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Abstract

Generating realistic character animations is of great importance in computer graph-
ics and related domains. Existing approaches for this application involve a signifi-
cant amount of human interaction. In this paper, we introduce a system that maps a
natural language description to an animation of a humanoid skeleton. Our system
is a sequence-to-sequence model that is pretrained with an autoencoder objective
and then trained end-to-end.

1 Introduction

Developing automatic tools to generate visual content is a fundamental problem in computer graphics.
The primary way artists currently create CGI animation sequences is by specifying a series of key
frames for the characters. A key frame is a character pose at a particular point in time. This is
a time-consuming and tedious process since each key frame is specified by manually moving the
character into the desired position. This paper presents a method for automatically mapping a natural
language (NL) description of a human activity to an animated video, specifically a sequence of 3D
human skeletal poses that can be used to animate a CGI character. This allows the generation of
animations with minimal user effort. Human-provided NL descriptions of human activities for which
motion-capture (mocap) data is available [29] is used to train the system.

The problem of mapping between language and other modalities such as images and videos has
attracted significant recent attention. In particular, there has been considerable work on deep neural
networks for mapping videos to NL descriptions [25, 40, 45]; however, there is very little work on
the inverse problem of text-to-video. The small amount of work on generating images and videos
from text [21, 26, 33, 34, 47] generates pixel-level images that are sometimes low-quality, rather
than concise 3D models that can be flexibly rendered into a variety of high-definition visual content
using standard computer graphics techniques. The small amount of work on generating 3D graphics
models from text [5–8, 36] focuses on static scenes rather than animations. There have been a few
prior projects on mapping natural language descriptions of human activities to motion sequences
using mocap data [30, 44], however, they do not specifically focus on generating animated videos
for graphics applications and do not evaluate the quality of the generated animations using human
judges.

Text-to-video is inherently harder than video-to-text since it requires generating long, real-valued,
high-dimensional sequences from short, discrete ones, instead of the other way around. Also,
language is inherently ambiguous, so there may be many animations that fit the same description.
In addition, the amount of labeled mocap data is limited compared to images and videos. Mocap
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Someone walks forward A person plays the violin 
with its left hand

A person sneaking while 
crouched.

Figure 1: Examples of gold-standard description-animation pairs. The dotted lines show movement
through space and the arrows show movement through time.

systems are expensive to setup and existing datasets do not use the same joint markers on the actors,
making the resulting animations incompatible with each other. Finally, there is a large imbalance
in the number of videos for different types of action in the dataset – there are many more videos of
walking compared to dancing. Examples from the dataset are shown in Figure 1.

Due to these complexities, our initial attempts to use standard recurrent neural network (RNN)
sequence-to-sequence (seq2seq) models [37] used for video-to-text met with limited success. To
address these problems, we use a neural autoencoder to learn a compact representation of human
motions by training on mocap data without NL descriptions, and then use an RNN to map descriptions
into this motion representation.

The remainder of the paper describes the details of our method and presents a detailed evaluation of
the animations generated for held-out test examples by comparing them to gold-standard animations,
and by asking crowd-sourced human judges to evaluate their faithfulness to the given descriptions.

2 Related Work

Video Captioning There has been a growing amount of recent work on generating NL descriptions of
videos. Venugopalan et al. [40] developed a seq2seq model for video captioning using convolutional
neural nets (CNNs) to encode the frames and RNNs to map the sequence of frames to a sequence of
words. Subsequent works [2, 25, 41] have improved this model using language models, pretrained
word embeddings, attention, and hierarchical modelling.

Animation Synthesis from Text There has been some recent work on generating animations from
text, however they use a data representation [39] where the hip position of the character has a fixed
3D location, therefore the character moves in place rather than along the floor. Plappert et al. [30]
propose a seq2seq model for mapping text to a series of Gaussian distributions representing the
joint angles of the character. Yamada et al. [44] use an autoencoder for text and an autoencoder for
animations with a shared latent space to generate animations from text. These models are incomplete
as the descriptions of the motions often include information about how the character moves in the
global coordinate frame as well as how the character moves in the local coordinate frame.

