
A Fast Work-Efficient SSSP Algorithm for GPUs
Kai Wang

Department of Computer Science
The University of Texas at Austin

USA
kaiwang@cs.utexas.edu

Don Fussell
Department of Computer Science
The University of Texas at Austin

USA
fussell@cs.utexas.edu

Calvin Lin
Department of Computer Science
The University of Texas at Austin

USA
lin@cs.utexas.edu

Abstract
This paper presents a new Single Source Shortest Path (SSSP)
algorithm for GPUs. Our key advancement is an improved
work scheduler, which is central to the performance of SSSP
algorithms. Previous GPU solutions for SSSP use simple work
schedulers that can be implemented efficiently on GPUs but
that produce low quality schedules. Such solutions yield
poor work efficiency and can underutilize the hardware due
to a lack of parallelism. Our solution introduces a more so-
phisticated work scheduler—based on a novel highly paral-
lel approximate priority queue—that produces high quality
schedules while being efficiently implementable on GPUs.
To evaluate our solution, we use 226 graph inputs from

the Lonestar 4.0 benchmark suite and the SuiteSparse Ma-
trix Collection, and we find that our solution outperforms
the previous state-of-the-art solution by an average of 2.9×,
showing that an efficient work scheduling mechanism can be
implemented on GPUs without sacrificing schedule quality.
While this paper focuses on the SSSP problem, it has

broader implications for the use of GPUs, illustrating that
seemingly ill-suited data structures, such as priority queues,
can be efficiently implemented for GPUs if we use the proper
software structure.

CCS Concepts: • Computing methodologies → Shared
memory algorithms;Massively parallel algorithms;Con-
current algorithms.

Keywords: SSSP, Worklists, GPUs

1 Introduction
The Single-Source Shortest Path (SSSP) problem, in which
the goal is to find the shortest path from a given source vertex
to all vertices, is important for two reasons. First, it is widely
used with many applications. Second, it is algorithmically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441605

interesting because the worklist that is central to SSSP algo-
rithms presents a conundrum for GPU programmers: GPUs
operate best on data parallel computations that exhibit reg-
ularity in both data access and control flow, yet worklists
would appear to have neither of these properties. Thus, while
the best performing SSSP algorithms currently run on GPUs,
it has been difficult to realize the advantages of worklist pro-
cessing on GPUs, suggesting that further improvements in
GPU performance on problems that traditionally use work-
lists are possible.
The importance of the worklist to SSSP algorithms can

be seen by noting the difference between the two classic
SSSP algorithms. Dijkstra’s algorithm [9] uses an ordered
worklist, i.e., a priority queue, yielding a solution that is
optimal in work efficiency but that admits little parallelism.
By contrast, the Bellman-Ford algorithm’s [2] use of an un-
ordered worklist provides maximum parallelism at the cost
of redundant work. For parallel platforms, the delta-stepping
algorithm from Meyers, et al. [15] provides a compromise
between these two extremes: The idea is to use a coarse-
grained priority queue that places work items into one of
multiple buckets, with vertices in the same bucket sharing
the same priority. At its finest granularity, the algorithm
collapses to Dijkstra’s algorithm. At its coarsest granular-
ity, the algorithm collapses to Bellman-Ford. For CPU-based
multicores, the best granularity resides somewhere in the
middle.

To date, the best SSSP solution for GPUs [4] uses the Near-
Far algorithm [7], an adaptation of delta-stepping that makes
several GPU-friendly simplifications to the worklist. First, it
uses just two buckets, known as Near and Far, which can be
implemented using pre-allocated arrays, thereby avoiding
the need to perform dynamic memory management. Second,
it uses the Bulk Synchronous Parallel (BSP) model in which
an algorithm proceeds in a series of supersteps separated by
barrier synchronization. This model allows each bucket to
be double buffered, with writes made to one buffer and reads
made to a second buffer, greatly simplifying synchronization.
Unfortunately, Near-Far has three deficiencies. First, be-

cause it uses just two buckets, Near-Far provides an ex-
tremely coarse-grained approximation of a priority queue,
leading to poor work efficiency. Second, its use of barrier syn-
chronization and double buffering severely limits parallelism,
particularly for high-diameter graphs. Third, the granularity

https://doi.org/10.1145/3437801.3441605

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

of the priority queue—that is, the range of priorities repre-
sented by each bucket, known as the Delta value—is chosen
using a simple offline method that does not adequately cap-
ture important characteristics of the input graph and its
relation to available parallelism.

In this paper, we present ADDS (Asynchronous Dynamic
Delta-Stepping), a novel formulation of delta-stepping that
introduces an efficient worklist for GPUs to address the three
deficiencies of Near-Far:

• It uses multiple buckets, which improves work effi-
ciency.

• Instead of using the BSPmodel, it operates asynchronously,
which avoids barrier synchronization and increases
parallelism.

• It uses a dynamically selected Delta value that is cho-
sen based on runtime information.

One key to our solution is the introduction of a Manager
Thread Block (MTB), which plays a role in all three aspects:
(1) It executes a new custom dynamic memory allocator,
which supports the use of multiple buckets; (2) it coordinates
the accesses of multiple worker threads so that they do not
conflict, thus providing the functionality of multiple readers
and multiple writers (MRMW) with the implementation effi-
ciency of a solution that uses a single reader and multiple
writers (SRMW); (3) it gathers dynamic information that is
used to periodically select a good Delta value. In short, we
have identified the bottlenecks in a GPU implementation of
delta-stepping, and we have found ways to transform these
bottlenecks into data parallel computations.

This paper makes the following contributions:
• We present the ADDS algorithm, a formulation of
delta-stepping for GPUs that addresses three major
limitations of the Near-Far algorithm. The key ad-
vancement is a sophisticated coarse-grained worklist
that runs efficiently on GPUs.

• We extensively evaluate our new algorithm on a set of
226 graphs from the Lonestar 4.0 benchmark suite [11]
and SuiteSparse Matrix Collection [8]. On an NVIDIA
RTX 2080 ti GPU, we find that ADDS outperforms the
best Near-Far implementation by an average of 2.9×.

• More broadly, we demonstrate that while previous
work has had to choose between algorithmic efficiency
and fitness for GPUs, we have shown that we can
achieve both. Thus, we have shown that GPU pro-
grammers can use sophisticated data structures, such
as coarse-grained priority queues, if they design their
data structures carefully.

This paper is organized as follows. Section 2 first places
our work in the context of prior work, and Section 3 then pro-
vides background information that is useful for understand-
ing our solution. We describe in Section 4 three important
design considerations for implementing work schedulers on
GPUs, before presenting our new algorithm in Section 5.

We empirically evaluate our solution in Section 6 and then
conclude in Section 7.

2 Related Work
Dijkstra’s algorithm has been parallelized [6, 14, 19] by pro-
cessing vertices with the same priority (the same distance
from the source node) in parallel. However, such algorithms
typically admit much less parallelism than is available on
GPUs.
The Bellman-Ford algorithm is much more straightfor-

ward to parallelize, since it does not require a priority queue.
Many GPU implementations have been proposed [4, 5, 10,
13, 21], but the processing of vertices in arbitrary order leads
to redundant work.

Meyer et al’s [15] delta-stepping algorithm was designed
from a theoretical perspective and has since been adapted to
GPUs [1, 3, 7, 22, 23] by simplifying the design of the work-
list in exchange for inferior work schedules, which reduces
work efficiency and limits parallelism. Our ADDS algorithm
is a GPU adaptation of delta-stepping that uses a more so-
phisticated work scheduler to improve work efficiency and
parallelism.

