
This space is reserved for the EPiC Series header, do not use it

Clausal Proof Compression ∗

Marijn J.H. Heule1 and Armin Biere2

1 Department of Computer Science, The University of Texas at Austin, USA marijn@cs.utexas.edu
2 Institute for Formal Models and Verification, JKU Linz, Austria biere@jku.at

Abstract

Although clausal propositional proofs are significantly smaller compared to resolution proofs, their

size on disk is still too large for several applications. In this paper we present several methods to

compress clausal proofs. These methods are based on a two phase approach. The first phase consists

of a light-weight compression algorithm that can easily be added to satisfiability solvers that support

the emission of clausal proofs. In the second phase, we propose to use a powerful off-the-shelf general-

purpose compression tool, such as bzip2 and 7z. Sorting literals before compression facilitates a delta

encoding, which combined with variable-byte encoding improves the quality of the compression. We

show that clausal proofs can be compressed by one order of magnitude by applying both phases.

1 Introduction

Propositional proofs of unsatisfiability come in two flavors: resolution proofs [12] and clausal
proofs [10]. An important drawback of using such proofs is their size on disk. Since resolution
proofs can be up to two orders of magnitude larger compared to clausal proofs [5], the issue is
much more severe for resolution proofs. Even clausal proofs are still too big for some applica-
tions, such as computing Van der Waerden number W (2, 6) [8] and the optimal sorting network
with ten wires [2]. This paper offers some compression techniques to make them more compact.

The compression techniques presented in this paper are inspired by the binary variant of the
AIGER format [1], the input format of the hardware model checking competition. This binary
format stores the gates of sequential circuits using a binary representation instead of ASCII
characters. Additionally, delta encoding is applied to store the difference between successive
numbers. Sorting literals in a clause does not influences validity of proof, but reduces these
differences between successive literals — making it a useful pre-compression technique.

Proof compression has many applications. For instance, a restriction to 100GB disk space,
the maximal local storage on cluster nodes in the SAT 2014 competition1, prevented the valida-
tion of some proofs of the unsatisfiability tracks. This can be avoided by adding a light-weight
compression algorithm to SAT solvers to reduce the size proof lines written to disk. Notice that
the 100 GB space limit was per benchmark per solver. Storing all unsatisfiability proofs of the
competition is unfeasible even after strong compression.

∗This work was supported by the Austrian Science Fund (FWF) through the national research network RiSE
(S11408-N23) and the National Science Foundation under grant number CCF-1526760.

1results of the certified unsatisfiability tracks at http://satcompetition.org/2014

http://satcompetition.org/2014


Clausal Proof Compression Heule and Biere

Clausal proof compression techniques are also useful to store proofs of hard combinatorial
problems, such as the Erdős Discrepancy Conjecture (EDP) [7], for which a clausal proof is
available. The initial proof was 13GB in size. Using symmetry-breaking methods, a proof of
2GB was produced [4]. In this paper, we show this proof can further be compressed to 128MB
(less than 1% of the original proof). For other hard combinatorial problems, such as Van der
Waerden numbers and minimal sorting networks, the expected size of (uncompressed) clausal
proofs is many terabytes. Compression techniques will be crucial to deal with such proofs.

2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive literal x
and the negative literal x̄. A clause is a disjunction of literals and a CNF formula a conjunction
of clauses. A truth assignment is a function τ that maps literals to {f , t} under the assumption
τ(x) = v if and only if τ(x̄) = ¬v. A clause C is satisfied by τ if τ(l) = t for some literal l ∈ C.
An assignment τ satisfies CNF formula F if it satisfies every clause in F .

Resolution and Extended Resolution. The resolution rule states that, given two clauses
C1 = (x∨a1∨ . . .∨an) and C2 = (x̄∨b1∨ . . .∨bm), the clause C = (a1∨ . . .∨an∨b1∨ . . .∨bm),
can be inferred by resolving on variable x. We say C is the resolvent of C1 and C2. For a
given CNF formula F , the extension rule [9] allows one to iteratively add definitions of the
form x := a ∧ b by adding the extended resolution clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F ,
where x is a new variable and a and b are literals in the current formula.

