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Abstract. This paper introduces a novel technique that significantly
reduces the computational costs to perform a restart in conflict-driven
clause learning (CDCL) solvers. Our technique exploits the observation
that CDCL solvers make many redundant propagations after a restart.
It efficiently predicts which decisions will be made after a restart. This
prediction is used to backtrack to the first level at which heuristics may
select a new decision rather than performing a complete restart.
In general, the number of conflicts that are encountered while solving a
problem can be reduced by increasing the restart frequency, even though
the solving time may increase. Our technique counters the latter effect.
As a consequence CDCL solvers will favor more frequent restarts.

1 Introduction

Restarts are used in satisfiability (SAT) solvers to avoid heavy-tail behavior [4].
Restart strategies [7,14] have been a crucial feature in conflict-driven clause
learning (CDCL) solvers [8] to tackle hard industrial problems. These solvers
favor frequent restarts in recent years [5].

CDCL solvers select decision variables based on their involvement in emerged
conflicts [10]. In case of frequent restarts, only several new conflicts have been
hit between two succeeding restarts. As a consequence, CDCL solvers tend to
select the same variables in a similar order after succeeding restarts. Additionally,
phase-saving [12] ensures that decision variables are assigned to the same truth
value as the value they were assigned to before a restart. Due to these heuristics,
CDCL solvers generally do not perform a full restart, but effectively they perform
a partial restart.

This paper capitalizes on this observation by introducing two techniques to
reduce the computational costs to perform a restart. In case the solver wants to
restart, we show how to efficiently predict the first level at which the heuristics
may select a different decision variable. The solver can perform a partial restart
by backtracking to this level, rather than perform a more costly full restart.

Additionally, by reducing the restart costs, it appears that restarting even
more frequently improves the performance of CDCL solvers. We implemented
our techniques in MiniSAT 2.2 [2]. Experiments show that the enhanced version
with rapid restarts solves more real-world SAT instances from the SAT 2009
application suite than the original version.

⋆ Supported by Dutch Organization for Scientific Research under grant 617.023.611.



The remainder of this paper is structured as follows: the next section pro-
vides some background information about CDCL solvers and corresponding ter-
minology. In Section 3 we motivate our work and Section 4 presents two novel
techniques to reduce the computational costs to perform a restart. Experimental
results are described in Section 5. Finally, we offer suggestions for future work
in Section 6 and we draw conclusions in Section 7.

2 Conflict-Driven Clause Learning Solvers

The strategy used by conflict-driven clause learning (CDCL) solvers is to make
a series of decisions (heuristically chosen assignments) and to propagate assign-
ments that can be derived from these decisions by means of unit propagation
(satisfying the remaining literal in every unit clause). The solver will continue to
make decisions and propagate information until either a satisfying assignment is
found for the problem, or a conflict emerges.

A conflict emerges if the solver finds a conflicting clause – a clause for which
all literals are false. When this occurs, the solver analyzes the reason for the
conflict. This is captured in a so-called learned clause [9,10] , which intuitively
can be considered a clause that will avoid recurrence of the same combination of
assignments that led to the conflict. Now, the solver unassigns variables until the
learned clause becomes unit and continues to make decisions and apply other
unit propagations as before.

The terminology introduced in this section is used in the remainder of this
paper. Fig. 1 graphically shows the most important terms. This figure will also
be used as a running example throughout the paper.

2.1 Heuristics

In addition to the general process described above, most CDCL solvers use the
Variable State Independent Decaying Sum (VSIDS) heuristic [10] to determine
the order in which decisions should be made. This heuristic stores an activity
value for each variable, which is increased by 1 whenever a variable appears
in a learned clause. After incrementing the activity value, the value of every
variable is decreased by multiplying them with a constant factor δ1, called the
variable decay. This decay factor δ has a value in interval (0, 1). In general,
CDCL solvers use δ = 0.95. The lower the value of δ, the more VSIDS prefers to
select variables that were involved in recent conflicts. When no more information
can be propagated, a new decision is made by selecting the unassigned variable
with the highest activity value.

After a decision variable is selected by the solver, it must be assigned a value.
A commonly used method is phase-saving [12], which stores for each variable the
last value to which it was assigned by unit propagation. Decision variables are
assigned to that value. By assigning variables to their last implied value, the

1 In practice, VSIDS is implemented by multiplying the incremental value by 1

δ
instead.



solver picks up where it left off and continues its search in a similar part of the
search space after a restart. Therefore, phase-saving facilitates frequent restarts.