3 Background
This section (1) briefly describes the general structure of
SSSP algorithms, (2) explains how the implementation of its
worklist impacts work efficiency, and (3) briefly explains the
delta-stepping algorithm.
SSSP algorithms compute the shortest distance from a

source vertex to every other vertex in a directed graph with
non-negative edge weights. All SSSP algorithms associate
with each vertex the current shortest distance to that vertex
from the source; initially set to∞, this current shortest dis-
tance is refined until the shortest distance is found. When a
vertex’ shortest distance is updated, the vertex’ neighboring
nodes are processed to propagate updated information across
the graph. A worklist is used to store the IDs of outstanding
vertices to be processed.

S B

A

1
1

10

Figure 1. Sample graph with source node S.

3.1 Work Scheduling
To understand the importance of a good work schedule, we
first define the work efficiency of an SSSP algorithm to be
the inverse of the total number of vertices processed.

We can then consider the input graph shown in Figure 1,
where an unordered worklist can lead to redundant work,
while an ordered worklist, ie, a priority queue, does not. In

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

particular, if we process vertices in priority order based on
increasing distance from the source S, we would process B
first and then A, so we would visit each vertex once. If on
the other hand we processed A before B, then the current
shortest distance to A will have to be updated after the short-
est distance to B becomes known, so A will be visited twice.
For high diameter graphs, we find that Dijkstra’s algorithm,
which uses a priority queue, can be 1000× more efficient
than Bellman-Ford, which uses an unordered queue. As the
diameter of the graph decreases, the significance of order-
ing diminishes, with power law graphs seeing moderate to
no benefit from ordering. For example, a priority queue im-
proves the work efficiency by only 2× for the rmat22 graph.

3.2 Delta-Stepping
The delta-stepping algorithm [15] uses a coarse-grained pri-
ority queue that admits more parallelism than Dijkstra’s
while providing better work efficiency than Bellman-Ford.
This coarse-grained priority queue consists of multiple buck-
ets, where all vertices in a given bucket are given the same
priority (see Figure 2), even though their priority values
may differ by up to a constant called ∆. Essentially, this
multiple-bucket data structure sorts the outstanding vertices
at a coarse granularity. To schedule work, vertices in the first
bucket can be processed in parallel, and when the bucket
becomes empty, the next bucket is processed, enforcing a
coarse-grained priority order.

3

72

54

62

4

72

...
bucket

0

process
in parallel

vertex's
current

distance

194

155

134

112

178

bucket
1

253

264

bucket
2

332

325

384

357

bucket
3

...

...

variable
size

(0,99) (100,199) (200,299) (300,399)bucket
interval

priority

Δ	=	100

Figure 2. Delta-Stepping’s Work Scheduling Data
Structure.

4 Design Considerations
This section describes three important design considerations
for implementing delta-scheduling on GPUs.
We first observe that the three SSSP algorithms that we

have discussed—Dijkstra’s, Bellman-Ford, and delta-stepping—
differ primarily in the way that they schedule work. In the

context of GPUs, work scheduling is particularly important
and challenging because it profoundly impacts performance
in two ways. First, the data structure itself must be suffi-
ciently scalable to support tens of thousands of hardware
threads. Second, the resulting schedule needs to provide suf-
ficient parallelism to utilize the abundant hardware threads,
while at the same time managing the competing concern of
maintaining good work efficiency, i.e., avoiding redundant
work.

4.1 Design Consideration 1: Memory Management
The first consideration is memory management. Fixed-sized
arrays avoid the cost of memorymanagement, but theywaste
memory because b buckets consume b × |E | memory, where
|E | is the number of graph edges. Thus, as b grows, fixed-
sized arrays become impractical for large graphs. Near-Far
sets b = 2, yielding an extremely coarse-grained priority
queue that severely degrades work efficiency.

Thus, we seek a worklist data structure that can efficiently
grow and shrink the sizes of individual buckets as the pro-
gram executes, without limiting the number of buckets to
some small constant.

4.2 Design Consideration 2: Synchronization
The second issue is synchronization. If multiple threads can
read from and write to the same buckets, then we have
MWMR access, which in general is not scalable on GPUs.
Thus, many GPU SSSP algorithms, such as Near-Far, employ
double-buffering, so that in any iteration of the algorithm,
threads read from one buffer and write to another, removing
the need for reader-writer synchronization. However, dou-
ble buffering reduces concurrency, since newly generated
work items can only be read in the next iteration, even if idle
threads are available to perform the read. Double buffering
is particularly harmful for high diameter graphs, where the
execution is forced into many tiny iterations; e.g. for the
the road.USA graph, the average work count per iteration is
only 800, while a RTX 2080 GPU has 68K hardware threads.
Double-buffering also doubles the memory requirements of
the relevant buffers.

Thus, the challenge is to provide parallel access to buckets
without resorting to synchronous double-buffering.

4.3 Design Consideration 3: Granularity
The third design consideration involves the granularity of
the priority queue, which is guided by the value of the ∆
parameter. A smaller ∆ value produces finer-grained buckets
that improve work efficiency but reduce parallelism. The
optimal choice depends on characteristics of both the input
graph and the underlying hardware, since it depends on the
weights and connectivity of the graph and the hardware’s
available parallelism.
Near-Far uses a simple heuristic [7] that often picks a

value that is far from optimal. The value is chosen statically

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

array
0

array
1

A
B
C

threads
D
E
F

r w

array
1

D
E
F

G
H
I

array
0

J
K

Iteration 0 Iteration 1

Time

...

Figure 3. Implementing a List Using
Double-Buffering.

based on the average weight (W) and the average degree
(D) of the graph: ∆=C×(W /D), where C is a constant for all
graphs.
To show the limitations of this heuristic, we identify the

optimal value of C for each input graph. Figure 4 illustrates
two points. First, the choice of ∆ has a significant impact on
performance. Second, the optimal values of C for the two
input graphs are far away from each other; so it is impossible
to pick a constant C that is optimal for all graphs.

C (2^n)

N
or

m
al

iz
ed

 R
un

 T
im

e
(X

)

0

1

2

3

4

-2 0 2 4 6 8 10 12 14

rmat road

Figure 4. Execution Time Against the Constant C
for Two Graphs. Execution time is normalized to
the minimum in the series; labels of the x-axis are
powers of 2.

Thus, we conclude that we need to incorporate runtime
information to select the best value of ∆.

5 Our Solution
Our solution is a GPU adaptation of delta-stepping that intro-
duces a new work scheduling mechanism that substantially
improves work efficiency and parallelism.
There are three keys to our solution. First, we develop a

highly parallel approximate priority queue with dynamically-
sized buckets and customized memory management, which
allows our solution to use many buckets instead of just two;

...

assign consecutive bucket locations to read

a pool of global
memory alloc

de-alloc

bucketn

high-priority

write buckets
(by priority)

circular FIFO

headtail

MTB

bucket0bucket1

low-priority
contain

work
items

read buckets
(by assignment)

....WTB0

AF

WTB1

AF

WTBn

AF

check/update
metadata

(resolve race
conditions,
adjust Δ,

etc.)

memory
management

Figure 5. Overview of Our Solution

this finer-grained priority queue improves work efficiency.
Second, instead of using double buffering, our bucket data
structure efficiently supports asynchronous concurrent ac-
cess by large numbers of worker threads, which significantly
improves parallelism. Third, our scheduler gathers run-time
information to dynamically identify more suitable values of
∆.

In the rest of this section, we first discuss the key features
of our decoupled approach that allows thousands of worker
threads to access a common bucket without ruinous con-
tention for shared data.We then explain howADDSmanages
work allocation across multiple buckets. Finally, we describe
our dynamic scheme for determining the appropriate ∆ step
size to balance parallelism and work efficiency.

