
Verification Conditions for Loops,
Functions, and Pointers

Işıl Dillig

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 1/35

Weakest Preconditions for Loops

I Last lecture: To prove {P}S{Q}, compute wp(S ,Q) and
check if it is implied by P

I Unfortunately, we can’t compute weakest preconditions for
loops exactly.

I Idea: approximate it using awp(S ,Q)

I awp(S ,Q) may be stronger than wp(S ,Q) but not weaker

I To verify {P}S{Q}, show P ⇒ awp(S ,Q)

I Hope is that awp(S ,Q) is weak enough to be implied by P
although it may not be the weakest

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 2/35

Approximate Weakest Preconditions

I For all statements except for while loops, computation of
awp(S ,Q) same as wp(S ,Q)

I To compute, awp(S ,Q) for loops, we will rely on loop
invariants provided by oracle (human or static analysis)

I Assume all loops are annotated with invariants
while C do [I] S

I Now, we’ll just define awp(while C do [I] S ,Q) ≡ I

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 3/35

Verification with Approximate Weakest Preconditions

I If P ⇒ awp(S ,Q), does this mean {P}S{Q} is valid?

I 1.

2.

I For each statement S , generate verification condition
VC (S ,Q) that encodes additional conditions to prove

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 4/35

Generating Verification Conditions

I Most interesting VC generation rule is for loops:

VC (while C do [I] S ,Q) =?

I To ensure Q is satisfied after loop, what condition must hold?

I Assuming I holds initially, need to check I is loop invariant

I i.e., need to prove {I ∧ C}S{I }

I How can we prove this?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 5/35

Verification Condition for Loops

I To summarize, to show I is preserved in loop, need:

I ∧ C ⇒ awp(S , I) ∧VC (S , I)

I To show I is strong enough to establish Q , need:

I ∧ ¬C ⇒ Q

I Putting this together, verification condition for a while loop
S ′ = while C do {I } S is:

VC (S ′,Q) = (I∧C ⇒ awp(S , I)∧VC (S , I)) ∧ (I∧¬C ⇒ Q)

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 6/35

1

Verification Condition for Other Statements

I We also need rules to generate VC’s for other statements
because there might be loops nested in them

I VC (x := E ,Q) = true

I VC (s1; s2,Q) = VC (s2,Q) ∧VC (s1, awp(s2,Q))

I VC (if C then s1 else s2,Q) = VC (s1,Q) ∧VC (s2,Q)

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 7/35

Verification of Hoare Triple

I Thus, to show validity of {P}S{Q}, need to do following:

1. Compute awp(S ,Q)

2. Compute VC (S ,Q)

I Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Thus, if we can prove of validity of (∗), we have shown that
program obeys specification

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 8/35

Discussion

Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Question: If {P}S{Q} is valid, is (∗) valid?

I 1.

2.

I Thus, even if program obeys specification, might not be able
to prove it b/c loop invariants we use are not strong enough

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 9/35

Example

I Consider the following code:

i := 1; sum := 0;
while i ≤ n do [sum ≥ 0] {

j := 1;
while j ≤ i do [sum ≥ 0 ∧ j ≥ 0]

sum := sum+ j; j := j+ 1

i := i+ 1

}

I Show the VC’s generated for this program for post-condition
sum ≥ 0 – can it be verified?

I What is the post-condition we need to show for inner loop?
sum ≥ 0

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 10/35

Example, cont.

I Generate VC’s for inner loop:

(1) (sum ≥ 0 ∧ j ≥ 0 ∧ j > i)⇒ sum ≥ 0
(2) (j ≤ i ∧ sum ≥ 0 ∧ j ≥ 0)⇒ (sum + j ≥ 0 ∧ j + 1 ≥ 0))

I Now, generate VC’s for outer loop:

(3) (i ≤ n ∧ sum ≥ 0)⇒ (sum ≥ 0 ∧ 1 ≥ 0)
(4) (i > n ∧ sum ≥ 0)⇒ sum ≥ 0

I Finally, compute awp for outer loop: (5) 0 ≥ 0

I Feed the formula (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) to SMT solver

I It’s valid; hence program is verified!

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 11/35

Example: Variant

I Suppose annotated invariant for inner loop was sum ≥ 0
instead of sum ≥ 0 ∧ j ≥ 0

I Could the program be verified then? no, because loop
invariant not strong enough

I While VC generation handles many tedious aspects of the
proof, user must still come up with loop invariants (more on
this in next few lectures)

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 12/35

2

IMP with functions and pointers

I The IMP language considered so far does not have many
features of realistics PLs

I Let’s enrich IMP with two features, namely functions and
pointers

I How to verify programs in this enriched language

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 13/35

IMP with assertions and assumptions

I Before considering functions, we will first add assertions and
assumptions to IMP

I The statement assert(E) fails if E evaluates to false

I The statement assume(E) tells us that E is true

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 14/35

Proof rules for Assert and Assume

I Proof rule for assertions:

P ⇒ E

` {P} assert(E) {P ∧ E}

I Proof rule for assumption:

` {P} assume(E) {P ∧ E}

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 15/35

Weakest Precondition for Assert and Assume

I What is wp(assert(P), Q)?

I What is wp(assume(P), Q)?

I Given a statement S , how can we generate a statement S ′

such that {P}S{Q} is a valid Hoare triple iff {true}S ′{true}
is a valid Hoare triple?

