influence, strengthening
discriminability for the striped and spotted attributes alike.

ships between objects [15, 14, 6, 29, 10, 11]. Attributes are
high-level features that describe traits of an object such as
physical properties, behavior, or uses; for example, while
object labels might include house, phone, and dog, attribute
labels might include wooden, furry, or red. Secondly, real-
world applications of object recognition demand scaling to
a very large number of categories, which at the surface sug-
gests that the number of labels needed must grow propor-
tionally with the number of total classes considered—even
if one plans to collect labels with active learning.

We propose an active learning approach to address these
issues. The main idea is to actively select image annota-
tion requests among both object category labels as well as
the objects’ shared attributes, so as to acquire the labels ex-
pected to most reduce total uncertainty for multi-class ob-



ject predictions. This means, for example, that during one
active learning loop a human may be asked to name an ob-
ject, whereas in the next s/he may be asked to state whether
a particular attribute is present. The goal is to select those
pairs of images and labeling questions that will be most use-
ful given the current models.

By simultaneously weighing requests in both label
spaces, we expect the learner to more efficiently refine its
object models. Why? Knowledge of an attribute’s presence
in an image can immediately influence many object models,
since attributes are by definition shared across subsets of the
object categories. At the same time, attributes’ presence or
absence in an image is often correlated (e.g., if something
“has skin” it is unlikely to be “metallic” as well), suggest-
ing that many images do not require a full annotation of all
attributes.! See Fig. 1.

To implement the proposed idea, we adopt a discrimi-
native latent model [29] that captures object-attribute and
attribute-attribute relationships, and then define a suitable
entropy reduction selection criterion to predict the influ-
ence a new label of either type will have throughout those
connections. This criterion estimates the expected entropy
change on all labeled and unlabeled examples, should the
label under consideration be obtained. We adapt the exist-
ing classifier to extract the necessary posterior probability
estimates, and show how to handle partially labeled exam-
ples (i.e., those with only some attributes known) such that
they can have immediate influence on the active selection.

A novel aspect of our approach is that it both weighs
different annotation requests and also models dependencies
within multi-label instances. Only limited prior work ex-
plores either one or the other aspect [25, 23, 17], and in
a different context than our setting here. Furthermore, in
contrast to any existing active learning work, our approach
exploits dependencies between the target label space and a
latent but human-describable label space, and is the first to
learn objects and attributes actively in concert. This can
also be viewed as a new way to efficiently supervise joint
multi-class training, in that the actively selected attribute la-
beling questions are directly tied to properties shared across
classes.

2. Related Work

Recent work explores several ways to use visual at-
tributes in object recognition. Since attributes are shared
across categories, they enable knowledge transfer to recog-
nize unseen objects [15] and describe novel instances [8].
By integrating the learning process for both objects and at-
tributes, one can use weak supervision more effectively [27]
and even improve object recognition accuracy [14, 29]. In

'In fact, blindly requesting all attributes may not only be wasteful, but
it may also be impractical at the interface level once we consider large
attribute vocabularies of hundreds or more properties.

addition, capturing the relationships between attributes can
strengthen object category models, as first shown by Wang
and Mori [29]. We employ their latent discriminative model
for classification, as it suitably represents all the object and
attribute interactions of interest to our active learning ap-
proach.

Most work using attributes assumes that images are fully
labeled with all their attributes, either through a top-down
labeling of the object classes (e.g., all bears are “furry’ [15])
or by individually providing attributes for each image [8, 6].
To alleviate this burden, researchers study ways to learn at-
tribute classifiers from noisy keyword search data [10], or to
automatically discover the attributes and objects’ semantic
relatedness from Web images and text sources [1, 19]. In
contrast to these unsupervised methods, our work explicitly
engages a human annotator to respond to object or attribute
queries where most needed.

Active learning for object recognition typically reduces
human labeling effort by selecting the most uncertain ex-
emplar to get labeled with its object category name(s) [17,
31, 13, 12]. More closely related to our approach, some
work further shows how to actively integrate annotations of
different levels, i.e., by alternately requesting segmented re-
gions or asking about the contextual relationships between
objects in an image [25, 26, 23]. In the realm of natural
language processing, researchers develop ways to actively
ask humans which words may be relevant for a document
classification task [18, 5]; words could be seen as a loose
analogue for attributes, though we do not consider requests
about visual attribute relevance.