Unit Propagation. The process of unit propagation simplifies a CNF F based on unit clauses.
It repeats the following until fixpoint: if there is a unit clause (l) ∈ F , remove all clauses
containing literal l from set F\{(l)} and remove literal l̄ from all clauses in F . If unit propagation
on formula F produces complementary units (l) and (l̄), we say that unit propagation derives
a conflict and write F `1 ε with ε referring to the (unsatisfiable) empty clause.

Example Consider F = (a)∧ (ā∨ b)∧ (b̄∨ c)∧ (b̄∨ c̄). We have (a) ∈ F , so unit propagation
removes ā, resulting in the new unit clause (b). After removal of b̄, two complementary unit
clauses (c) and (c̄) are created. From these two units the empty clause can be derived: F `1 ε.

Clause Redundancy. A clause C is called redundant with respect to a formula F iff F ∧{C}
is satisfiability equivalent to F . Asymmetric tautologies, also known as reverse unit propagation
clauses, are the most common redundant (learned) clauses in SAT solvers. Let C denote the
conjunction of unit clauses that falsify all literals in C. A clause C is an asymmetric tautology
with respect to a CNF formula F iff F ∧ C `1 ε. Resolution asymmetric tautologies (or RAT
clauses) [6] are a generalization of both asymmetric tautologies and extended resolution clauses.
A clause C has RAT on l ∈ C (referred to as the pivot literal) with respect to a formula F if for
all D ∈ F with l̄ ∈ D, it holds that F ∧C ∧ (D \ {(l)}) `1 ε. Not only can RAT be computed in
polynomial time, but all preprocessing, inprocessing, and solving techniques in state-of-the-art
SAT solvers can be expressed in terms of addition and removal of RAT clauses [6].

Clausal Proofs. A proof of unsatisfiability (also called a refutation) is a sequence of redundant
clauses containing the empty clause. It is important that the redundancy property of clauses
can be checked in polynomial time. A DRAT proof, short for Deletion Resolution Asymmetric
Tautology, is a sequence of addition and deletion steps of RAT clauses. A DRAT refutation is
a DRAT proof that contains the empty clause. Figure 1 shows an example DRAT refutation.

2



Clausal Proof Compression Heule and Biere

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 -2 3 0

d -1 -3 -4 0

d -1 2 4 0

2 0

0

Figure 1: Left, a formula in DIMACS CNF
format, the conventional input for SAT solvers
which starts with p cnf to denote the format,
followed by the number of variables and the num-
ber of clauses. Right, a DRAT proof for that
formula. Each line in the proof is either an addi-
tion step (no prefix) or a deletion step identified
by the prefix “d”. Spacing in both examples is
used to improve readability. Each clause in the
proof should be an asymmetric tautology or a
RAT clause using the first literal as the pivot.

Example Let F = (a∨ b∨ c̄)∧ (ā∨ b̄∨ c)∧ (b∨ c∨ d̄)∧ (b̄∨ c̄∨ d)∧ (a∨ c∨ d)∧ (ā∨ c̄∨ d̄)∧
(ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), shown in DIMACS format in Fig. 1 (left), where 1 represents a, 2 is b,
3 is c, 4 is d, and negative numbers represent negation. The first clause in the proof, (ā), is a
RAT clause with respect to F because all possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) `1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) `1 ε using (a ∨ c ∨ d)

F ∧ (a) ∧ (b) ∧ (d) `1 ε using (a ∨ b̄ ∨ d̄)

3 Proof Compression

We propose to compress clausal proofs using two phases. The first phase is a light-weight method
which can easily be added to any SAT solver that can produce proofs of unsatisfiability. The
second phase applies a strong off-the-shelf compression tool to the result of the first phase.

Byte Encoding The ASCII encoding of clausal proofs in Figure 1 is easy to read, but rather
verbose. For example, consider the literal -123456789, which requires 11 bytes to express (one
for each ASCII character and one for the separating space). This literal can also be represented
by a signed integer (4 bytes). If all literals in a proof can be expressed using a signed integer,
only 4 bytes are required to encode each literal. Such an encoding also facilitates omitting
a byte to express the separation of literals. Consequently, one can easily compress a clausal
ASCII proof with a factor of roughly 2.5 by using a binary encoding of literals.