5.1 Basic Operation
Our main data structure is an ordered circular work queue of
buckets, whose sizes are determined dynamically to avoid
wasting memory as the distribution of priorities changes
over time. As we describe in Section 5.3, this work queue is
supported by a fast custom memory manager that exploits
the FIFO nature of the buckets.

The key to our solution is a delegation strategy in which
worker thread blocks (WTBs) process vertices and assign
work items to buckets according to their priority, but they
do not read items directly from buckets. Instead, a single
manager thread block (MTB) reads the buckets and assigns
work items to worker threads. Thus, while the overall work
queue has MRMW functionality, the metadata managed by
the MTB ensures that the many WTBs do not write to the
same memory locations. And the synchronization typically
associated with MRMW access to the work queue is replaced
by a simpler SRMW synchronization to the work queue
metadata.

Our use of delegation allows the MTB to read many data
items in parallel with a single read operation. In particular,

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

an MTB thread operates on N-word segments instead of indi-
vidual work items, and even greater efficiency is achieved
because all MTB threads in a warp perform read operations
in that same single memory access. Thus, instead of having
all threads read and write directly to buckets in an MRMW
fashion, our solution amortizes the overhead of metadata
access across a large number of read operations. Moreover,
since our solution is SRMW, it does not need to resolve con-
flicts among multiple readers (e.g. collisions on the same
bucket location), which simplifies the design.
Once available work items are known, the MTB assigns

this work toWTBs using a dedicated assignment flag (AF) for
each WTB (see Figure 5). In addition to indicating whether
the WTB is currently idle, an AF also contains the location
and size of the array of work items that is assigned to the
WTB when it is not idle. Each idle WTB polls its respective
AF in scratchpad memory and thus receives work from the
MTB without contention with other WTBs.

5.2 SRMW Queue Access Management
We now describe details of our queue management scheme.

Logically, each bucket is an array managed as a circu-
lar FIFO queue. WTB threads can add work directly to a
bucket; hence there are multiple writers. Work is added to
these buckets in a lightweight manner by maintaining in the
bucket’s metadata a reservation pointer (resv_ptr) that is
accessed atomically by the WTBs. The resv_ptr is atomically
incremented, and each accessing WTB is returned a unique
index into the bucket array where it can place new work
items without contention. Likewise, the MTB maintains a
read pointer (read_ptr) to indicate the location in the queue
at which it should start reading work items.

To avoid a race condition, we must ensure that as the MTB
performs queue management and work distribution, it does
not attempt to access work from locations that have not yet
had work items written to them. As mentioned above, each
MTB thread operates on an N-word segment of a bucket.
Each segment is associated with a write completed counter
(WCC), which is initially 0. When a WTB thread writes a
work item into the location at its unique bucket index, it
executes a memory fence to ensure that the item is fully
written and then atomically increments the WCC for the
segment into which it is writing.
To read work off the queue, the MTB checks each seg-

ment’s WCC. If its value is N, then that entire segment con-
tains assignable work. If the WCC value is less than N, then
the beginning index of the segment is added to theWCC, and
to guarantee that the value of resv_ptr is not stale, the result
is compared to resv_ptr after performing a memory fence
operation. If these values are equal, then the segment up to
resv_ptr is full, and all locations from read_ptr to resv_ptr are
known to be fully written. If they are not equal, then no data
from the current segment can be considered written since
nothing is known about the order in which WTB threads

write their locations, so the final known written location is
the end of the previous segment. Thus, the MTB computes
the bounds of a set of known written locations from read_ptr
to the determined upper bound, and the read_ptr is updated
to the new bound.

5.3 Memory Management
Because the distribution of work item priorities varies over
time, we need an efficient dynamic memory management
scheme that allows the bucket sizes to change over time.
Recall that each bucket is treated as an array with a 32 bit
index implementing a circular queue of work items. To allow
a bucket to grow and shrink dynamically, memory for a
bucket is allocated in blocks of 64K 32 bit words. An array
of pointers to allocated blocks is maintained for each bucket.
The high order 16 bits of each 32 bit index are treated as an
index into the pointer array, and the lower order 16 bits are an
offset into the particular block. Thus, compared to a simple
static array, a data item access requires an additional level of
indirection. This overhead can be substantial when accessing
global memory, but it can be ameliorated by keeping direct-
mapped translation caches for each WTB and for the MTB
in scratchpad, where the high order 16 bits of an index are
treated as a tag for the cached block at that index.
Our system performs its own memory management for

buckets, using a large block of pre-allocated GPU memory
and keeping as much metadata in scratchpad memory as
possible. Because the memory blocks are always part of a
FIFO queue, they are read and written in a monotonically
increasing order, so management is much simpler than for a
general purpose memory allocator. All memory management
is performed by the MTB, freeing WTBs from dealing with
this task.

5.4 Managing the Ordered Work Queue
Our work queue consists of a fixed number of 32 buckets,
managed as a circular priority queue with bucket priorities
that increase from the tail (initially index 0) to the head
(initially index 31).

When the highest priority bucket becomes empty, the
MTB increments the head and tail pointers so that the empty
bucket can be reused. To determine when these pointers can
be incremented, our solution maintains a completed work
counter (CWC) for each block. When a WTB completes k
work items that have been assigned to it, theWTB atomically
increments the block’s CWC by k . When the CWC matches
the resv_ptr for the block, again following a memory fence
to be sure the value of resv_ptr is not stale, all work is done
and the pointers may be incremented.
It might seem possible to simply detect cases where the

head bucket has no work item left, but with such a scheme,
the WTBs may still be performing tasks that spawn addi-
tional work that belongs in the head bucket. Should that
bucket be deallocated (i.e. the head pointer is incremented),

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

that new work will be placed into the next highest priority
bucket. We have seen this situation cause continuous cram-
ming of work into ever fewer buckets, eventually rendering
the entire priority scheme ineffective.
Performance can be optimized by allowing the MTB to

allocate work from multiple high priority buckets, instead
of just the head bucket. This optimization has two benefits:
(1) It avoids situations in which small amounts of remaining
work in a nearly-empty head bucket limit the concurrency
of active worker threads, and (2) it gives the MTB control
over the number of buckets from which allocation can be
made, which along with delta adjustment, allows the MTB
to control the tradeoff between the amount of concurrency
and work efficiency. When assigning items, higher prior-
ity buckets are considered first and lower priority buckets
are considered only if there are idle WTBs after all higher
priority work has been assigned.
Our algorithm terminates when it detects for two con-

secutive sweeps of the work queue that no work has been
assigned to any bucket. Two sweeps are needed to ensure
that all work in progress has been completed.

16(a) vertices with
current distance: 37 55 74

(b) Δ = 5 (c) Δ = 20 (d) Δ = 40

b0 b0 16 37
0-390-4

16

b1

b2
20-39

40-59

b1

b2

b1

b2

55 74
40-79

10-14

5-9
37

55

16 37
55 74

b3
60-79

b3 b3
120-
15915-19

74

80-119

b0
0-19

Figure 6. How ∆ Affects Work Efficiency and
Concurrency. Adding 4 vertices (a) to 4 buckets
under 3 scenarios: ∆=20 (c) produces the best work
efficiency; ∆=40 (d) improves parallelism; ∆=5 (b)
clips vertices to the last bucket.