Direct Animation Synthesis Since collecting motion capture data is expensive, generating new
animation sequences from existing data has a long history in the computer graphics community
[18, 31, 43]. Recently, researchers have used deep learning techniques to tackle this problem. One
line of work has been on synthesizing animations under user constraints such as foot placement
locations and times [13–15]. There have also been several works on synthesizing the continuation of
an animation sequence given a few frames at the beginning of the animation [12, 22, 23]. In contrast
to our problem setting, the input and output domain are the same in these methods, therefore their
networks only need to model the uncertainty and wide range of futures, rather than also modeling the
gap between the text and animation domains.

Motion Controllers In addition to methods that directly synthesize animations, there have been
methods that learn policies for controlling simulated characters. The motivation for this approach is
that animated characters should obey the physics of their world, thus the training procedure should
include the complexity of the environment. One classical approach for generating animations is by
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Figure 2: Our network architecture. (Left) Autoencoder architecture for the animation. (Middle)
Network architecture for our full pipeline. (Right) Network architecture for the trajectory prediction
module. LP indicates the linear projection layer and FC indicates the fully connected layer.

modeling the body using physics models [20, 48]. Another approach to this problem is to learn a
policy for executing different actions using reinforcement learning. Some of these methods learn
policies from scratch [38, 46] while others try to mimic the behavior in examples [3, 24, 27, 28, 42].

3 Approach

In the same spirit as other seq2seq modeling tasks (e.g., machine translation [32] and video caption-
ing [40]), we design an end-to-end neural network fθ, where θ encodes the network parameters, by
combining a module for encoding the input NL description, a module for decoding the result into
the output skeleton animation, and an intermediate module for connecting these two modules (See
Figure 2). The encoder is a standard two layer stacked LSTM [11] and the decoder architecture is
based on the GRU [9] with residual connections proposed by Martinez et al. [23]. We use the data
representation proposed by Holden et al. [14], which factors out the skeleton animation as the combi-
nation of the character’s pose as represented by the joint positions of the character with respect to the
local coordinate frame and the character’s trajectory of movement in the global coordinate frame.
Drawing inspiration from the network architecture proposed by Agrawal et al. [1], we separated the
pose prediction and trajectory prediction so that the trajectory prediction is conditioned on the pose
prediction in addition to the GRU output.

Network training. Since the animation representation is higher dimensional compared to the NL
descriptions, we first pretrain the decoder with an autoencoder loss. This is similar to the pretraining
step for the task of machine translation. For the autoencoder pretraining step, we use a combination
of the KIT Motion-Language Dataset [29] and the Human3.6M dataset [4, 16]. We then use the
paired NL-mocap data from the KIT Motion-Language Dataset [29] and additional paired data that
we collected on Amazon Mechanical Turk (AMT) using a video segmentation and annotation tool
designed for dense video event captioning [19] to train the entire network. The loss function for both
training steps is the L2 distance between the pose and trajectory of the gold-standard animation and
predicted animation. We train the model until convergence using Adam [17].

4 Experimental Results

This section presents experiments that use both an automatic metric and crowd-sourced human
judgments to evaluate our generated animations and compare them to several baselines.

Baseline Methods

1. Nearest Neighbor (NN) Our simplest baseline is a standard TF-IDF bag-of-words nearest neighbor
method. First, we vectorize all sentences using TfidfVectorizer in Scikit-learn (scikit-learn.org).
Then, to generate a video for a test description, we find the closest vectorized description in the
training set using cosine similarity and return the corresponding animation.

2. Plappert et al. [30] (P) This is one of the aforementioned algorithms that also maps NL de-
scriptions to mocap sequences. We modified their code to incorporate our new data while keeping
everything else intact and trained their model using the hyperparameter settings listed in their paper.