Active visual learning methods generally do not account
for the dependencies between labels on the same image. An
exception is the scene classification method of [17], which
learns with multi-label images and requests the most in-
formative image-label pair. However, its selection strategy
considers only the local effects of a candidate label request,
by measuring the uncertainty and label correlations for each
individual image in isolation. In contrast, the proposed se-
lection method evaluates the influence of the candidate la-
bel if propagated to all current models, which is critical to
achieve our goal of exploiting shared latent attributes to re-
duce annotation effort.

While the above work tackles active learning, a system
for active classification is developed in [2], where the sys-
tem interactively deduces the object label for a single novel
image by asking a human to label a sequence of its at-
tributes. In contrast, our method uses the human annotators
during the iterative training process for all object categories,
and then makes predictions on novel images without human
intervention. Furthermore, our method requests informa-
tion from the annotators on two levels (object and attribute
labels), whereas the method in [2] only requests attribute
labels.



3. Approach

The proposed approach requires two main elements: a
unified classification model to capture object and attribute
relationships, and a way to weigh candidate requests for
either label space. We first briefly describe the classifier
(Sec. 3.1), and then explain how to actively improve it with
an entropy-based selection criterion (Sec. 3.2).

3.1. Object-Attribute Model

In order to predict the impact of potential object and at-
tribute label requests, we need a classifier that accounts for
all four relationships portrayed in Fig. 1. To this end, we di-
rectly adopt the discriminative model recently proposed by
Wang and Mori [29]. We briefly summarize the necessary
background in this section; see [29] for details.

The model is a multi-class object classifier that uses at-
tributes as hidden variables. The relationships between the
object categories and the attributes are learned parameters
in the model. Relationships between attributes are repre-
sented in a tree-structured graph G = (V, £) whose vertices
denote the K attributes and whose edges are restricted to
pairs of attributes (j,k) € & that have the highest mutual
information?; parameters reflecting the importance of those
dependencies for distinguishing objects are then incorpo-
rated into the main classifier.

A fully labeled training example consists of an image
x € X, its object label y € ), and an indicator vector of K
attribute labels h = [hq, ..., hg], with all h; € A. We use
binary-valued attributes, and so A = {0, 1}. The classifier
fw 1 X XY — Ris parameterized by vector w, and will be
defined below. At test time, one predicts the object label y*
for image x as:

y" = arg max fw(x,y), (1)
yeY
where, following the general latent SVM approach [9, 28],
the discriminant function is maximized over all possible la-
tent attribute label assignments:

for(x,y) = maxw’ ®(x, h,y), @
where ®(x, h, y) is a feature vector that depends on its ar-

guments.
Wang and Mori define the model as follows?:

wid(x, h,y) = wy d(x;y) + > Wi, o(x; j, hy)

JEV
+ > wilhi hi) + > vy, 3)
(4,k)€€ jev

where w is the concatenation of all the first parameters ap-
pearing in the summands, and the other terms are the fea-
tures composing ®(x, h, y).

235 found with a maximum spanning tree on a fully connected graph
3We omit the class-specific attribute classifier proposed in [29].

Those four features are defined as follows:

e Object class component: ¢(x;y) is the probability
image x has object label y, which is obtained by train-
ing a multi-class SVM (ignoring attributes).

o Attribute class component: ((x; j, h;) is the proba-
bility that the j-th attribute is h;, obtained by training
a binary SVM for attribute j (ignoring object labels).

o Attribute-attribute component: ¢ (h;, hy) is a bi-
nary vector of length 4, with a 1 in one entry denoting
which of the four possibilities is true: that both, nei-
ther, the j-th, or the k-th attributes are present.

e Object-attribute component: v, ;. is a learned pa-
rameter reflecting the frequency of object being y and
the j-th attribute being h;.

Note that the two first components use separately trained
traditional SVMs to produce feature values, which are then
weighted by the learned parameters w, and wy, .

To train the model (learn w), we use the non-convex cut-
ting plane method of [4], which allows latent attribute labels
for the training examples. We use a mixture of observed and
latent attribute labels when dealing with partially labeled
examples during the active learning loop (see Sec. 3.2.3).
We use the true values of training images’ attribute labels
when computing the hinge loss function in [29].

During testing, we use linear programming to determine
the attribute labels hy that maximize fy (for every y), and
then predict the object label y* as in Eqn. 1.

