
Expressing Symmetry Breaking in DRAT Proofs

Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler ?

The University of Texas at Austin

Abstract. An effective SAT preprocessing technique is using symmetry-
breaking predicates, i.e., auxiliary clauses that guide a solver away from
needless exploration of isomorphic sub-problems. Although symmetry-
breaking predicates have been in use for over a decade, it was not known
how to express them in proofs of unsatisfiability. Consequently, results
obtained by symmetry breaking cannot be validated by existing proof
checkers. We present a method to express symmetry-breaking predicates
in DRAT, a proof format that is supported by the top-tier solvers. We
applied this method to generate proofs of problems that have not been
solved without symmetry-breaking predicates. We validated these proofs
with both an ACL2-based, mechanically-verified checker and the proof-
checking tool of SAT Competition 2014.

1 Introduction

Satisfiability (SAT) solvers can be applied to decide hard combinatorial problems
that contain symmetries. Breaking problem symmetries typically boosts solver
performance as it prevents a solver from needlessly exploring isomorphic parts of
the search space. A common method to eliminate symmetries is to add symmetry-
breaking predicates [1,2,3]. However, expressing symmetry-breaking predicates in
existing SAT proof formats has been an open problem, leaving it hard to validate
solver results. We present a method to express the use of symmetry-breaking
predicates in the DRAT proof format [4], which is supported by the top-tier
SAT solvers and was used to validate the results of SAT Competition 2014.

Recent successes of SAT technology include solving several long-standing
open problems such as the Erdős Discrepancy Conjecture [5], computing Van der
Waerden numbers [6], and producing minimal sorting networks [7]. Symmetry-
breaking techniques can be applied to each of these problems and allows one
to solve them more efficiently. Our new method facilitates creating proofs for
unsatisfiability results even when symmetry-breaking techniques are applied.

A state-of-the-art tool to break symmetries in SAT problems is shatter [8];
it performs static symmetry-breaking by adding symmetry-breaking predicates
to the problem. The shatter tool works as follows: a SAT problem is con-
verted into a graph and all symmetry groups are computed. Symmetry groups
are then transformed into predicates and added to the SAT problem. An alter-
native method, called dynamic symmetry-breaking [9], adds symmetric versions

? The authors are supported by DARPA contract number N66001-10-2-4087.

2

of learned clauses to the problem. Dynamic symmetry-breaking is most useful
when few symmetries exist, which is the case for graph-coloring problems.

We will demonstrate the expression of symmetry-breaking predicates in the
DRAT proof format using unavoidable subgraphs. An unavoidable subgraph G,
for graphs of order n, is an undirected graph such that any red/blue edge-
coloring of the fully-connected, undirected graph of order n contains G in either
red or blue. The most famous type of unavoidable subgraphs are cliques (Ram-
sey numbers), but there are many other types of graphs for which unavoidability
has been studied; an online dynamic survey by Stanis law Radziszowski [10] lists
over 600 articles on the topic. SAT solvers have severe difficulty solving unavoid-
able graph problems without symmetry-breaking predicates, but become more
powerful tools with them.

Given a satisfiability problem F , we produce a satisfiability-equivalent prob-
lem F ′ that contains symmetry-breaking predicates. The formula F ′ is similar
to the result of applying shatter (modulo variable renaming). Additionally, we
produce a partial DRAT proof that expresses the conversion from F to F ′. We
solve F ′ using an off-the-shelf SAT solver that can emit DRAT proofs — which
is the case for all top-tier solvers. Finally, we validate the result by merging
the partial proof with the SAT solver proof and applying a checker such as
drat-trim [4]. We evaluate this method on some hard combinatorial problems.

The remainder of the paper is structured as follows. After some preliminary
and background in Section 2, the DRAT proof system is explained in Section 3
and the addition of symmetry-breaking predicates is presented in Section 4.
Breaking a single symmetry may require many steps in order to express it in
a DRAT proof, and this is discussed is Section 5. In Section 6, we explain how
to break multiple symmetries. Our tool chain and evaluation are presented in
Sections 7 and 8 and some conclusions are drawn in Section 9.

2 Preliminaries

We briefly review necessary background concepts: conjunctive normal form (CNF),
Boolean constraint propagation and blocked clauses.