5.5 Dynamically Setting the ∆ Value
The value of ∆ can significantly impact performance. In this
section, we first explains how the value of ∆ impacts work
efficiency and parallelism. We then introduce a mechanism
for dynamically setting the ∆ value based on run-time infor-
mation.
Using a simple example where 4 vertices are added to 4

buckets under 3 different ∆ values, Figure 6 shows how the
value of ∆ affects performance. If ∆=20 (case (c)), we get
a precise ordering of vertices and optimal work efficiency.
However, this ∆ value might not provide sufficient paral-
lelism to fully utilize the hardware, so increasing ∆ to 40
(case (d)) increases the number of of work items in each
bucket and therefore increases parallelism.

The interesting case occurs when ∆ is decreased to 5 (case
(b)). We might expect that decreasing the value of ∆ always
improves ordering, but if the number of buckets is smaller
than the number of priorities, then vertices out of range will
be clipped to the last bucket, and ordering will be lost in
the last bucket. Thus, the value of ∆ should be large enough
to minimize the chance of clipping.

Best
Work Efficiency

matches

9x more
work6x

slower

1.5x
slower

2x more
work

Clip
Point

Best
Work Efficiency

Best
Work Efficiency

& Best Performance

Best
Performance

Best
Performance

Clip
Point

Clip
Point

Figure 7. Execution Time and Work Performed vs.
∆. The choices of ∆ are predetermined and fixed
during execution; both time and work are
normalized to the lowest point (lower is better). 32
buckets are used.

We see this behavior in practice. Figure 7 shows how per-
formance and work efficiency correlate with ∆ for 3 dramat-
ically different graphs. For each graph, we highlight three
important ∆ values: the one that achieves the best work

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

efficiency (best-work-point), the one that achieves the best
performance by balancing work efficiency and parallelism
(best-perf-point), and the one that causes clipping (clip-point).
These choices roughly correspond to cases (c), (d), and (b) in
Figure 6.
For the RMAT graph (Figure 7(a)), execution time corre-

lates strongly with the amount of work performed, which
indicates that there is sufficient work to keep the hardware
fully utilized no matter the choice of ∆, so the ∆ with the
least amount of work (best-work-point) also achieves the best
performance (best-perf-point). By contrast, for the ROAD
graph (Figure 7(b)), the best-work-point severely underuti-
lizes the hardware, so the best-perf-point is 6× faster despite
doing 9× more work; thus, hardware utilization is an impor-
tant factor when choosing the ∆ value for such graphs. The
MSDOOR graph (Figure 7(c)) lies midway between RMAT
and ROAD, and the tradeoff is much less extreme. Finally,
for all 3 graphs, the clip-point always performs worse than
the best-work-point, since it causes dramatically more work
without improving parallelism.

Selecting an Optimal ∆ Value. Based on the above ob-
servations, we develop a run-time method that automatically
selects a point near best-perf-point for a given graph. Before
execution starts, we choose an initial ∆ value using a heuris-
tic similar to the one described in Section 4.3. During exe-
cution, the MTB periodically gathers run-time information
and then either increases or decreases ∆. The process is a
continuous feedback loop in which the MTB guides ∆ closer
to the optimal value at each period.
To avoid clipping, our system sets a lower bound on the

∆ value by observing the point at which clipping occurs. We
empirically determine that this bound occurs when the tail
bucket contains at least 65% of the total number of assigned
work items.

Above this lower bound, we can safely assume that smaller
∆ values increase work efficiency while decreasing paral-
lelism, and vice versa. Our goal is to keep ∆ near a point
where the hardware is nearly fully utilized, which represents
the optimal tradeoff between work efficiency and parallelism;
this point corresponds to the best-perf-point in Figure 7 (b)
and (c). Beyond this point, a larger ∆ value increases paral-
lelism, but because the hardware is already fully utilized, it is
likely to produce pointless extra work by relaxing ordering,
so increasing ∆ does not improve performance. On the hand,
below this point, a smaller ∆ decreases hardware utilization
by decreasing concurrency and thus hurts performance.
To keep ∆ near the optimal point, we define upper and

lower limits on the allowed utilization based on the total
number of hardware threads on the GPU; in addition, we
take into account the effect of memory access divergence on
bandwidth usage by correlating the number of threads with
the average degree of the input graph. During execution,
the hardware utilization is monitored by the MTB based on

the number of work items that it currently has assigned at
any time. The MTB then adjusts ∆ to keep the utilization
between the two limits, ensuring that the hardware is near
full utilization.

For several reasons, it is desirable to avoid adjusting ∆ too
frequently. First, frequent adjustments can negatively impact
work efficiency by mixing work items of different priorities
in the same buckets. Second, some utilization fluctuations
will dampen without changing ∆. For example, when a new
bucket that has accumulated many work items is first being
processed, utilization will temporally jump and then grad-
ually fall with a fixed ∆, so adjusting it is likely to be coun-
terproductive. Third, after a change in ∆ value, utilization
changes gradually instead of instantaneously.
To avoid overshooting the optimum setting, our scheme

waits some time for utilization to settle before again changing
the ∆ value. This settling time varies depending on the graph
input and the current ∆ value. Generally speaking, it takes
longer for the utilization to settle when ∆ is larger, so the
wait time is scaled with ∆ by waiting for a fixed number of
head bucket switches. Since the number of work items in each
bucket is proportional to the ∆ value, the settling time scales
naturally with the value of ∆.
Fluctuations in utilization can also be avoided by assign-

ing work from multiple high priority buckets instead of from
just the head bucket, so in addition to low-frequency ∆ ad-
justments, the MTB can make higher-frequency fine-grained
adjustments by dynamically varying the number of these
high priority buckets in response to measured utilization
changes. This more sensitive mechanism can dampen many
utilization changes that would otherwise occur, thereby en-
hancing the effectiveness of low-frequency ∆ adjustments.

6 Evaluation
We now present our comprehensive evaluation of ADDS.

6.1 Methodology
To evaluate ADDS and prior solutions, we use an NVIDIA
RTX 2080 ti GPU (Turing, TU102) [16] with driver 440.44
and an NVIDIA RTX 3090 (Ampere) [18] with driver 455.38,
both using CUDA toolkit version 10.0 [17] (see Table 1 for
more details). We use the RTX 2080 ti for the bulk of our
results, but we include results for the more modern RTX 3090
to measure the robustness of ADDS to hardware changes.
We run shared memory and serial CPU implementations
on an Intel Core i9-7900X CPU, which has 10 cores and 20
hardware threads running at 3.3 GHz.

6.1.1 Graph Inputs. Our experiments use a set of 226
graph inputs from the Lonestar benchmark suite [11] and
the SuiteSparse Matrix Collection [8]. We select all graphs
that fit the following criteria: (1) They have at least 100K
vertices and 1M edges, and (2) they are suitable for SSSP
traversal, where at least 75% of the vertices can be reached

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

RTX 2080 ti RTX 3090
SM Count 68 82
Threads Per SM 1024 1536
Max Clock Rate 1.75 GHz 1.8GHz
GDDR6 Bandwidth 616 GB/s 936 GB/s
DRAM Size 11 GB 24 GB
L2 Size 5.5 MB 6 MB
Scratchpad Per SM 48 KB 48 KB
Compute Capability 7.5 8.6

Table 1. Hardware specifications for the RTX 2080
ti GPU and RTX 3090

from one of the vertices. We exclude a few large graphs
that the baselines, which use more memory than ADDS,
cannot run. Finally, we convert any negative edge weights
to positive weights. We see from Table 2 that the selected
graphs are highly diverse in terms of average degree and
diameter.

A few types of graphs are worth describing explicitly, since
we will analyze them in some detail. First, the road network
graphs from the Lonestar suite are relatively uniform graphs
with low bounded degree that are approximately planar, so
they have high diameters. Second, graphs such as rmat22,
again from the Lonestar suite, are power law graphs, which
display a power-law distribution in their vertex degree. Thus,
a small number of vertices have extremely high degree, while
the vast majority of vertices have low degree. Such graphs
are characteristic of social networks and many communica-
tion graphs, including large distributed systems such as the
Internet. Third, the characteristics of random graphs depend
on the distribution used, but these typically use a binomial
distribution of node degrees.