3.2. Active Learning with Objects and Attributes

We take a pool-based active learning approach, where
the active learner surveys all unlabeled data to determine
which labels to request next. In particular, we use an
entropy-based function to score all (image,label request)
pairs according to their expected information, and then se-
lect the top ranked requests for labeling. Each request asks
for one label: the object class, or a specific attribute value.
After a human answers the selected requests, the newly la-
beled instances are appended to the training set (whether for
attributes or objects), and then the classifier parameters are
updated accordingly. The entire process repeats, for as long
as more labeling effort is available. The product is a classi-
fier that predicts object labels. Fig. 2 summarizes the main
data flow.

In the following, we first define the sets of annotations
that contribute to each component of the model (Sec. 3.2.1).
Then we define the active selection function to rank the
candidate label requests (Sec. 3.2.2), and then explain how
those requests which the system acquires are used to update
the model (Sec. 3.2.3).
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Figure 2. Overview of our approach. Left: the current model is
determined by whatever labeled or partially labeled object and
attribute data is available. Using that classifier, we score all
(image,label request) pairs in the unlabeled pool according to their
expected entropy reduction. Center: The IV top scoring pairs
are presented to an annotator with the targeted object or attribute
question. Right: Depending on the answers and label types,
the annotator responses influence different components of the full
model, as signified by the two sets of dotted arrows. Note that
the four rightmost boxes parallel the four terms of the main model
in Eqn. 3. Loop: Finally, we loop back, and repeat the selection
process using the newly strengthened model. Best viewed in color.

3.2.1 Annotation Set Definitions

Let £ denote any labeled or partially labeled training data.
Due to the different types of annotations and classifiers
incorporated by the full model outlined above, we must
maintain several separate training sets. As such, we think
of L as containing several (potentially overlapping) sets:
L={7T,70,7Ta,,-..,7Ta,,Ta}, where T contains fully
labeled images used to train the full model w, 7o contains
object-labeled images used to train the object classifier that
yields feature ¢, each 74  contains attribute-labeled im-
ages used to train the attribute classifier that yields feature
o, and T4 contains attribute-labeled images used to com-
pute the attribute relationship graph. Note that an annota-
tion in £\ 7 still affects the full model, because it alters the
inner components on top of which w is learned.

Let U/ denote all unlabeled (or partially unlabeled) data.
Similar to above, we maintain separate sets according to the
label “state” of a given example: U = {Up,Ua}, where
examples in Up have no object label, and examples in U4
lack one or more attribute labels.

3.2.2 Entropy-Based Selection Function

At the onset, we are given some initial pool of labeled data
in £. At each iteration of active learning, we need to de-

cide which image to have annotated and which annotation
to request for it. Thus, we must rank the pool of candidate
(image,label request) pairs in /. A key point in our ap-
proach is that for a given image, there are K + 1 options for
the label query; it is either the object class, or one of the K
attributes.

To this end, we define a selection function that scores
the expected entropy reduction for a candidate request. Let
(y®, hgi), ol hg?) denote the full labels for the i-th image
x(¥), The total entropy over all labeled and unlabeled data
given the labeled data L is defined as:

[cuu| Y|
H(E) == >0 > Pe (3 = Ux ) log P (3 = Ux™)) ,

u=1 =1
)
where Pr(y|x) denotes the posterior estimates obtained
when the model is trained with labeled data £. Note that
entropy is measured over object predictions ), as that is the
ultimate target label space.
In general, the unlabeled instance that maximizes the ex-
pected entropy reduction [22, 20] is:

Y|

< = arg max (H(L)=> Py =1x) HLU(x,1))), (5)
xE =1

or equivalently, if we drop the constant current entropy
value:

|V
x" :argmin(ng (y=1Ix) HLU(x,1))). (6

xeu 1—1

In our case, we must consider expanding L by either the
object label y or an attribute label h,,. Thus we define two
intermediate entropy scoring terms:

Y]
Sy(x ) = 3" Pe(y® = 1x) H(LUD,y D = 1), (1)
=1

where posteriors are obtained with the full object model,
and

[A|
Srt, (V) = 3 Pe(hy) = alx) H(EU (xV,h5) = a)),
a=1

(®)
where posteriors are obtained from the model’s inner at-
tribute classifier . In both, L refers to the current labeled
data. Note that Sy and Sy, are comparable in that they
both reflect the entropy of the object label prediction.