2.2 Decision levels and Backjumping

Each decision introduces a new decision level. A decision level consists of the
sequence of assignments of a decision variable and all variables that are implied
by that decision. Decision levels are numbered incrementally, where 0 is the level
where no decisions have yet been made – also known as the restart level. Decision
level 1 is the first level that involves an actual decision. A decision is the first
assignment in each level (denoted in Fig. 1 by the rectangles), other assignments,
if any, are caused by unit propagation.

The decision levels form a trail of assignments. This trail can be seen as a
list of variable assignments at a certain moment in time. The trail comprises
both decisions and unit propagations, where each decision starts a new decision
level. Finally, the backjump level [3] is the level to which the solver backtracks
whenever a conflict is found. This is the level at which the learned clause is a unit
clause. Notice that backjumping could be seen as performing a partial restart.

2.3 Restart Strategies

Modern solvers use restarts to avoid spending too much time searching for a
solution in the same region without finding useful information. By restarting,
CDCL solvers try to avoid heavy-tail behavior [4]. When a restart is performed,
the solver will undo every assignment on the trail and make a new series of
decisions and propagations. Because the learned clauses and the VSIDS heuristic
will have changed since the previous run, the new run may perform decisions in
a different order. This could reduce the total number of decisions necessary to
solve a problem [6].

A commonly used restart strategy in recent years is based on a sequence of
restart sizes suggested by Luby et al. [7]. In their work the authors show that the
suggested sequence is log optimal when the runtime distribution of the problems
is unknown. In this strategy the length of restart i is u · ti when u is a constant
unit run and

ti =

{

2k−1, if i = 2k − 1

ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

Since unit runs are commonly short, solvers using the Luby restart strategy
exhibit frequent restarts. The solvers Rsat [12] and TiniSat [6] use a unit run
of 512 conflicts, while MiniSAT 2.2 [2] and precoSAT [1] use a shorter unit run
of 100 conflicts.

In this paper, we propose partial restarts which can be combined with these
full restart strategies. An alternative partial restart strategy that has been pro-
posed is random jump [15]. This strategy randomly backtracks to a level between
the restart level and the backjump level. In [11] a technique is proposed to par-
tially restart based on the learned clause if certain conditions are met.



F = (¬x1 ∨ x2 ∨ ¬x7) ∧ (¬x1 ∨ ¬x4) ∧ (x1 ∨ x5) ∧ (¬x2 ∨ x6 ∨ ¬x8) ∧

(¬x2 ∨ x4 ∨ x7) ∧ (x3 ∨ ¬x5 ∨ ¬x6) ∧ (¬x3 ∨ x9) ∧ (x6 ∨ x8 ∨ ¬x9)

trail before restart trail after restart

restart level
x1 = 1 x1 = 1

x4 = 0 x4 = 0

MatchingTrail level
x7 = 1 x2 = 1

x2 = 1 x7 = 1

x5 = 0 x5 = 0

PermutedTrail level
x3 = 1 x9 = 1

x9 = 1 x6 = 1

backjump level

x6 = 0 ...
x8 = 1

conflict : (¬x2 ∨ x6 ∨ ¬x8)

learned : (¬x2 ∨ x6 ∨ ¬x9)

VSIDS

x1 : 5.42
x7 : 4.11
x5 : 3.96
x2 : 3.51
x3 : 3.19
x4 : 3.02
x9 : 2.91
x6 : 2.84
x8 : 2.55

VSIDS

x1 : 5.42
x2 : 4.51
x7 : 4.11
x5 : 3.96
x9 : 3.91
x6 : 3.84
x3 : 3.19
x4 : 3.02
x8 : 2.55

decision level 1

decision level 2

decision level 3

decision level 4

decision level 5

decision level 1

decision level 2

decision level 3

decision level 4

Fig. 1. Visualization of our running example. Example of the outcome of Matching-

Trail and PermutedTrail. In both trails, the first five assigned variables are x1,
x2, x4, x5, and x7, albeit in different order. Therefore, backtracking to decision level
3 – right after the five matching assignments – causes the state of the solver to be
equivalent to the state after restarting to decision level 0 and assigning the first five
variables.



3 Motivation

The main contributions of this paper are two techniques to reduce the compu-
tational costs of performing a restart. In this section, we motive our work. First,
we argue that CDCL solvers actually perform a partial restart and we indicate
how to capitalize on that observation (Section 3.1). Second, we show that CDCL
solvers traverse a smaller part of the search space when they restart more fre-
quently. However, due to the restart costs, this may not always translate into
improved performance (Section 3.2).