Average Degree
<4 4 - 8 8 - 16 16 - 32 32 - 64 >=64
17 (8%) 59 (26%) 34 (15%) 23 (10%) 71 (31%) 22 (10%)

Diameter
<40 40 - 80 80 - 169 160 - 320 320 - 640 >=640
54 (24%) 33 (15%) 49 (22%) 29 (13%) 32 (14%) 29 (13%)

Table 2. The Distribution of Graph
Characteristics—# of benchmarks (% of 226 graphs)

6.1.2 Baseline Implementations. We compare ADDS
against six baselines: four for GPUs, one for shared mem-
ory CPU systems, and one for sequential processors. The
four GPU implementations include the highly-optimized
implementation of Near-Far [7] from the LonestarGPU 4.0
benchmark suite [4], which we refer to as NF; an implemen-
tation of Bellman-Ford from Gunrock 1.0 [23], which we
refer to as Gun-BF; a Near-Far implementation from Gun-
rock 0.2, which we dub Gun-NF; and NVIDIA’s proprietary
SSSP implementation from CUDA 10.0, which we refer to as
NV.

To provide a fair comparison, we make a few small modifi-
cations to the baselines. First, instead of using a default value
or accepting user input to define the value of ∆, all of our
parallel baselines use the equation described in the Near-Far
paper [7]. Second, since current GPUs do not provide hard-
ware support for the atomicMin operation on floating point
values, we modify the code to use a software atomicMin
routine from Gunrock1.0 [23]. Our implementation of ADDS
handles floating point weights in the same way. Third, for
NF, we modify the code pertaining to warp-level coopera-
tive operations so that it works properly on the more recent
Volta/Turing 2080 ti GPUs. The original code uses deprecated
warp-level primitives, e.g. ballot() instead of ballot_sync().

Our shared memory baseline, CPU-DS, is an implemen-
tation of delta-stepping [15] for shared memory CPUs from
Galois 4.0 [12, 20]. This implementation uses multiple fine-
grained buckets to implement its priority queue.

Our sequential baseline is Dijkstra, a highly tuned serial
implementation of Dijkstra’s algorithm [9] from Galois 4.0,
which implements the priority queue using a binary heap.

6.2 Performance Results
Comparison Against GPU Baselines. In comparing

ADDS against the four baseline GPU implementations, we
find that NF performs significantly better than the others,
while ADDS performs significantly better than NF. For the
226 input graphs, ADDS achieves average speedups of 2.9×,
5.8×, 9.6×, and 13.4× over NF, Gun-NF, Gun-BF, and NV,
respectively.
Table 3 summarizes the distribution of this performance

advantage by showing the number of graphs forwhichADDS
obtains various ranges of speedups. For example, we see that
ADDS performs worse than NF for only 4% of the graphs.
For 6% of the graphs, the two perform about the same, and
for 19% of the graphs, ADDS sees between 1.1× and 1.5×
speedup. However, for the vast majority (78.8%) of the graphs,
ADDS sees speedup of at least 1.5×, including 35% of the
graphs for which the speedup is at least 3×.
To see the actual magnitudes of these speedups, these

same results for NF are shown as a scatter plot in Figure 8,
where the log-scale y-axis represents ADDS’ speedup over
NF, while the x-axis represents the average degree of the
input graph. Figure 9 shows individual speedups segregated
by the diameter of the input graph.
Together, these scatter plots show that ADDS’ speedup

over NF is largely independent of the graph’s degree or diam-
eter, which is true because ADDS optimizes both parallelism
and work efficiency, and because ADDS’ dynamic mech-
anism for selecting ∆ values is able to automatically pick
values that balance parallelism and work efficiency.

Comparison Against CPU-DS and Dijkstra. To show
the benefit of using GPUs, we also compare ADDS running

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

<0.9× 0.9× – 1.1× 1.1× – 1.5× 1.5× – 2× 2× – 3× 3× – 5× >=5x
NF 8 (4%) 13 (6%) 27 (12%) 44 (19%) 54 (24%) 59 (26%) 21 (9%)
Gun-NF 20 (9%) 2 (1%) 10 (4%) 14 (6%) 27 (12%) 40 (18%) 113 (50%)
Gun-BF 16 (7%) 3 (1%) 8 (4%) 8 (4%) 20 (9%) 49 (22%) 122 (54%)
NV 18 (8%) 4 (2%) 7 (3%) 12 (5%) 13 (6%) 24 (11%) 148 (65%)
CPU-DS 7 (3%) 2 (1%) 1 (0%) 8 (4%) 28 (12%) 38 (17%) 142 (63%)
Dijkstra 2 (1%) 0 (0%) 0 (0%) 0 (0%) 3 (1%) 14 (6%) 207 (92%)

Table 3. Distribution of Speedup of ADDS over
NF, Gun-NF, Gun-BF, NV, CPU-DS (on CPUs), and
Dijkstra (serial). For example, for 8 of the 226
graphs, the speedup of ADDS over NF is < 0.9×.

ave. degree

sp
ee

du
p

vs
 N

F
(x

)

0.5

1

5

10

4 6 8 10 20 40 60 80

Figure 8. Speedup of ADDS over NF vs. graph
degree.

diameter

sp
ee

du
p

ov
er

 N
F

(x
)

0.5

1

5

10

10 50 100 500 1000

Figure 9. Speedup of ADDS over NF vs. graph
diameter.

on a GPU against CPU-DS running on an Intel Core i9 and
Dijkstra’s running serially on the same Intel Core i9.
Table 3 summarizes the distribution of ADDS’ perfor-

mance advantage over CPU-DS, showing the clear supe-
riority of running SSSP on GPUs. Not evident from the Table
is that ADDS’ average speedup over DS is 14.2×. ADDS’
average speedup over the serial Dijkstra’s is 34.4×.

6.3 Work Efficiency
Table 4 summarizes the distribution of ADDS’ work effi-
ciency relative to NF. Compared to NF, ADDS achieves non-
trivial work savings (<0.75×) for 20% of the graphs. These

savings are achieved by using 32 buckets, which provide a
more precise priority queue than NF’s 2 buckets. For 36%
of the graphs, ADDS does noticeably more work (>1.5×),
which occurs because ADDS’ dynamic mechanism will pick
a larger ∆ value if the GPU is underutilized, which improves
parallelism but leads to more work. In addition, ADDS does
not have the duplicate vertex ID removal filter used by NF,
since that requires a BSP model. On the other hand, ADDS’
use of multiple buckets can mitigate some of the work ineffi-
ciency; for 44% of the graphs, ADDS does a similar amount
of work (0.75× to 1.5×).
We designed ADDS to improve performance rather than

to minimize work. If the improved hardware utilization
outweighs the loss in work efficiency, overall performance
still improves. Therefore, on average, ADDS achieves 2.9×
speedup over NF despite processing 1.55× more vertices.