I Prove this property!

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 16/35

IMP+: IMP with functions

I IMP+ programs defined according to following grammar:

Program P := F+

Function F := function f(x1, . . . , xn) {S ; return e; }
Statement S := y := f (e1, . . . , en) | . . .

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 17/35

Handling procedure calls

I How do we generate VCs if we encounter procedure calls?

y = f (x1, . . . , xn)

I Just like we asked programmer to provide loop invariants, also
ask them for method pre- and post- conditions

I Pre-condition specifies what is expected of f ’s arguments

I Post-condition describes f ’s return value (and side effects)

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 18/35

3

Pre- and post- Example

I Consider a method get that takes an array arr of size n and
index i and returns the i ’th element

I Pre-condition: 0 ≤ i < n

I Post-condition: ret = a[i]

I These pre- and post-conditions are referred to as the method
contract

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 19/35

Generating VCs for method calls

I Contracts allow us to verify the program in a modular way –
generate VCs one function at a time!

I There are two questions we need to answer:

1. How do we verify that a method satisfies its contracts?

2. How do we handle method calls when generating VCs?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 20/35

Verifying Contract

I Consider the following function declaration:

function f(x1, ..., xn)

requires(Pre)

ensures(Post)

Body;

return e;

I Assuming that Post refers to variable ret, we can verify this
contract by checking the validity of this Hoare triple:

{Pre} Body; ret := e {Post}

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 21/35

Verifying Calls

I Since method bodies now contain calls, we need to be able to
verify Hoare triples involving calls:

{P} y := f (e1, . . . , en) {Q}

I To verify this triple, we need to prove that f ’s precondition
Pre is satisfied

I But we can also assume that f ’s post-condition Post holds
after the call – why?

I Thus, we can model the function call as:

assert(Pre[e1/x1, ... en/xn]);

assume(Post[tmp/res,e1/x1, ... en/xn]);

y := tmp;

where tmp is a fresh temporary variable.

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 22/35

Modular Verification: Recap

I When verifying a callee:

I We assume the precondition

I We assert the postcondition

I When verifying caller:

I We assert callee’s precondition

I We assume callee’s postcondition

I This is crucial for modular verification – decomposes
verification task into individual functions

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 23/35

Exercise: Locking Protocol

I Suppose we represent locks as integers – 0 means locked; 1
means unlocked

I What are the contracts for methods lock and unlock?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 24/35

4

Exercise: Locking Protocol, cont.

I Show the verification conditions for the following caller of
lock and unlock:

assume(b=0 || b=1);

l:= b;

if(b != 0) l := lock(l);

else l := unlock(l);

if(b = 0) l:= lock(l);

else l:= unlock();

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 25/35

One more complication: Global variables

I So far, we assumed function call does not have side effects

I But suppose that f can modify global variable glob

I Is the previous rule still correct?

I

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 26/35

Havoc

I To deal with this difficulty, we introduce a new statement
called havoc

I The statement havoc(~x) assigns every variable x ∈ ~x to an
unknown value

I What is wp(S , φ) where S is a havoc statement?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 27/35

Function calls with Side Effects

I To deal with side effects, we assume method contracts also
contain info about side effects

I New method contract:

Requires P

Ensures Q

Modifies v1, v2, ...

I In addition to checking {P} Body {Q}, also need to check
that the function only modifies variables mentioned in
modifies clause

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 28/35

Function calls with Side Effects, cont.

I Given such a method contract, we can model call site
y := foo(x1, . . . , xn) as follows:

assert(Pre[e1/x1, ... en/xn]);

havoc(v1, ..., vn);

assume(Post[tmp/res, e1/x1, ... en/xn]);

y := tmp;

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 29/35

IMP with Pointers

I Let’s also add pointers to IMP!

Program P := F+

Function F := function f(x1, . . . , xn) {S ; return e; }
Statement S := y := ∗x | ∗ x = e | . . .

I Does the old assignment rule still work with pointers?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 30/35

5

Counterexample

I To see why the old assignment rule does not work, consider
the following code snippet:

x := y; *y := 3;

*x := 2; z := *y;

assert(z = 3)

I Does this this assertion hold?

I What is the weakest precondition?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 31/35

Verification with Pointers

I As shown by previous example, we cannot deal with references
using the standard assignment rule

I Key problem: Due to pointer aliasing, *x := e can affect
values of expressions beyond *x

I Solution: Treat memory as a gigantic array M that maps
addresses to values

I Need to use theory of arrays & also need new rules for loads
and stores

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 32/35

Proof Rules for Loads and Stores

I Proof rule for loads:

` {Q [M [y]/x]} x := ∗y {Q}

I Proof rule for stores:

` {Q [M 〈x / e〉]/M } ∗ x := e {Q}

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 33/35

Revisiting Example

I Let’s consider the previous example again

x := y; *y := 3;

*x := 2; z := *y;

assert(z = 3)

I What is the weakest precondition for this code snippet?

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 34/35

Deductive Verifiers in Practice

I Deductive verification tools are based on these principles we
discussed

I Examples: Boogie, Dafny, Smack, ESC/Java, Why3, . . .

I They automate VC generation, but require human to provide
loop invariants and method pre- and post-conditions (tedious!)

I Fortunately, many techniques that can be used to
automatically synthesize these annotations!

Işıl Dillig, Verification Conditions for Loops, Functions, and Pointers 35/35

6