Finally, the best image and label request is given by:

arg min Sq(x). ©)
x€U,qe{Y,H1,.... Kk}

x",q") =

The lower the score in Eqn. 9, the more influence we expect
the label request to have on the complete model. Because
we consider the impact of a candidate labeling over all the



Algorithm 1 The proposed active learning approach.
1: Given: labeled data £ = {7,70,74,,...,7a,,7a},
and pool of unlabeled data U = {Uo, U4}
Compute initial attribute relationship graph (V, £).
Compute features and train initial model using L.
while Labeling effort still available do
Compute Sy (x) for all images in Uop.
Compute Sy, (x) for all images in U4, for all yet-
unlabeled attributes among m = 1,..., K.
7 Select the N most informative image-label pairs
(Eqn. 9), and ask human annotator.
8:  Remove object-annotated images from Up.
9:  Remove fully attribute-annotated images from /4.
10  Add new object-annotated images to 7p.
11:  Add images with new labels for attribute m to 74 .
12:  Infer values for any missing attribute labels for par-
tially labeled images in U4 N 7o.
13:  Add those and fully attribute-labeled images to 7 4.
14:  Add images in 7o N 74 to 7 ; remove them from U.
15:  Recompute inner classifiers’ “features” using £, up-
date attribute graph.
16:  Retrain the full model w using 7.
17: end while

AN

data and model components, this selection function reveals
which attribute or object-based question is most valuable,
achieving the intuition given in Fig. 1.

In order to compute the object class posterior probabil-
ities required for entropy, we design a mapping from the
raw fy function outputs to multi-class probabilities. First
we estimate the pairwise probabilities for any two object
classes l4, Ip € ), by fitting a sigmoid to output values
for fw(x,y = l4) — fw(x,y = {p) on the training data in
T. The difference between output values mimics the form
of the latent SVM label constraints. Then we use the pair-
wise coupling approach [30] to obtain multi-class proba-
bilities from these pairwise probabilities. In this way, we
essentially adapt Platt’s method [16] to accommodate latent
multi-class SVM outputs. For the attribute posteriors, we
simply use Platt’s method on the binary SVM scores.

Procedurally, computing the best request requires cy-
cling over the unlabeled or partially labeled images. Then,
for each label request we could make for the current im-
age, we cycle over each possible label response, and (1)
add it to the labeled set temporarily, (2) retrain the model,
(3) evaluate entropy under the new model, and (4) weight
the resulting entropy by the probability of the hypothesized
label under the old model. To request more than one label
per iteration, we simply take the N queries with the lowest
Sgq scores. Thus, one batch addition may include new labels
for both objects and any of the attributes, and a given image
may receive multiple labels.

3.2.3 Updates to Labeled and Partially Labeled Sets

Finally, we detail the implications that the above strategy
has on the retraining step, whether adding true or hypothe-
sized labels.

Recall that the model we are actively learning has two
stages of training: the first updates the inner components
(e.g., independent object or attribute classifiers), while the
second updates the “outer” main parameters of w (see
Eqn. 3). Updates to either of the two annotation types do not
affect all inner components of the model at the same time,
but they do always affect the full object prediction model
parameters. In particular, new object labels are inserted into
To, and directly affect both the object classifier and learned
object-attribute interaction terms. New attribute labels for
the m-th attribute are inserted into 74, , and directly affect
the m-th attribute classifier, the attribute-attribute relation-
ship graph G = (V, £), and the object-attribute interaction
terms. These dependencies are reflected by the dotted ar-
rows in the example shown in Fig. 2.

Therefore, when we receive a new object label, we add
it to 7o and remove it from Up. When we receive a new
label for attribute m, we add it to 74,,; however, it is not
removed from {4 until all other attributes for that image
are obtained. If a new label happens to complete all labels
for a given image (i.e., x() € Tp N T4), we remove it from
U and insert it into 7 .

In terms of updating the attribute relationship graph, if an
object-labeled image in 7 has only partial attribute labels,
there are two options: (1) a conservative approach, where
we simply wait until all attribute labels are present before
adding it to 74, or (2) a partial approach, where we add
the image to 74 with its missing attribute labels inferred.
To infer the missing labels, we add constraints in the lin-
ear programming problem that solves for A* to reflect that
any known attributes should be assigned their correct labels.
After inferring these labels, we treat them as observed dur-
ing training. For the partial approach, we keep the image in
U 4, so that its missing labels may still be added by a human
annotator (if selected with active learning). We pursue this
partial formulation in our experiments, as we expect more
immediate impact of new labels to help the active learner.