<0.25× 0.25× - 0.5× 0.5× - 0.75× 0.75× - 1× 1× - 1.5× 1.5-3× >3×
NF 10 (4%) 22 (10%) 13 (6%) 24 (11%) 75 (33%) 70 (31%) 12 (5%)
Gun-NF 50 (22%) 25 (11%) 38 (17%) 35 (15%) 34 (15%) 36 (16%) 8 (4%)
Gun-BF 61 (27%) 21 (9%) 20 (9%) 28 (12%) 64 (28%) 25 (11%) 7 (3%)
CPU-DS 18 (8%) 21 (9%) 29 (13%) 18 (8%) 39 (17%) 37 (16%) 64 (28%)
Dijkstra 0 (%) 0 (%) 0 (%) 0 (%) 30 (13%) 49 (22%) 147 (65%)

Table 4. Distribution of normalized vertex
processing count of ADDS over prior
implementations (lower is better for ADDS). For
example, for 10 of the 226 graphs, ADDS processes
< 0.25× as many vertices as NF. NV results are not
included here because without the source code, we
cannot obtain this metric.

6.4 Performance Analysis
This section analyzes ADDS’ performance gains in more
detail.

Work Efficiency (capped to 5X)

Sp
ee

du
p

O
ve

r N
F

(c
ap

pe
d

to
 5

X)

speedup due to
work saving

speedup due to
parallelism

A. road-usa
B. BenElechi1

C. msdoor
D. rmat22 E. 	c-big

A

B

D

C

E

Figure 10. Correlation between speedup and work
efficiency (inverse of vertex count); for both higher
is better.

.

Figure 10 shows the correlation between speedup (ADDS
over NF) and work efficiency for all 226 graphs. The diag-
onal line represents perfect correlation between work effi-
ciency and speedup; so for graphs on or around this line (e.g.

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

D.rmat22 and C.msdoor), the speedup is mainly due to work
efficiency.
For graphs in the upper left region (e.g. A.road-USA),

ADDS does more work yet achieves better performance, with
many graphs clustered in this region. For these graphs, NF
underutilizes the hardware, and ADDS achieves speedups
by increasing parallelism.
In the lower right region, ADDS reduces work but, by

doing so, decreases parallelism, so the speedup is less than
thework savings. There is just 1 graph (E.c-bag) in this region
that lies far off the diagonal line.
For graphs between the two regions (e.g. B.BenElechi1),

the speedup is due to both increased parallelism and im-
proved work efficiency.
Figures 11 to 15 examine the two regions in detail by

showing how the amount of parallelism changes over time,
where parallelism is defined in terms of edge count (vertex-
count × average-degree).

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

25000

50000

75000

100000

125000

0 100000 200000 300000

NF ADDS

Figure 11. A.road-USA: s:3.09×, w:0.19×
(s:speedup, w:work efficiency), the figure plots the
amount of parallelism (edge count) during the
progress of execution (us).

The Road-USA graph (Figure 11) represents an extreme
case, where ADDS achieves 3× speedup yet does 5× more
work. Although NF achieves good work efficiency for Road-
USA, we can see from the figure that it severely underutilizes
the GPU. By contrast, ADDS achieves much higher paral-
lelism, allowing ADDS (red curve) to complete much sooner.
Here, ADDS’ asynchronous work scheduler allows newly
active vertices to be processed immediately, whereas NF’s
double-buffering does not. Moreover, ADDS is able to dy-
namically increase the value of ∆ when hardware utilization
is low.

Although for Road-USA ADDS trades off work efficiency
for parallelism compared to NF, ordering is still extremely
important for road network graphs. For example, Gunrock’s
Bellman-Ford implementation does 78× more work than
ADDS while being 318× slower. So we see that ADDS’ dy-
namic mechanism works well, since it is able to select a ∆

value that provides sufficient parallelism, while not letting
the behavior degenerate into a Bellman-Ford solution.

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

2000000

4000000

6000000

8000000

0 10000 20000 30000 40000 50000

NF ADDS

Figure 12. B.BenElechi1: s:4×, w:2.12×.

The BenElechi1 graph (Figure 12) represents cases where
NF still underutilizes the hardware—though not as poorly
as with the road-USA input—but ADDS is still superior in
parallelism, and it sees a 2× improvement in work efficiency,
so the combined effect is a speedup of 4×.

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

2000000

4000000

6000000

8000000

0 25000 50000 75000

NF ADDS

Figure 13. C.msdoor: s:5.57×, w:4×.

For the msdoor and rmat22 graphs (Figures 13 and 14), NF
achieves good hardware utilization, so ADDS’s advantage
here come primarily from being more work efficient. For
msdoor, NF’s parallelism is low during the last quarter of
execution, so ADDS’ speedup is still higher than the work
reduction. For the rmat22 input, both NF and ADDS are able
to fully saturate the hardware, so the speedup correlates
perfectly with improved work efficiency.1
Finally, for the c-big input (Figure 15), ADDS achieves

3.35× work saving but a smaller speedup of 1.6×. Here, the
total execution is short (3 ms), so ADDS’ dynamic ∆ is unable
1In the figure, the edge count for NF is the amount of available work at the
beginning of each BSP super-step, which is much larger than the GPU’s
thread count for the rmat graph; for ADDS, parallelism is the currently
assigned work; so the figure does not indicate that NF processes more work
concurrently than ADDS.

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

execution progress (us)

cu
r-

ed
ge

-c
ou

nt
 (l

og
 s

ca
le

)

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 20000 40000 60000 80000

NF ADDS

Figure 14. D.rmat22: s:2.29×, w:2.18×.

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

250000

500000

750000

1000000

1250000

0 1000 2000 3000 4000 5000

NF ADDS

Figure 15. E.c-big: s:1.6×, w:3.35×.

to increase the value of∆ quickly enough, and the parallelism
remains low in the first half of execution.
In summary, ADDS’ concurrent read-write multiple-

bucket design has the ability to improve both parallelism and
work efficiency. Moreover, ADDS’ dynamic mechanism is
able to effectively utilize the multiple buckets by choosing an
appropriate ∆ according to the graph’s run-time characteris-
tics. As a result, ADDS is able to achieve good performance
for a variety of graphs.

6.5 Evaluation on an RTX 3090 GPU
To evaluate ADDS’ performance on different types of GPUs,
we evaluate our solution on a newly released RTX 3090 GPU.
On an RTX 3090, ADDS achieves an average speedup of 3.5×
over NF, compared with a speedup of 2.9× on an RTX 2080
ti. The first two rows of Table 5 show the distributions of
speedup; many graphs in 1-2× range on RTX 2080 ti are now
shifted to above the 2× range on the RTX 3090.
As discussed in Section 6.4, a key reason for ADDS’ per-

formance advantage over NF is its superior utilization of
hardware resources, and this utilization is even more impor-
tant for the RTX 3090, which has 52% greater peak DRAM

bandwidth than the RTX 2080 ti [18]. Thus, ADDS achieves
higher speedup on the newer GPU.
This result also demonstrates the robustness of ADDS’

mechanism for dynamically selecting ∆ values, which per-
forms well on the newer hardware with no tuning of the
source code.

<0.9× 0.9× - 1.1× 1.1× - 1.5× 1.5× - 2× 2× - 3× 3× - 5× >=5×
RTX2080ti 8 (4%) 13 (6%) 27 (12%) 44 (19%) 54 (24%) 59 (26%) 21 (9%)
RTX3090 8 (4%) 11 (5%) 16 (7%) 23 (10%) 66 (30%) 73 (33%) 25 (11%)
Static-∆ 32 (14%) 18 (8%) 28 (13%) 29 (13%) 57 (26%) 44 (20%) 14 (6%)
2-Buckets 22 (10%) 22 (10%) 52 (23%) 40 (18%) 35 (16%) 37 (17%) 14 (6%)

Table 5. The first two rows show speedup of
ADDS over NF on an RTX2080ti (same results as
from Table 3) and an RTX3090. The next two
rows show speedups over NF for ablated versions
of ADDS on an RTX3090: Static-∆ uses a static ∆
value and 2-Buckets uses both a static ∆value and
just two buckets.