Evaluation Metrics

Dynamic Time Warped Mean Absolute Error (DTW-MAE) We compare an animation generated
for a description to the gold-standard (GS) animation and compute the mean absolute error. To
compare animations of different lengths, we use a dynamic time warping algorithm [35] to stretch

3



DTW-MAE DTW-MAE-T
NN 9.80 ± 5.79 9.76 ± 5.77
P N/A 8.44 ± 3.99
Ours 9.74 ± 4.34 9.71 ± 4.32

M1 vs. M2 M1 Win Rate M2 Win Rate
P vs. GS 0.105 0.895
Ours vs. GS 0.196 0.804
Ours vs. P 0.790 0.210

Table 1: Results on the test set. For DTW-MAE, lower is better. For the win rate, higher is better.

the shorter animation to the length of the longer animation. We then compute the mean absolute
error between all of the corresponding poses and trajectories, averaging across animation frames. We
computed this metric on all 805 gold-standard description-animation pairs in the test set. Plappert et al.
[30]’s method only considers the pose of the animation, therefore we also present the DTW-MAE
without the trajectory information (DTW-MAE-T) on the nearest neighbors baseline and our method
for a fairer comparison.

Human Evaluation Since many different animations can be a good depiction of the described activity,
similarity in the joint position space may not correlate with the overall quality of the generated result.
Therefore, we also conduct a crowd-sourced human evaluation of the generated animations using
AMT. We evaluate the generated animations for faithfulness, analogous to machine translation
evaluations of fidelity. Our Human Intelligence Task (HIT) presents AMT workers with two videos
for the same description, randomly chosen from: gold-standard, our method, and Plappert et al.’s
method, along with the description. The AMT worker is then asked to select the animation that
is a better depiction of the activity described in the text. The win rate is defined as the number of
comparisons won by the method (M) divided by the total number of comparisons for a particular pair
of methods.

In each HIT, we have workers rate three pairs of videos. For quality control, one of the pairs is a
“verification” test to determine if the worker is paying attention. We generate a pool of 20 verification
tasks from the validation set videos by randomly pairing a gold-standard description-animation pair
with a gold-standard animation from a different pair. We manually check that the selected distractor
animation does not depict the described activity. For each HIT, we include a randomly selected
verification pair and discard data from the HIT if it is answered incorrectly. We selected a subset of
200 gold-standard description-animation pairs from the test set for the human evaluation experiment.
17 percent of the evaluations were thrown out due to failure on the verification task.

Discussion As we can see from Table 1, our method outperforms Plappert et al. [30]’s method in
the human evaluation study. This may not be a fair comparison for Plappert et al. [30]’s method
as many descriptions describe movement in the global coordinate frame and cannot be acted out
while standing in place, e.g., “A person walking in a circle to the left.” The gold-standard animations
greatly outperforms both models, showing that there is still more room for improvement for automatic
methods. In a preliminary human evaluation study, we found that the nearest neighbor baseline is
surprisingly strong for this task. This may be due to the fact that there are different actors performing
the same activity in the dataset. We do not use the activity information when determining the dataset
split, therefore animations of the same activity may be in both the training set and the test set. The
main failure cases of our model are producing animations that fail to depict the description for less
well-represented activities or producing animations that are physically impossible, e.g., the human
figure glides along the floor instead of taking distinct steps.

The automatic evaluation metric, DTW-MAE, does not agree well with human judgment of animation
quality. This demonstrates the need for human evaluation on graphics tasks and better automatic
metrics that capture semantic meaning [10]. Martinez et al. [23] found that predicting the average
pose at every time step is a strong baseline when comparing animations using mean absolute error of
joint angles. Upon visual inspection of results produced by Plappert et al. [30], we found that the
human figure is static in many of the animations, which may cause the mean absolute error to be low.

5 Conclusions and Future Work

We present an end-to-end sequence-to-sequence model for generating human motion animations from
natural language descriptions. In the future, we plan to improve our model by improving our loss
function to capture more semantic meaning and explore physically-based controller approaches to
generate more realistic animations.
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