Conjunctive Normal Form For a Boolean variable x, there are two literals,
the positive literal, denoted by x, and the negative literal, denoted by x̄. A clause
is a finite disjunction of literals, and a CNF formula is a finite conjunction of
clauses. A clause is a tautology if it contains both x and x̄ for some variable x.
We denote with ε the empty clause. Given a clause C = (l1∨ · · ·∨ lk), C denotes
the conjunction of its negated literals, i.e., (l̄1) ∧ · · · ∧ (l̄k). The set of literals
occurring in a CNF formula F is denoted by LIT(F). A truth assignment for a
CNF formula F is a partial function τ that maps literals l ∈ LIT(F) to {t, f}.
If τ(l) = v, then τ(l̄) = ¬v, where ¬t = f and ¬f = t. Furthermore:

– A clause C is satisfied by assignment τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by assignment τ if τ(l) = f for all l ∈ C.
– A CNF formula F is satisfied by assignment τ if τ(C) = t for all C ∈ F .
– A CNF formula F is falsified by assignment τ if τ(C) = f for some C ∈ F .

3

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by formula F if adding C to F does not change the set of
satisfying assignments of F . Two formulas are logically equivalent if they have the
same set of solutions over the common variables. Two formulas are satisfiability
equivalent if both have a solution or neither has a solution.

Resolution Given two clauses C1 = (x∨a1∨. . .∨an) and C2 = (x̄∨b1∨. . .∨bm),
the resolution rule states that the clause C = (a1 ∨ . . .∨ an ∨ b1 ∨ . . .∨ bm), can
be inferred by resolving on variable x. We call C the resolvent of C1 and C2 and
write C = C1 � C2. C is logically implied by a formula containing C1 and C2.

Boolean Constraint Propagation and Asymmetric Tautologies For
a CNF formula F , Boolean constraint propagation (BCP) (or unit propagation)
simplifies F based on unit clauses; that is, it repeats the following until it reaches
a fixpoint: If there is a unit clause (l) ∈ F , remove all clauses that contain the
literal l from the set F \ {(l)} and remove the literal l̄ from all clauses in F . We
write F `1 ε to denote that BCP applied to F can derive the empty clause. A
clause C is an asymmetric tautology (AT) with respect to formula F if and only
if F ∧ C `1 ε. Asymmetric tautologies are logically implied by F .

Example 1. Consider the formula F = (ā∨ b)∧ (b̄∨ c)∧ (b̄∨ c̄). Clause C = (ā) is
an asymmetric tautology with respect to F , because F ∧ C `1 ε: BCP removes
literal ā, resulting in the new unit clause (b). After removal of the literals b̄, two
complementary unit clauses (c) and (c̄) are created. �

Blocked Clauses Given a CNF formula F , a clause C, and a literal l ∈ C,
the literal l blocks C with respect to F if (i) for each clause D ∈ F with l̄ ∈ D,
C � D is a tautology, or (ii) l̄ ∈ C, i.e., C is itself a tautology. Given a CNF
formula F , a clause C is blocked with respect to F if there is a literal that
blocks C with respect to F . Addition and removal of blocked clauses results in
satisfiability-equivalent formulas [11], but not logically equivalent formulas.

Example 2. Consider the formula (a∨b)∧(a∨ b̄∨ c̄)∧(ā∨c). Clause (a∨ b̄∨ c̄) is a
blocked clause, because its literal a is blocking it: the only resolution possibility
is with (ā ∨ c) which results in tautology (b̄ ∨ c̄ ∨ c). �

3 Validating DRAT Proofs

Unsatisfiability proofs come in two flavors: resolution proofs and clausal proofs. A
handful of formats have been designed for resolution proofs [12,13,14], but they
all have the same disadvantages: resolution proofs are often huge and it is hard
to express several important techniques, such as conflict clause minimization, as
resolution steps. Other techniques, such as bounded variable addition, cannot
be polynomially simulated by resolution. Clausal proof formats [15,16,4] are
syntactically the same: a sequence of clauses that are claimed to be redundant
with respect to a given formula. It is important that the redundancy can be
checked in polynomial time. Clausal proofs may include deletion information to
reduce the validation cost. The drat-trim [4] tool can efficiently validate clausal

4

CNF formula

p cnf 4 10

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 2 4 0

2 0

0

Fig. 1. Left, a formula in DIMACS
CNF format, the conventional input
format for SAT solvers. Right, a DRAT
proof for that formula. Each line in the
proof is either an addition step (no pre-
fix) or a deletion step identified by the
prefix “d”. Spacing in both examples is
used to improve readability. Clause in
the proof should be either asymmetric
tautologies or be a RAT clauses using
the first literal as the pivot.

proofs in the DRAT format —which is backwards compatible with earlier clausal
proof formats— and was used to check the results of SAT Competition 2014.

Resolution asymmetric tautologies (or RAT clauses) [17] are a generalization
of both asymmetric tautologies and blocked clauses. A clause C has RAT on l
(referred to as the pivot literal) with respect to a formula F if for all D ∈ F
with l̄ ∈ D holds that

F ∧ C̄ ∧ (D̄ \ {(l)}) `1 ε.
RAT is a very useful redundancy property because it can be computed in

polynomial time and all preprocessing, inprocessing, and solving techniques in
state-of-the-art SAT solvers can be expressed in terms of addition and removal
of RAT clauses [17]. A DRAT proof, short for Deletion Resolution Asymmetric
Tautology, is a sequence of addition and deletion steps of RAT clauses. Fig. 1
shows an example DRAT proof.