Ablation Studies. To get a better understanding of the
sources of ADDS’ performance benefit, we perform an abla-
tion study on an RTX 3090 GPU. The last two rows of Table 5
show the results.
First, we disable dynamic ∆ selection and instead use

the same static ∆ value as NF. With this configuration, the
speedup of ADDS over NF is decreased from 3.5× to 2.4×,
which indicates that dynamic ∆ selection has a major impact
on performance.

Second, we combine this static ∆ value with the use of just
2 buckets. The speedup of ADDS over NF is decreased further
to 2.2×. With this configuration, the remaining advantage
of ADDS over NF is its asynchronous work scheduling and
its delegation-based MWMR worklist, which alone achieves
better resource utilization and thus higher performance. This
result might seem to suggest that there is little benefit to
using more than two buckets, but the use of multiple buckets
is difficult to separate from the dynamic selection of ∆ values,
because a static ∆ value reduces the effectiveness of using
multiple buckets.

7 Conclusions
GPUs present a tradeoff. They provide tremendous compute
power and power-efficiency, but because they are designed
for highly regular data parallel computations, they often
force programmers to transform efficient algorithms to less
efficient algorithms for the sake of regularity. This tradeoff
has been particularly striking for the SSSP problem, where
the state-of-the-art algorithm for CPUs is the delta-stepping
algorithm, but the previous state-of-the-art for GPUs dra-
matically simplifies the delta-stepping algorithm to fit GPUs.
In this paper, we have shown how this tradeoff can be

broken for the SSSP problem, as we have presented ADDS,
an adaptation of the delta-stepping algorithm that retains

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

the algorithmic benefits of the original algorithm by imple-
menting a sophisticated coarse-grained priority queue that
can be efficiently executed on modern GPUs.

The key ideas are (1) to decouple the irregular operations
on the priority queue from the highly regular data parallel
operations and (2) to find ways to express these irregular
operations as data parallel operations in their own right. For
example, ADDS includes a coarse-grained priority queue
that uses a Manager thread block to perform read operations
on behalf of multiple Worker thread blocks. Thus, instead
of having multiple threads that each read to and write from
different buckets of the priority queue in an irregular fash-
ion, the single Manager amortizes the overhead of metadata
access across a large number of read operations. And since
this design does not need to resolve conflicts among multiple
readers, the overall design is greatly simplified.

As future work, we believe that this general approach can
be applied to other irregular computations for GPUs, though
the details will likely require significant engineering.

Acknowledgments
We thank Chirag Sakhuja and the anonymous referees for
their helpful feedback on earlier versions of this paper. This
work was funded in part by DARPA contract # HR0011-17-S-
0054, NSF Grant CCF-1823546, and a gift from Intel Corpo-
ration through the NSF/Intel Partnership on Foundational
Microarchitecture Research.

References
[1] Saman Ashkiani, Andrew Davidson, Ulrich Meyer, and John D. Owens.

2016. GPU multisplit. In Proceedings of the 21st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’16).
Association for Computing Machinery, New York, NY, USA, Article
12, 13 pages. https://doi.org/10.1145/2851141.2851169

[2] Richard Bellman. 1958. On a routing problem. Quart. Appl. Math. 16, 1
(1958), 87–90. http://www.jstor.org/stable/43634538

[3] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.
Groute: an asynchronous multi-GPU programming model for irregular
computations. In Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17). Association
for Computing Machinery, New York, NY, USA, 235–248. https://doi.
org/10.1145/3018743.3018756

[4] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of
irregular programs on GPUs. In 2012 IEEE International Symposium on
Workload Characterization (IISWC). 141–151. https://doi.org/10.1109/
IISWC.2012.6402918

[5] F. Busato and N. Bombieri. 2016. An efficient implementation of the
Bellman-Ford Algorithm for Kepler GPU architectures. IEEE Transac-
tions on Parallel and Distributed Systems 27, 08 (August 2016), 2222–
2233. https://doi.org/10.1109/TPDS.2015.2485994

[6] Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer, and Peter Sanders.
1998. A parallelization of Dijkstra’s Shortest Path Algorithm. In Pro-
ceedings of the 23rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS ’98). Springer-Verlag, Berlin, Heidel-
berg, 722–731.

[7] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens.
2014. Work-efficient parallel GPU methods for Single-Source Shortest
Paths. In Proceedings of the 2014 IEEE 28th International Parallel and

Distributed Processing Symposium (IPDPS ’14). IEEE Computer Society,
USA, 349–359. https://doi.org/10.1109/IPDPS.2014.45

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse
matrix collection. ACM Trans. Math. Softw. 38, 1, Article Article 1 (Dec.
2011), 25 pages. https://doi.org/10.1145/2049662.2049663

[9] E. W. Dijkstra. 1959. A note on two problems in connexion with
graphs. Numer. Math. 1, 1 (Dec. 1959), 269–271. https://doi.org/10.
1007/BF01386390

[10] Pawan Harish and P. J. Narayanan. 2007. Accelerating large graph algo-
rithms on the GPU using CUDA. In Proceedings of the 14th International
Conference on High Performance Computing (HiPC’07). Springer-Verlag,
Berlin, Heidelberg, 197–208.

[11] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali.
2009. Lonestar: a suite of parallel irregular programs. In ISPASS ’09:
IEEE International Symposium on Performance Analysis of Systems and
Software. http://iss.ices.utexas.edu/Publications/Papers/ispass2009.
pdf

[12] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic parallelism
requires abstractions. In Proceedings of the 28th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’07).
Association for Computing Machinery, New York, NY, USA, 211–222.
https://doi.org/10.1145/1250734.1250759

[13] Shailendra Kumar, Alok Misra, and Raghvendra Tomar. 2011. A modi-
fied parallel approach to Single Source Shortest Path Problem for mas-
sively dense graphs using CUDA. 2011 2nd International Conference
on Computer and Communication Technology, ICCCT-2011, 635–639.
https://doi.org/10.1109/ICCCT.2011.6075214

[14] Pedro J. Martín, Roberto Torres, and Antonio Gavilanes. 2009. CUDA
solutions for the SSSP Problem. In Proceedings of the 9th International
Conference on Computational Science: Part I (ICCS ’09). Springer-Verlag,
Berlin, Heidelberg, 904–913. https://doi.org/10.1007/978-3-642-01970-
8_91

[15] U. Meyer and P. Sanders. 2003. Delta-stepping: a parallelizable Shortest
Path Algorithm. J. Algorithms 49, 1 (Oct. 2003), 114–152. https:
//doi.org/10.1016/S0196-6774(03)00076-2

[16] NVIDIA. 2018. NVIDIA Turing GPU Architecture. (2018).
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf

[17] NVIDIA. 2019. Tuning CUDA applications for Turing. (2019). https:
//docs.nvidia.com/cuda/turing-tuning-guide/index.html

[18] NVIDIA. 2020. NVIDIA AMPERE GA102 GPU ARCHITEC-
TURE. (2020). https://www.nvidia.com/content/dam/en-
zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-
Architecture-Whitepaper-V1.pdf

[19] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano.
2013. A newGPU-based approach to the Shortest Path Problem. In 2013
International Conference on High Performance Computing Simulation
(HPCS). 505–511. https://doi.org/10.1109/HPCSim.2013.6641461

[20] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, and et al. 2011. The
Tao of parallelism in algorithms. SIGPLAN Not. 46, 6 (June 2011), 12–25.
https://doi.org/10.1145/1993316.1993501

[21] G. G. Surve and M. A. Shah. 2017. Parallel implementation of Bellman-
ford Algorithm using CUDA architecture. In 2017 International confer-
ence of Electronics, Communication and Aerospace Technology (ICECA),
Vol. 2. 16–22. https://doi.org/10.1109/ICECA.2017.8212794