In case the length of literals in the ASCII representation differs a lot, it may not be efficient
to allocate a fixed number of bytes to express each literal. Alternatively, the variable-byte
encoding [11] can be applied, which uses the most significant bit of each byte to denote whether
a byte is the last byte required to express a given literal. The variable-byte encoding can express
the literal 1234 (10011010010 in binary notation) using only two bytes: 11010010 00001001.
(in little-endian ordering, e.g., least-signifiant byte first).

Sorting Literals The order of literals in a clausal proof does not influence validness of the
proof, nor does the order influences its size. However, the order of literals can influence the costs
to validate a proof as it influences unit propagation and in turn determines which clauses will be
marked in backward checking (the default validation algorithm used in clausal proof checkers).
The order of literals in the proof produced by the SAT solver is typically not better or worse
than any permutation. Experience shows that this is often not the case for SAT solving: the
given order of literals in an encoding is generally superior compared to any permutation.

3



Clausal Proof Compression Heule and Biere

Sorting literals before compression has advantages in both phases. In the first phase, one
can use delta encoding: store the difference between two successive literals. Clauses in a proof
are typically long (dozens of literals) [5], resulting in a small difference between two successive
sorted literals. Delta encoding is particularly useful in combination with variable-byte encoding.

In the second phase, off-the-shelf compression tools could exploit the sorted order of literals.
Many clauses in proofs have multiple literals in common. SAT solvers tend to emit literals in a
random order. This makes it hard for compression tools to detect overlapping literals between
clauses. Sorting literals potentially increases the observability of overlap which in turn could
increase the quality of the compression algorithm.

Table 1: Eight encodings of an example DRAT proof line. The first two encodings are shown
as ASCII text using decimal numbers, while the last six are shown as hexadecimals using the
MiniSAT encoding of literals. The prefix s denotes sorted, while the prefix ds denotes delta
encoding after sorted. 4byte denotes that 4 bytes are used to represent each literal, while vbyte
denotes that variable-byte encoding is used.

encoding example (prefix pivot lit1...litk−1 end) #bytes

ascii d 6278 -3425 -42311 9173 22754 0\n 33
sascii d 6278 -3425 9173 22754 -42311 0\n 33
4byte 64 0c 31 00 00 c3 1a 00 00 8f 4a 01 00 aa 47 00 00 c4 b1 00 00 00 00 00 00 25

s4byte 64 0c 31 00 00 c3 1a 00 00 aa 47 00 00 c4 b1 00 00 8f 4a 01 00 00 00 00 00 25
ds4byte 64 0c 31 00 00 c3 1a 00 00 e8 2c 00 00 1a 6a 00 00 cb 98 00 00 00 00 00 00 25

vbyte 64 8c 62 c3 35 8f 95 05 aa 8f 01 c4 e3 02 00 15
svbyte 64 8c 62 c3 35 aa 8f 01 c4 e3 02 8f 95 05 00 15

dsvbyte 64 8c 62 c3 35 e8 59 9a d4 01 cb b1 02 00 14

Literal Encoding In most SAT solvers, literals are mapped to natural numbers. The default
mapping function map(l), introduced in MiniSAT [3] and also used in the AIGER format [1]
converts signed DIMACS literals into unsigned integer numbers as follows:

map(l) =

{
2l + 1 if l > 0
−2l otherwise

Table 1 shows a DRAT proof line in the conventional DIMACS and in several binary encodings.
For all non-ASCII encodings, we will use map(l) to represent literals. Notice that the first literal
in the example is not sorted, because the proof checker needs to know the pivot literal (which
is the first literal in each clause). The remaining literals are sorted based on their map(l) value.

4 Experiments

We implemented two tools: ratz (encode) and ztar (decode)2. We used ratz to transform
DRAT proofs in the ASCII format to several alternative representations and applied off-the shelf
compression tools to make the resulting files more compact. The compression tools used during
the experiments are gzip, bzip2, and 7zip. Due to space limitations the experiments focus on
a single proof: a trimmed (i.e., removed redundant lines) DRAT proof 3 for Erdős Discrepancy

2available at http://fmv.jku.at/ratz
3available at http://www.cs.utexas.edu/~marijn/sbp

4

http://fmv.jku.at/ratz
http://www.cs.utexas.edu/~marijn/sbp


Clausal Proof Compression Heule and Biere

Problem [7] based on symmetry-breaking [4]. We selected a trimmed proof, because in practice
one wants to remove redundancy before compression.

