
SAT Competition 2016: Recent Developments

Tomáš Balyo
Karlsruhe Institute of Technology

Karlsruhe, Germany

Marijn J.H. Heule
Department of Computer Science

The University of Texas at Austin, USA

Matti Järvisalo
HIIT, Department of Computer Science

University of Helsinki, Finland

Abstract

We give an overview of SAT Competition 2016, the 2016
edition of the famous competition for Boolean satisfiability
(SAT) solvers with over 20 years of history. A key aim is
to point out “what’s hot” in SAT competitions in 2016, i.e.,
new developments in the competition series, including new
competition tracks and new solver techniques implemented
in some of the award-winning solvers.

Introduction
Boolean satisfiability (SAT) is one of the great success sto-
ries of modern computer science. Despite—and to an extent
in conflict with—the traditional view of NP as a true sign
of ‘intractability’, decision procedures for SAT, i.e., SAT
solvers, are today frequently used as the core workhorses
in tackling real-world instances of a wide range of NP-hard
search and optimization problems, from AI applications to
industrial use such as in tools for hardware and software
verification. SAT Competitions—the history of which dates
back to early 90s (Buro and Bühning 1993; Johnson and
Trick 1996), variants of which have been yearly organized
since 2002 (Simon, Berre, and Hirsch 2005; Le Berre and
Simon 2004; 2005; Balint et al. 2015; Järvisalo et al. 2012;
Balyo et al. 2016)—have been a driving force of SAT solver
development, to the point that the performance of contem-
porary SAT solvers is noticeably better than that of those
from one to two decades ago. A further central role of the
SAT Competition series is to provide the research commu-
nity with systematically constructed benchmark sets on a
yearly basis, which nowadays have become a key ingredi-
ent in empirical evaluation of SAT solver techniques in pub-
lished SAT research.

The 2016 SAT solver competition was the 10th edition or-
ganized under the name “SAT Competition”. We give a brief
overview of SAT Competition 2016 (SC 2016), with a spe-
cific aim of pointing out “what’s hot” in SAT solver compe-
titions in 2016, i.e., new developments in the competition se-
ries, including new competition tracks and new solver tech-
niques implemented in some of the award-winning solvers.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Competition Tracks
The 2016 competition featured six tracks. Additionally to
the Main, Parallel, and Random tracks, which have a long
tradition in SAT competitions we had an Incremental Li-
brary track (introduced in the 2015 SAT Race (Balyo et al.
2016)) and two new tracks—Agile and No-Limits. In con-
trast to earlier editions, there were no longer special tracks
for only satisfiable and only unsatisfiable benchmarks.

Solvers in all tracks were ranked based on the number
of solved instances within the timeout1. The Agile track
had a 60-second timeout, while the other tracks used a
5000-second timeout. Satisfiable benchmarks were consid-
ered solved if the solver produced a correct solution, except
for the No-Limit track in which only a claim of satisfiability
was required. In the Main track, we considered unsatisfiable
benchmarks solved only if the solver produced a valid DRAT
proof (Heule 2016), which was checked by the DRAT-trim
checker (Wetzler, Heule, and Jr. 2014). In the other tracks,
only a claim of unsatisfiability was required. Within each
track, claiming satisfiable on an unsatisfiable benchmark or
the other way around resulted in disqualification in the track.

The Agile track was established for SAT solvers with
low overhead, suitable for rapidly solving large numbers
of not too hard SAT instances. For a wide range of ap-
plications, SAT solvers are used as “core NP solvers” that
are called iteratively, potentially thousands or even hun-
dreds of thousands of times, as part of a single execution
of a more complex procedure. Concrete examples of such
use cases of SAT solvers come from Satisfiability Modulo
Theories (SMT) (De Moura and Bjørner 2011), SAT-based
counterexample-guided abstraction refinement (Clarke et
al. 2003), hardware model checking (Clarke et al. 2001),
Boolean optimization, etc.