3.1 Partial Restart

The first observation that inspired the work below is that modern CDCL solvers
usually make partial restarts rather than a full one. Yet in practice a full restart
is performed, followed by the setup of a similar trail to the one that was just
removed. By avoiding the redundant propagations, the cost of a restart can be
reduced significantly.

Consider our example formula F and the two trails shown in Fig. 1. At the
bottom of this figure the activities (VSIDS scores) are shown. Due to the learned
clause (¬x2 ∨ x6 ∨ ¬x9) the activity of the corresponding variables is increased
by 1, which slightly changes the order. Recall that the variable with the highest
activity that is not yet assigned is always selected as the next decision. The
left part of Fig. 1 shows the assignments before the restart; the right shows the
assignments after.

Let us compare the two trails. The first similarity is that decision level 1 is
exactly the same before and after the restart, because variable x1 still has the
highest VSIDS score after the restart. Due to this similarity, the solver actually
performs a partial restart. Yet this observation is not exploited by current solvers.
As a result, they perform redundant propagations. Because the second decision
after the restart is x2 (instead of x7), the trails no longer match. We denote by
MatchingTrail, the last level at which the trails before and after a restart
completely match. We show how to compute this level efficiently in Section 4.1.

A second similarity can be observed between the two trails. Notice that (i)
the first five variables in both trails are the same and (ii) that these variables
are assigned to the same values in the new trail as in the former trail. This is
not a coincidence. The reason for (i) is that CDCL solvers restart frequently.
Therefore, only a few clauses are learned between two restarts. This changes the
VSIDS order of the variables only slightly. Additionally, (ii) is ensured by the
phase-saving heuristic which is used by most CDCL solvers.

Since we know that there are no new propagations before the backjump
level, the only difference in the trail is that the order of variables are permuted.
We denote the last level at which both (i) and (ii) hold by PermutedTrail.
Notice that at the PermutedTrail level the reduced formula is exactly the
same before and after the restart. Therefore, performing a partial restart to the
PermutedTrail level is similar to performing a full restart. Section 4.2 shows
how to compute this level efficiently.



3.2 Restart Frequency

Another observation regarding restarts in modern CDCL solvers was presented
in [5] showing that restarting with shorter unit runs reduces the size of the search
space the solver explores to tackle a problem. More specifically, more frequent
restarts reduce the number of conflicts encountered during the search.

We computed the effect of Luby-based restarts with various unit runs on the
average number of conflicts. The only difference between our experiment and [5]
is the use of the latest version of MiniSAT (2.2) [2]. The results for the SAT 2009
application suite are shown in Table 1.

Table 1. Average number of conflicts for several unit runs of the Luby sequence. The
numbers between brackets denote the number of solved instances within 1200 seconds.
We used three seeds to initialize the VSIDS scores to obtain a more stable image.

Strategy SAT UNSAT SOLVED UNSOLVED ALL

Luby-1 190525 (64) 428450 (102) 336830 (166) 2470522 1241357

Luby-2 236141 (67) 609316 (101) 460046 (168) 2547307 1323072

Luby-4 235651 (67) 626690 (101) 471207 (168) 2708730 1401559

Luby-8 209926 (68) 725730 (102) 519003 (170) 2834041 1465453

Luby-16 252346 (67) 729354 (102) 539303 (169) 2939230 1526033

Luby-32 249255 (69) 835857 (102) 599158 (171) 3062220 1594681

Luby-64 297142 (70) 764207 (97) 569364 (167) 3130413 1640186

Luby-128 264409 (69) 770363 (96) 559378 (165) 3147708 1662650

Luby-256 222895 (68) 688930 (94) 492907 (162) 3277263 1708840

Luby-512 238800 (68) 725555 (93) 520394 (161) 3186994 1687999

First consider the number of solved instances shown in the first three columns.
Although the Luby unit run is incrementally increased by a factor two, the
number of instances solved remains quite comparable. The biggest differences
are on the satisfiable instances. This was expected because CDCL solvers are not
very stable on those formulas. When comparing the average number of conflicts,
we observe that the longer the unit run, the higher this average. For the longest
unit runs, we do not observe this pattern. These averages have been influenced
by the lack of solved hard unsatisfiable instances within the timeout.