Note that the partial update policy is applicable whether
we are introducing a newly labeled instance received from
an annotator (i.e., at the end of an active learning loop), or
temporarily updating the model during the selection pro-
cess. In the former they are permanent updates, while in
the latter they are removed appropriately after the necessary
posteriors are computed for Eqn. 9. Once we have updated
the training and unlabeled sets accordingly, we retrain the
inner classifiers, compute their features, and retrain the full
model. See Alg. 1 for a recap of the method.



4. Experiments

We demonstrate our approach for object recognition on
three challenging datasets. The main goal of our experi-
ments is to demonstrate the advantage of choosing labels
from both object and attribute types to validate the impor-
tance of a joint representation.

4.1. Datasets

We use the Animals with Attributes dataset introduced
by Lampert et al. [15]. This dataset consists of 50 ani-
mal categories and 85 attributes. The attributes describe the
fur color, fur patterns, size, anatomy, behavior, habitat etc.
of the animals. We use three feature types as descriptors
for these images: RGB histograms, PHOG, and rgSIFT, as
given in [15]. We sample the categories and attributes from
this dataset in different tasks, as described below.

We also use the a-Yahoo-test and a-Pascal-train datasets
from [8]. The former consists of 12 classes and the latter
of 20, which include animals, vehicles, household items,
etc. These datasets use a set of 64 attributes, including
shapes, textures, anatomy, and parts. Unlike the Animals
with Attributes dataset, not every instance of a class in these
datasets has the same attribute labels as all other instances
in the same class. We use the provided bounding boxes to
maintain the assumption that there is only one object per
image. All datasets are fairly challenging because of ap-
pearance variation and have been used to evaluate several
recent approaches for learning from attribute labels.

We show results for 4 different splits of classes, 2 from
the Animals with Attributes dataset (AwA-I and AwA-2),
1 from a-Yahoo, and 1 from a-Pascal.* We use splits to
manage the cost of the selection process. (Our method’s
cost grows linearly with the number of object classes and
quadratically with the number of evaluated unlabeled im-
ages.) For each split, we sample 200 images from an unla-
beled pool in each iteration and compute the quality score
of each candidate (image,label request) pair in this set. The
number of images in the full unlabeled pool and the separate
test pool are: 1003/732 for AwA-1, 1002/993 for AwA-2,
903/287 for a-Pascal, and 703/200 for a-Yahoo. The ini-
tial number of labels on the learning curves (x-axis) is the
number of training images per class’ used to initialize the
models times the number of categories times (K + 1).

4.2. Baselines

In our experiments, we compare our full active method,
active-obj+attr (ours), which can request both object and

4Splits AwA-1 and AwA-2 classes: (hamster, hippopotamus, horse,
humpback whale, killer whale) and (tiger, walrus, weasel, wolf, zebra).
Split a-Yahoo: (centaur, donkey, goat, monkey, wolf, zebra). Split a-Pascal:
(aeroplane, bicycle, boat, bus, car, motorbike, train).

Sabout 5; the exact numbers differ since we set the amount of initial
training images proportionally to the number of images in each class

attribute annotations, to a strong active baseline (active-
obj) which is just like our full method but can only request
object annotations during the active loop. We also compare
these methods to a passive baseline (random), which is also
competitive since it randomly requests labels from the pool
of candidate object and attribute labels. To our knowledge,
no existing active learning approach learns from both object
and attribute labels, making these the two best baselines to
compare. Note that active-obj has the disadvantage that
additional object requests can only update the full model
through the inner components, since an image has to be in
both 75 and 74 to be added to 7. In one experiment, we
also show the performance of optimal selection—this re-
sult reveals how entropy would be affected if we knew the
true labels of the unlabeled images rather than relying on
the expected entropy reduction value.

4.3. Results and Discussion

Active Learning Curves We first study the effect of our
method and the baselines on the confidence of the correct
label on a held-out test set. Fig. 3 reports the average prob-
ability of the correct label predicted by each method as a
function of the number of labels added. These probabili-
ties are computed over active learning iterations, where each
time a selection of N = 5 labels is added for all methods.
These standard learning curves aim to demonstrate that to
achieve some given accuracy, our method usually requires
fewer labels than any of the baselines. Higher values in
the curve indicate more improvement in the classifier and a
higher confidence of classification.