The No-Limits track was introduced to remove all the
restrictions for participation enforced in the other tracks,
such as allowing portfolios and closed source solvers. The
other tracks were restricted to so-called “single-engine” SAT
solvers. Only brand new benchmarks were used in this track
to prevent aggressive over-tuning to known benchmarks. By
removing the source code requirement we wanted to in-
crease non-academic participation, but this was futile.

1Except for the Incremental Library track, see the SC 2016
homepage (Balyo, Heule, and Järvisalo 2016a) for more details.



Table 1: Top-3 solvers of the SC 2016 tracks. The numbers
of solved benchmark instances are shown in parenthesis.

Track 1st Place 2nd Place 3rd Place

Main (500) MapleCOMSPS (203) Riss (202) Lingeling (201)
Parallel (500) Treengeling (315) Plingeling (302) CryptoMiniSat (297)
Random (240) Dimetheus (95) CSCCSat (89) DCCAlm (88)
Incremental CryptoMiniSat Glucose Riss
No-Limits (350) BreakIDCOMSPS (178) Lingeling (162) abcdSAT (161)
Agile (5000) Riss (3284) TB_Gluc. (3187) CHBR_Gluc. (3179)

Winners: What’s Hot in 2016
The top-3 solvers of each of the SC 2016 tracks are listed
in Table 1. The difference between the top solvers tended
to be very small in the Main track: the number one solved
only two instances more than the number three (203 versus
201). As a consequence, the ranking could have been dif-
ferent with a slightly different timeout or slightly different
benchmark selection procedure. We briefly describe some
of the winners in the following.

MapleCOMPSP (Liang et al. 2016) Variations of the
VSIDS (Moskewicz et al. 2001) decision heuristic are used
by essentially all top solvers in the recent competitions.
MapleCOMPSP uses a new branching heuristic called learn-
ing rate branching (LRB) for the first 2500 seconds of the
search (then switching to VSIDS). The aim of LRB is to
maximize the quantity of learned clauses by selecting vari-
ables with a high learning rate, i.e., variables that after being
assigned are likely to drive the search into a conflict (where
clauses are learned). Since learning rate values are difficult
and expensive to compute they are estimated using multi-
armed bandits, a special case of reinforcement learning.

BreakIDCOMiniSatPS (Devriendt et al. 2016) Many
SAT problems exhibit symmetries but top solvers rarely ex-
ploit this. BreakIDCOMiniSatPS combines the symmetry
breaking preprocessor BreakID with the SAT solver CO-
MiniSatPS. Symmetries are detected using Saucy (Katebi,
Sakallah, and Markov 2010), broken via BreakID, and
symmetry-breaking predicates are added to the input for-
mula. Although symmetry-breaking techniques can be ex-
pressed in the DRAT proof format (Heule, Hunt Jr., and Wet-
zler 2015), BreakIDCOMiniSatPS does not support unsatis-
fiability proof generation. It therefore participated only in
the No-Limits track, in which it won very decisively.

Dimetheus (Gableske 2013; Gableske, Müelich, and
Diepold 2013) The Random track used to be dominated by
relatively simple local search solvers implementing some
variant of WalkSAT. This changed in 2014, when the solver
Dimetheus outperformed all such solvers during the SAT
competition. Dimetheus combines message passing algo-
rithms with more conventional local search techniques and
was again very successful.

Treengeling (Biere 2016) Solvers in the Parallel track ran
on nodes with 24 cores (48 with hyper-threading) and 96
gigabytes of memory. This setup appeared tricky for some
solvers and resulted in many Out of Memory errors. The

most successful parallel solver was Treengeling based on
the Cube-and-Conquer paradigm (Heule et al. 2012), which
uses look-ahead techniques to partition the problem and ap-
plies CDCL solvers to the subproblems. Cube-and-conquer
solvers hardly share clauses between threads, which reduces
the memory footprint. This is probably one of the factors
that facilitated its strong performance.