The last two columns show a clearer pattern regarding the average number of
conflicts. Both columns are almost strictly increasing. Based on the data in these
columns we can estimate the number of conflicts per second for different unit
runs. Both the averages shown in the UNSOLVED and ALL columns indicate
that the long unit runs handle about 35% more conflicts per second compared
to the short unit runs. This difference is likely to be caused by restart costs.

By restarting with a short unit run, the solver encounters on average fewer
conflicts while solving a problem. However, due to the costs of restarting fre-
quently, using shorter unit runs does not result in solving more instances. In
fact, both effects appear to cancel each other out since the various settings solve
practically the same number of instances. We aim to reduce the costs of restarts
which should in turn favor solvers that restart more frequently.



4 Reducing Restart Costs

This section describes the two algorithms we propose to compute the level to
which to backtrack, MatchingTrail and PermutedTrail. The algorithms
rely on phase-saving, VSIDS ordering, and the absence of random decisions –
all default in e.g. the latest MiniSAT 2.2. Furthermore, they should have access
to the assignment type of each variable (Decision, Implication, Unassigned) and
the decision level at which the variable was assigned. In the algorithms these are
denoted by AssignmentType[x] and DecisionLevel[x] respectively, where x is
a variable.

4.1 Matching Trail

Fig. 2 shows the pseudo-code of how to compute the MatchingTrail level.
The algorithm increases MTLevel for every decision that will be made at the
same level in the current trail and the trail after the restart. The algorithm
loops through variables in descending order of activity. If the variable is not
currently assigned, the next decision level after the restart will be different and
the algorithm will terminate (Line 4). If the variable is already assigned a value
at MTLevel or before, it will be an implied variable in both trails and can be
ignored (Line 5). Finally, if it is a decision variable, it will be the next decision
in the trail after the restart. Therefore, if the variable matches the decision at
MTLevel, a match is found and MTLevel is incremented (Line 7). If not, the
decisions at the next level will be different, and the algorithm returns the last
level at which they were the same (Line 9).

Example. Again consider the example in Fig. 1. The algorithm starts with
MTLevel = 0 and considers x1. It detects that both trails will have matching
decisions at level 1, and increments MTLevel to 1. Next, variable x2 is found
to become the decision at level 2 after the restart, but it does not match deci-
sion variable x7 at the same level of the current trail. Therefore, the algorithm
terminates and returns MTLevel = 1.

MatchingTrail (DecisionLevel, AssignmentType, VSIDS order)
1 MTLevel ← 0
2 forever do

3 x← Next variable with highest activity
4 if AssignmentType[x] = Unassigned then break

5 if DecisionLevel[x] ≤ MTLevel then continue

6 if AssignmentType[x] = Decision and DecisionLevel[x] = MTLevel + 1 then

7 MTLevel ← MTLevel + 1
8 else break

9 return MTLevel

Fig. 2. Pseudo-code of the MatchingTrail algorithm. This algorithm returns the last
level at which all decisions will occur in the exact same order after the restart.



4.2 Permuted Trail

The PermutedTrail algorithm (Fig. 3) aims to compute the last level at which
the partial assignment (and hence the reduced formula under this assignment) is
exactly the same before and after a restart (recall Section 3.1). Like Matching-

Trail, PermutedTrail loops through variables in descending order of activity.
For each variable, it determines at which level it was assigned, and stores the
running maximum in MinimalLevel (Line 7). This value represents the level at
which all variables that have been processed so far have been assigned. Also, it
counts how many of these are currently decision variables, and stores this value
in MatchCount (Line 9). Any variable that is currently unassigned terminates
the algorithm, since this variable will become a decision that can never be part
of a permutation of the current trail (Line 6).

Now consider what happens when MatchCount = MinimalLevel. By defi-
nition of MinimalLevel, the set of variables that the algorithm has processed so
far is a subset of the variables that are assigned up to MinimalLevel. Because
this set includes MatchCount decision variables, it must include each decision
variable up to MinimalLevel. Since at least the same decisions are made, unit
propagation will ensure that any currently implied variable is also assigned after
the restart. Since the algorithm is performed at the backtrack level, no addi-
tional unit clauses may appear in the trail after the restart up to this point,
which means that both trails must contain the exact same variables. Therefore
the algorithm indicates that a partial restart is possible at this level in PTLevel

(Line 10).