All three approaches improve upon the initial classifier
with more labels, but at different rates per label. Our joint
approach shows the most significant gains in accuracy with
fewer labels. Random selection wastes annotator effort on
less informative examples and labels. Active-obj is in gen-
eral as good as or worse than random; the latter can happen
since random has the advantage of additional attribute la-
bels. The poorer performance of active-obj in comparison
with active-obj+attr (ours) validates our main claim: it is
more advantageous to select labels actively among both ob-
jects and attributes rather than just objects. Note that we
show confidence rather than simply accuracy, since confi-
dence reveals more fully how models have improved. For
reference, the confidence results after training on all im-
ages in each class (excepting test images) are: .3810, .3745,
.3852, .4020. Therefore, using only 4% of the total labels
on average, we achieve 74.48% of the ultimate confidence
level. In comparison, random achieves 67.39% and active-
obj achieves 67.20% of the ultimate confidence level using
the same number of labels (last point on the x-axis).

Actual Entropy Reduction Next, we examine how the
uncertainty on the training and unlabeled sets changes as
the different methods make their selections. Fig. 4 reports
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Figure 4. Entropy of all training and unlabeled examples with increasing number of obtained labels for our approach in comparison
to optimal selection and the baselines (first three are good, and last is a failure case). As expected, our approach reduces the overall

classification uncertainty faster than the baselines and similarly to optimal selection. (Lower curves are better.)

the mean entropy on £ U U as more labels are added for the
three approaches and the optimal selection. We want en-
tropy to decrease as more training data is added, so lower
curves are better. Optimal selection shows the result of us-
ing ground truth information in order to compute the best
possible selection based on entropy.® The overall entropy
decreases steadily with more labels for both our approach
and the optimal selection, showing that the classifier is able
to better separate the examples into the different classes by
jointly learning from object and attribute labels. Note that
our approach performs quite similarly to optimal selection.
The same is not true for the baselines, where the reduction
in the overall uncertainty is slower.

The last figure in Fig. 4 shows a case where entropy is
poorly estimated—compare our result versus the optimal
selection in the fourth plot. This explains the failure case
for the test set learning curves in the fourth plot in Fig. 3.

Qualitative Results To examine in more depth the se-
lections made by our active learning approach, we present
some qualitative results. In Fig. 5, we show the distribution
of label requests for the object and each of the attribute la-
bels. We see that the majority (~ 75%) of requests are for
attribute labels. There is a slight tendency (not shown) that
more object labels are requested earlier in the active learn-
ing loop. We see that the distribution for a-Yahoo is the
least balanced one, which might indicate a particular rela-
tionship between objects and attributes that would explain
the weaker performance of our method on this dataset. In
Fig. 6, we show some sample requests that were made by
our algorithm for AwA-1.

6This result would strictly be an upper bound to our approach, but since
multiple labels are added at a time, the entropy reduction predicted for
individual labels and the actual entropy reduction can differ.
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Figure 5. Distribution of requests per label type (object/attributes).

5. Conclusions

We propose a method for actively selecting the best ob-
ject or attribute labels on images in a way that can simul-
taneously affect multiple object categories. Our results on
three challenging datasets indicate that our method is in-
deed able to learn more quickly than either passive learning
or a strong baseline approach that can only request object
labels. The proposed strategy can be seen as a means to
enhance multi-class object category learning, by efficiently
strengthening models through shared attributes.

As future work, we would like to add a third request type
which explicitly asks about the relationship between objects
and attributes. We also plan to investigate alternative mea-
sures of uncertainty reduction and strategies for making our
selection approach computationally scalable.
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What is this object?  Does it swim? Does it live in the ocean?

rwestwash’

Does it walk? Is it an arctic animal? What is this object?

Figure 6. Sample (image,label) requests that our method generates for AwA-1. The 1* request may be explained by the lack of dark brown
hamsters in the training set. The 2" and 3™ requests are due to the similarity to classes that have the attributes in question. The 4" and 5"
requests show an image which confuses the system and appears in multiple labeling requests. The 6" image is likely ambiguous because
it violates the assumption of one object per image.
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