Further Considerations
The benchmark selection procedure has a big impact on
the results of the competition. In the last couple of years,
benchmarks were selected by taking the performance of the
prior year’s top solvers into account: the benchmark suite
was constructed in such a way that these top solvers would
perform comparably. The rationale of such a selection is
that 1) the competition is expected to be competitive and
2) progress compared to the prior year is awarded. There is
also a clear disadvantage: instances that only one top solver
can handle tend to be discarded from the competition suite.

This year we decided to select benchmarks based on
their hardness. We distinguished between easy, medium, and
hard. Benchmarks were considered easy if an established
sequential solver, MiniSAT 2.2 (Eén and Sörensson 2004),
required less than 600 seconds to solve it. The non-easy
benchmarks were labeled medium if at least one top paral-
lel solvers of SAT Race 2015, Plingeling, Treengeling, and
Glucose-Syrup, could solve it in 600 seconds (wall-clock
time), and hard otherwise. The far majority of submitted
benchmarks were easy. As a consequence, we ended up se-
lecting most of the submitted medium and hard benchmarks.
This of course introduces a bias as well, since the submitted
benchmarks were not a good representation of a wide spec-
trum of applications that SAT solvers are used for.

The core focus of the competition is to stimulate innova-
tion of SAT solving techniques. In the future we will aim
to further improve the benchmark selection procedure by
avoiding any bias and with this focus in mind.

Beyond the brief overview provided here, we encourage
the reader to visit the SC 2016 website (Balyo, Heule, and
Järvisalo 2016a) for full details on the competition, includ-
ing the competition rules, list of participated solvers, and
full runtime logs for all participating solvers. Furthermore,
the website offers the 2016 edition of the SAT Competition
benchmark suites partitioned in terms of the traditional main
tracks: application, crafted, and random instances.

A further valuable resource for more up-to-date informa-
tion on “what’s hot” in 2016 in SAT solving is the SC 2016
proceedings (Balyo, Heule, and Järvisalo 2016b), a collec-
tion of short (1–2 page) unedited descriptions of each SAT
solver that participated in SC 2016, provided by the authors
of the solvers. Together with the solver descriptions, the
proceedings provide descriptions of new benchmarks sub-
mitted to the 2016 competition. In fact, providing a solver
description was mandatory for being eligible to compete in
SC 2016, following the tradition started by SAT Challenge
2012, the main SAT solver competition of 2012. The pro-
ceedings hence provide a detailed documentation of new de-
velopments in SAT solvers and benchmarks, for both present
and future purposes.