PermutedTrail (DecisionLevel, AssignmentType, VSIDS order)
1 PTLevel ← 0
2 MinimalLevel ← 0
3 MatchCount ← 0
4 forever do

5 x← Next variable with highest activity
6 if AssignmentType[x] = Unassigned then break

7 if DecisionLevel[x] > MinimalLevel then MinimalLevel ← DecisionLevel[x]
8 if AssignmentType[x] = Decision then

9 MatchCount ← MatchCount + 1
10 if MatchCount = MinimalLevel then PTLevel ← MatchCount
11 return PTLevel

Fig. 3. Pseudo-code of the PermutedTrail algorithm. This algorithm returns the
decision level at which all decisions occur in the trail after the restart (so that there
are no intermediate decisions), but possibly in a different order.



Example. Consider how the algorithm will find the PermutedTrail level for
the running example in Fig. 1. The algorithm starts considering x1, which is
set in decision level 1, so that MinimalLevel is set to 1. Since it is also a
decision variable, MatchCount is incremented to 1. The values match, and
hence the algorithm finds that a partial restart is possible at PTLevel = 1.
Next, x2 has the highest activity. It is a propagation in level 2, and it updates
MinimalLevel = 2 and MatchCount = 1. Next, x7 is a decision in level 2, so
that MinimalLevel = MatchCount = 2. Both values match, and PTLevel = 2
is another possible backtrack level for a partial restart. Note that this is detected
even though x2 became a decision variable and x7 became an implied variable.
Now x5 is considered, leading to MatchCount = MinimalLevel = 3, which
means that PTLevel = 3 is the best candidate so far. For x9,MinimalLevel = 4
and MatchCount = 3, so that PTLevel = 3 remains unchanged. Finally, x6 is
currently unassigned because the algorithm runs after backtracking to the back-
jump level. The algorithm thus terminates with PTLevel = 3.

4.3 Discussion

The MatchingTrail technique has the nice feature that solvers will explore
the search space exactly the same as when performing a full restart. Yet al-
though the reduced formula before and after a restart is exactly the same at the
PermutedTrail level, the solver may explore the search space differently when
this technique is applied. This is caused by the so-called reason clauses [2]. The
reason clause for an implied variable is the one that assigned its truth value (the
first to become unit). Reason clauses are used to compute learned clauses. By
making decisions in a different order, the reason clauses may be different, which
in turn could make the conflict clauses different. This may influence the way the
search space is explored.

Ideally one wants to backtrack to the last level at which the partial assign-
ment is exactly the same before and after a restart. Although the Permuted-

Trail algorithm is designed to do that, it may return a “subprime” level.
To illustrate this, let LastSameAssignment be the ideal backtrack level

(i.e. the last level where the partial assignment is the same before and after
the restart). Let y be the decision variable at the LastSameAssignment level.
Now, assume that there is a variable x which is a decision variable before the
LastSameAssignment level in the current trail, and which has a lower activity
than y after the restart. Because the partial assignment is the same, x is assigned
in the trail after the restart, and because it has a lower activity than y it must be
an implied variable. However, using the PermutedTrail algorithm, we cannot
detect that x is implied by the assignments in the new trail. Therefore it will not
return the LastSameAssignment level. During our experiments we observed
that in practice this does not occur often, so that there is not much difference be-
tween the level returned by PermutedTrail and the LastSameAssignment

level.



5 Experimental Results

We implemented MatchingTrail and PermutedTrail in MiniSAT 2.2 and
configured it to facilitate our analysis. There are three main requirements for us-
ing the proposed algorithms: phase-saving, the VSIDS heuristic, and the absence
of random selection of decision variables. Each of these is default in MiniSAT 2.2,
therefore the implementation of the algorithms was easy and straightforward.

We used the (292) application instances of the SAT 2009 competition2. Each
instance was run with a time limit of 1200 seconds using different configurations
on a server of 20 Intel Xeon X5570 CPUs running on 2.9 GHz with 32 GB of
memory.

5.1 Matching Trail

It turned out that the MatchingTrail algorithm was much less effective than
the PermutatedTrail algorithm. Fig. 4 shows a typical distribution of the
MatchingTrail, PermutedTrail, and backjump levels. The distributions of
the PermutedTrail and backjump level are quite comparable. However, the
MatchingTrail levels are generally much lower – which explains why it is less
successful in reducing the restart costs. Therefore, we focused our experiments
on the usefulness of the PermutedTrail algorithm.
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Fig. 4. Distribution of the MatchingTrail, PermutedTrail, and backjump levels
while solving the ACG-15-10p1.cnf benchmark of the SAT 2009 competition using
MiniSAT 2.2 with a Luby-1 restart strategy.