Table 2 shows the results. The second column shows that delta encoding combined with
sorting and variable-byte encoding (last row of the table) reduces proof size by already more
than a factor of four in 25 seconds. This significant and efficient compression can easily be
added to any SAT solver that can produce clausal proofs, thereby reducing the space burden.
The results of the second phase, i.e., using off-the-shelf compression tools, are less clear. The
smallest file is produced by sorting and variable-byte encoding followed by 7zip. Delta encoding,
although it reduces the size in combination with variable-byte encoding, appears to be obstruct
all the compression tools.

Table 2: Size of a trimmed DRAT proof (in bytes) and the conversion costs (wall-clock time in
seconds) for Erdős Discrepancy Problem using different encodings and compression algorithms.
A four core Intel Xeon E31280 @ 3.50GHz with 32GB memory was used for the experiments.
The tool 7z used all cores, while the other programs used only a single core.

encoding first phase gzip bzip2 7z

ascii 1,719,002,352 (——) 224,505,003 (58.68) 186,871,192 (183.63) 176,740,892 (173.44)

sascii 1,719,002,352 (48.75) 199,368,062 (51.43) 153,589,408 (204.46) 155,268,644 (162.71)

4byte 1,282,405,483 (19.46) 205,093,278 (47.75) 182,221,318 (98.61) 163,176,124 (114.07)

s4byte 1,282,405,483 (27.28) 179,853,433 (39.46) 144,742,387 (116.32) 141,086,084 (109.31)

ds4byte 1,282,405,483 (27.07) 210,994,395 (49.49) 168,958,717 (86.05) 157,274,204 (121.58)

vbyte 639,781,147 (12.76) 183,079,542 (24.70) 183,254,546 (58.39) 149,944,476 (66.89)

svbyte 639,781,147 (20.07) 158,535,823 (22.72) 146,177,432 (63.44) 128,300,756 (66.69)

dsvbyte 403,398,345 (17.97) 157,295,747 (16.15) 165,947,521 (45.96) 136,576,424 (40.42)

5 Conclusion

We proposed several compression techniques for clausal proofs. In particular the combination of
delta and variable-byte encoding is very useful to make proofs more compact. Both techniques
can easily be added to SAT solvers, which would hardly increase the costs to emit a clausal
proof. Off-the-shelf compression tools can be used to further reduce the proof size. Combining
both phases on a proof of Erdős Discrepancy Problem shows a compression of over 93%.

References

[1] Armin Biere. The AIGER and-inverter graph (AIG) format, version 20070427, 2007.

[2] Michael Codish, Lúıs Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. Twenty-five com-
parators is optimal when sorting nine inputs (and twenty-nine for ten). In ICTAI 2014, pages
186–193. IEEE Computer Society, 2014.

[3] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.

[4] Marijn J. H. Heule, Jr. Hunt, Warren A., and Nathan Wetzler. Expressing symmetry breaking in
DRAT proofs. In CADE-25, volume 9195 of LNCS, pages 591–606. Springer, 2015.

[5] Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design, pages 181–188. IEEE, 2013.

[6] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, IJCAR, volume 7364 of LNCS, pages 355–370. Springer, 2012.

5



Clausal Proof Compression Heule and Biere

[7] Boris Konev and Alexei Lisitsa. A SAT attack on the Erdős Discrepancy Conjecture. In SAT
2014, volume 8561 of LNCS, pages 219–226. Springer, 2014.

[8] Michal Kouril and Jerome L. Paul. The van der Waerden number W(2, 6) is 1132. Experimental
Mathematics, 17(1):53–61, 2008.

[9] Grigori S. Tseitin. On the complexity of derivation in propositional calculus. In Automation of
Reasoning 2, pages 466–483. Springer, 1983.

[10] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In ISAIM, 2008.

[11] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes (2Nd Ed.): Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1999.

[12] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In DATE, pages 10880–10885, 2003.

6


	Introduction
	Preliminaries
	Proof Compression
	Experiments
	Conclusion