References
Balint, A.; Belov, A.; Järvisalo, M.; and Sinz, C. 2015.
Overview and analysis of the SAT Challenge 2012 solver
competition. Artificial Intelligence 223:120–155.
Balyo, T.; Biere, A.; Iser, M.; and Sinz, C. 2016. SAT Race
2015. Artificial Intelligence 241:45–65.
Balyo, T.; Heule, M.; and Järvisalo, M. 2016a. Homepage
of 2016 sat competition. http://baldur.iti.kit.
edu/sat-competition-2016.
Balyo, T.; Heule, M.; and Järvisalo, M., eds. 2016b. Pro-
ceedings of SAT Competition 2016: Solver and Benchmark
Descriptions, volume B-2016-1 of Department of Computer
Science Series of Publications B. University of Helsinki.
Biere, A. 2016. Splatz, Lingeling, Plingeling, Treengeling,
YalSAT entering the SAT Competition 2016. In Balyo, T.;
Heule, M.; and Järvisalo, M., eds., Proceedings of SAT Com-
petition 2016; Solver and Benchmark Descriptions, volume
B-2016-1 of Department of Computer Science Series of
Publications B, 44–45. University of Helsinki.
Buro, M., and Bühning, H. K. 1993. Report on a SAT com-
petition. Bulletin of the European Association for Theoreti-
cal Computer Science 49:13–151.
Clarke, E.; Biere, A.; Raimi, R.; and Zhu, Y. 2001. Bounded
model checking using satisfiability solving. Formal Methods
in System Design 19(1):7–34.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2003. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM 50(5):752–
794.
De Moura, L., and Bjørner, N. 2011. Satisfiability modulo
theories: Introduction and applications. Communications of
the ACM 54(9):69–77.
Devriendt, J.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2016. Improved static symmetry breaking for SAT. In
Creignou, N., and Berre, D. L., eds., Proc. SAT, volume 9710
of Lecture Notes in Computer Science, 104–122. Springer.
Eén, N., and Sörensson, N. 2004. An extensible sat-solver.
In Giunchiglia, E., and Tacchella, A., eds., SAT 2002 Se-
lected Revised Papers, volume 2919 of Lecture Notes in
Computer Science, 502–518. Springer.
Gableske, O.; Müelich, S.; and Diepold, D. 2013. On the
performance of CDCL-based message passing inspired dec-
imation using Rho-Sigma-PMP-i. In Pragmatics of SAT
Workshop.
Gableske, O. 2013. On the interpolation between product-
based message passing heuristics for SAT. In Järvisalo, M.,
and Gelder, A. V., eds., Proc. SAT, volume 7962 of Lecture
Notes in Computer Science, 293–308. Springer.
Heule, M.; Kullmann, O.; Wieringa, S.; and Biere, A. 2012.
Cube and Conquer: Guiding CDCL SAT solvers by looka-
heads. In Eder, K.; Lourenço, J.; and Shehory, O., eds.,
Proc. HVC 2011, volume 7261 of Lecture Notes in Com-
puter Science, 50–65. Springer.
Heule, M. J. H.; Hunt Jr., W. A.; and Wetzler, N. D. 2015.
Expressing symmetry breaking in DRAT proofs. In Felty,

A. P., and Middeldorp, A., eds., Proc. CADE, volume 9195
of Lecture Notes in Computer Science, 591–606. Springer.
Heule, M. J. H. 2016. The DRAT format and DRAT-trim
checker. https://arxiv.org/abs/1610.06229.
Järvisalo, M.; Le Berre, D.; Roussel, O.; and Simon, L.
2012. The international SAT solver competitions. AI Maga-
zine 33(1):89–92.
Johnson, D., and Trick, M., eds. 1996. Second DIMACS
implementation challenge: Cliques, coloring and satisfiabil-
ity, volume 26 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical
Society.
Katebi, H.; Sakallah, K. A.; and Markov, I. L. 2010. Sym-
metry and satisfiability: An update. In Strichman, O., and
Szeider, S., eds., Proc. SAT, volume 6175 of Lecture Notes
in Computer Science, 113–127. Springer.
Le Berre, D., and Simon, L. 2004. The essentials of the
SAT 2003 competition. In Giunchiglia, E., and Tacchella,
A., eds., SAT 2003 Selected Papers, volume 2919 of Lecture
Notes in Computer Science, 452–467. Springer.
Le Berre, D., and Simon, L. 2005. Fifty-five solvers in
vancouver: The SAT 2004 competition. In Hoos, H. H.,
and Mitchell, D. G., eds., SAT 2004 Selected Papers, vol-
ume 3542 of Lecture Notes in Computer Science, 321–344.
Springer.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016. Learning rate based branching heuristic for SAT
solvers. In Creignou, N., and Le Berre, D., eds., Proc. SAT,
volume 9710 of Lecture Notes in Computer Science, 123–
140. Springer.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proc. DAC, 530–535. ACM.
Simon, L.; Berre, D. L.; and Hirsch, E. A. 2005. The
SAT2002 competition. Annals of Mathematics and Artifi-
cial Intelligence 43(1):307–342.
Wetzler, N.; Heule, M.; and Jr., W. A. H. 2014. DRAT-trim:
Efficient checking and trimming using expressive clausal
proofs. In Sinz, C., and Egly, U., eds., Proc. SAT, vol-
ume 8561 of Lecture Notes in Computer Science, 422–429.
Springer.