2 Available from http://www.satcompetition.org/

http://www.satcompetition.org/


5.2 Permuted Trail

In this section we compare the performance of MiniSAT 2.2 with and without
PermutedTrail. Comparing the performance of SAT solvers is hard, because
a small change, for example to the order in which unit propagation is applied,
can have a huge impact on the performance. Therefore, our focus in this section
is not only on solving time, but also on the number of conflicts per second. The
latter seems a bit more robust (recall also Section 3.2).

We experimented with three restart strategies. First, the default strategy of
MiniSAT 2.2, which uses the Luby sequence with a unit run of 100 (in short
Luby-100). Second, because we expect that the PermutedTrail technique is
especially useful for short unit runs, we added the strategy with the shortest unit
run 1 (Luby-1). Third, we included a radical strategy that restarts before ev-
ery decision (Const-1). This strategy would profit most from PermutedTrail,
showing thereby the maximum one could gain using this technique. Notice that
a CDCL solver with the Const-1 restart strategy is still complete [13].

Fig. 5 shows the number of conflicts per second (left) and the solving time
(right) for MiniSAT using the three restart strategies with and without partial
restarts to the PermutedTrail level. The Const-1 and Luby-1 strategies can
clearly process more conflicts per second when PermutedTrail is enabled.
For the Luby-100 strategy no real improvement is observable, as expected. For
some instances, the PermutedTrail actually had a negative effect. For these
benchmarks the performance greatly depends on the seed3.

In our last experiment, we wanted to see whether the use of Permuted-
Trail would make a rapid restart strategy preferred over the default Luby-100.
In the tests above we used the default variable decay of MiniSAT δ = 0.95 (see
Section 2.1). However, preliminary tests showed that when using rapid restarts
such as Const-1 and Luby-1, a lower value of the δ results in improved per-
formance. Notice that a lower variable decay will make PermutedTrail itself
a bit less effective because variables will go up and down faster in the VSIDS
order. We found that δ = 0.75 results in strong performance. Therefore, in this
last experiment we combined PermutedTrail with δ = 0.75 (denoted by an
asterisk, e.g. Luby-1*).

Figure 6 shows the results. Combining PermutedTrail with δ = 0.75 in-
creases the number of instances solved for each restart strategy, especially for
Const-1 (156 vs 168 instances solved) and Luby-1 (173 vs 187 instances solved).
The impact on Luby-100 is hardly visible. This is expected since this strategy
restarts much less frequently, therefore the cost reduction of restarts hardly in-
fluences the performance. Luby-1* performed best during our experiments. This
shows that PermutedTrail reduced the restart costs to such level that the
benefits of encountering fewer conflicts to solve a problem can be exploited to
the point where it solves 10 instances more than the default configuration of
MiniSAT.

3 MiniSAT has the option to randomly initialize the VSIDS scores. For many bench-
marks the seed used for the initialization has a huge impact on the performance.
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Fig. 5. Comparison of the number of conflicts per second (left) and solver runtime
(right) between full restarts and PermutedTrail for the SAT 2009 application bench-
marks. PermutedTrail propagates more conflicts per second above the diagonal (left)
and solves instances faster below the diagonal (right).
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Fig. 6. Cactus plot showing the number of instances solved versus the time required
to do so for three restart strategies and two configurations. PermutedTrail with
δ = 0.75 – denoted in the legend with an asterisk – improves the performance of
MiniSAT.

6 Suggestions for Future Work

Although our algorithm finds a reasonably high partial restart level, the solver
still performs redundant work sometimes when a decision variable becomes an
implied variable after a restart (recall Section 4.3). The current algorithms will
not always detect that, and therefore may not return the optimal backtrack level.
Although we have not seen this happen frequently in practice, it is possible that
for some instances this occurs often, in which case it might be interesting to
further analyze this issue and to develop efficient solutions.

We expect that the performance improvements are mainly caused by the
reduced restart costs. Yet, the PermutedTrail algorithm has also an impor-
tant side effect. After a full restart, the reason clauses of implied variables may
change, while after a partial restart the reason clauses stay the same. We want
to study whether this effect influences the performance positively or negatively.

7 Conclusion

In this work, we implemented and tested two performance enhancements that
reduce restart costs for CDCL solvers. We implemented both techniques in the
latest MiniSAT solver. We show how to reduce the redundant work that is in-
troduced by a restart by predicting the trail that will occur after a restart.



By applying a partial restart based on this prediction and by restarting more
frequently, the performance of CDCL solvers can be improved.
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