[22] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and
Xiaodong Zhang. 2019. SEP-Graph: finding shortest execution paths for
graph processing under a hybrid framework on GPU. In Proceedings of
the 24th Symposium on Principles and Practice of Parallel Programming
(PPoPP ’19). Association for Computing Machinery, New York, NY,

https://doi.org/10.1145/2851141.2851169
http://www.jstor.org/stable/43634538
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1109/TPDS.2015.2485994
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1109/ICCCT.2011.6075214
https://doi.org/10.1007/978-3-642-01970-8_91
https://doi.org/10.1007/978-3-642-01970-8_91
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1016/S0196-6774(03)00076-2
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/turing-tuning-guide/index.html
https://docs.nvidia.com/cuda/turing-tuning-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://doi.org/10.1109/HPCSim.2013.6641461
https://doi.org/10.1145/1993316.1993501
https://doi.org/10.1109/ICECA.2017.8212794

A Fast Work-Efficient SSSP Algorithm for GPUs PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

USA, 38–52. https://doi.org/10.1145/3293883.3295733
[23] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy

Riffel, and John D. Owens. 2016. Gunrock: a high-performance graph
processing library on the GPU. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’16). Association for Computing Machinery, New York, NY,
USA, Article 11, 12 pages. https://doi.org/10.1145/2851141.2851145

A Artifact Description
The artifact is available on Zenodo (https://zenodo.org/
record/4365954#.X-2s8nVKiZQ). It contains the source code
package and graph input files used for evaluation.

A.1 Quick Start Guide
1. Download and unzip files from zenodo
a. ppopp-code.zip contains the source code package
b. sssp-int.zip contains the int graph inputs.
c. sssp-float.zip contains the float graph inputs.

2. Put the sssp-int and sssp-float directories in the in-
puts directory, e.g. the input file structure should be
inputs/sssp-int/graph.gr

3. Inside ppopp-code directory, run ./build_all.sh.
4. There are int and float implementations of our solution

and of prior solutions (taking int or float graphs)
a. ads_* is our solution
b. nf_* is an optimized implementation of Near-Far,

which is the prior state-of-the-art GPU solution
c. nv_* is an nvGRAPH library implementation
d. cpu_sss_* are implementations of Dijkstra’s algo-

rithm and a CPU delta-stepping algorithm.
e. Note: nf_* and cpu_sssp_* are from their git reposi-

tory. The build_all.sh script performs the git clone
command and applies patches.

5. Inside the ppopp-code directory, run ./run_all.sh, and
each implementation will produces 2 outputs.
Using ads_int as an example:
a. ads_int_result contains timing and work count re-

sults. Each line has 3 fields separated by a space:
Graph_name run_time (in seconds)
work_count

b. ads_int_final_dist is a directory that has the final
distance (i.e. SSSP result) for all graphs (used in the
next step)

6. To validate performance results, the correctness of
SSSP results can be checked by comparing whether
two implementations produce the same final node dis-
tances.
a. run ./verify_against_*

This will check the SSSP result (*_final_dist) between
our solution and the target implementation.

b. The script verify.py will compare files and report a
“mismatch” for any lines that differ.

c. Note: nv_graph uses float data types internally, sowe
sometimes get conversion problems for int graphs,
with the distances differing by 1 between NV and
other implementations (ours and prior solutions).
We commented out the int version’s verification for
NV.

A.2 Explanations About the Source Code Package
1. NF is from LonestarGPU 6.0

https://doi.org/10.1145/3293883.3295733
https://doi.org/10.1145/2851141.2851145
https://zenodo.org/record/4365954#.X-2s8nVKiZQ
https://zenodo.org/record/4365954#.X-2s8nVKiZQ

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Wang, Fussell, and Lin

https://iss.oden.utexas.edu/?p=projects/galois/lonestargpu
The download button links to the Galois git repository:
https://github.com/IntelligentSoftwareSystems/Galois

2. In ./build_all.sh from our code package, we git clone
from the Galois repository for nf_* and cpu_*, and then
we apply patches to modify the original source code
for our experiments.
We will now explain the contents of the patch.

3. nf_int.patch:
a. Line 16:wemodify the setup_push_warp_one() func-

tion in worklist.h to make the code work on newer
Volta/Turing GPUs. The original version does not
work due to the new control flow re-convergence
model and the way that warp-level primitives are
handled on newer GPUs. For example, this prob-
lem can be triggered on an RTX2080ti for the sssp-
int/rmat22.gr graph.

b. Line 81:we add “unsigned* work_count,” to measure
the vertex processing count. This routine has very
low overhead. (Our solution has the same routine,
see line 30, kernel.cu, ads_int.)

c. Line 174: we add a profile_kernel to sample the av-
erage weight of the graph, which is used for setting
delta based on the equation from the Near-Far pa-
per [7] (in page 7).
i. Note: the original code expects users to input the
delta value manually for each graph; otherwise, a
default delta of 10000 is used for all graphs. There-
fore, we add this routine for automatically setting
the delta. The profile kernel takes much less than
1% of run time. In ADDS, e.g. ads_int, we have the
same routine for setting the initial delta (line153
kernel.cu), and then ADDS adjusts the delta dy-
namically (see, wl.h line 852).

d. Finally, we run each graph 8 times, and we use aver-
age timing. The remaining changes are for output
results, etc.

4. nf_float.patch:
a. In addition to the changes in nf_int, this patch adds

the ability to take float graphs as input, which is
lacking in the original code.

b. Line 8: we change the data type
c. Line 112: we add atomicMin_float() from gunrock

1.0, which is a relatively efficient software routine for
float atomicMin (current NVIDIA GPUs don’t have
hardware atomicMin for float). Other lines change
the atomicMin to atomicMin_float.

5. cpu_sssp_*.patch:
We add routines to measure total work and to output
results. For the float version, we change type names
and change delta_shift (for the int version) to just plain
delta values (for the float version)

6. nv_*:

We wrote a wrapper for the nvGRAPH library. See
kernel.cu. Line 76 calls nvgraphSssp(), which is black
box function. Other lines are for setup and for printing
results.

A.3 Explanations About the Graph Input Files
The graph files are in binary GR format (http://users.diag.
uniroma1.it/challenge9/format.shtml). This format is used
by Galois [12] as well as ADDS.

Most of our input graphs are from SuiteSparse Matrix Col-
lection (https://sparse.tamu.edu). The website provides MTX
format graphs in text files. We converted them to GR bina-
ries. The remain graphs are inputs that come with Galois (e.g.
rmat*.gr and road-*.gr), which are already in an appropriate
format.

http://users.diag.uniroma1.it/challenge9/format.shtml
http://users.diag.uniroma1.it/challenge9/format.shtml
https://sparse.tamu.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Work Scheduling
	3.2 Delta-Stepping

	4 Design Considerations
	4.1 Design Consideration 1: Memory Management
	4.2 Design Consideration 2: Synchronization
	4.3 Design Consideration 3: Granularity

	5 Our Solution
	5.1 Basic Operation
	5.2 SRMW Queue Access Management
	5.3 Memory Management
	5.4 Managing the Ordered Work Queue
	5.5 Dynamically Setting the Value

	6 Evaluation
	6.1 Methodology
	6.2 Performance Results
	6.3 Work Efficiency
	6.4 Performance Analysis
	6.5 Evaluation on an RTX 3090 GPU

	7 Conclusions
	Acknowledgments
	References
	A Artifact Description
	A.1 Quick Start Guide
	A.2 Explanations About the Source Code Package
	A.3 Explanations About the Graph Input Files