Example 3. Consider the CNF formula F = (a∨ b∨ c̄)∧ (ā∨ b̄∨ c)∧ (b∨ c∨ d̄)∧
(b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄) ∧ (ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), which is shown in
the DIMACS format in Fig. 1 (left). The first clause in the proof, (ā), is a RAT
clause with respect to F , i.e., all possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) `1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) `1 ε using (a ∨ c ∨ d)

F ∧ (a) ∧ (b) ∧ (d) `1 ε using (a ∨ b̄ ∨ d̄) �

Let F be a CNF formula and P be a DRAT proof for F . The number of
lines in a proof P is denoted by |P |. For each i ∈ {0, . . . , |P |}, a CNF formula is
defined F iP below. Li refers to the lemma (redundant clause) on line i of P .

F iP :=

F if i = 0

F i−1P \ {Li} if the prefix of Li is “d ”

F i−1P ∪ {Li} otherwise

Each lemma addition step is validated using a RAT check, while lemma deletion
steps are ignored as their only purpose is to reduce the validation costs. Let li
denote the first literal in lemma Li. The RAT check for lemma Li in proof P
for CNF formula F succeeds if and only if Li has the property RAT on literal li
with respect to F i−1P . Moreover, lemma L|P | must be the empty clause.

5

4 Symmetries in Propositional Formulas

Two graphs G and H are isomorphic if there exists an edge-preserving bijection
from the vertices of G to the vertices of H. A symmetry (or automorphism) of a
graph G is an edge-preserving bijection of G onto itself. Symmetries in the graph
representation of SAT problems may cause SAT solvers to explore symmetric
parts of the search space again and again. This problem can be avoided by
adding symmetry-breaking predicates [1].

The state-of-the-art approach to generate symmetry-breaking predicates for
SAT solvers [8] works as follows. The clause-literal graph (explained below) of a
given CNF formula is created for which the automorphisms are computed. The
automorphisms in turn are converted into the symmetry-breaking predicates.

A clause-literal graph of a CNF formula F is an undirected graph contain-
ing a vertex for each clause and each literal in F . A literal vertex and a clause
vertex are connected if and only if the corresponding literal occurs in the corre-
sponding clause. Two clause vertices are never connected. Two literal vertices are
connected if and only if the corresponding literals are each others complement.

We refer to a symmetry σ = (x1, . . . , xn)(p1, . . . , pn) of a CNF formula F
as an edge-preserving bijection of the corresponding clause-literal graph of F ,
that maps variable xi onto pi with i ∈ {1..n}. (p1, . . . , pn) is a permutation of
(x1, . . . , xn) in which each pi is potentially negated. If xi is mapped onto pi,
then x̄i is mapped onto p̄i. Also the clauses in the clause-literal graph are per-
muted by a symmetry, but we can ignore this aspect when it comes to symmetry
breaking. Breaking σ can be achieved by enforcing that the assignment to lit-
erals x1, x2, . . . , xn is lexicographically less or equal (≤) than the assignment to
literals p1, p2, . . . , pn. Instead of ≤, we could have used ≥.

Example 4. Consider the problem of whether a path of two edges is an un-
avoidable subgraph of graphs of order 3. We name the vertices a, b, and c. The
existence of an edge between a and b, a and c, and b and c is represented by the
Boolean variables xa,b, xa,c, and xb,c, respectively. The propositional formula
that expresses this problem and the labels of the clauses are shown below.

C1︷ ︸︸ ︷
(xa,b∨xa,c)∧

C2︷ ︸︸ ︷
(xa,b∨xb,c)∧

C3︷ ︸︸ ︷
(xa,c∨xb,c)∧

C4︷ ︸︸ ︷
(x̄a,b∨x̄a,c)∧

C5︷ ︸︸ ︷
(x̄a,b∨x̄b,c)∧

C6︷ ︸︸ ︷
(x̄a,c∨x̄b,c)

The clause-literal graph of this formula is shown in Fig. 2 together with three
isomorphic copies that can be obtained by permuting the nodes of the clause-
literal graph. The three symmetries are (ignoring the permutation of clauses):

σ1 = (xa,b, xa,c, xb,c)(x̄a,b, x̄a,c, x̄b,c); σ2 = (xa,b)(xa,c); σ3 = (xa,c)(xb,c).

The symmetry-breaking tool shatter will break these symmetry by adding the
constraints xa,b, xa,c, xb,c ≤ x̄a,b, x̄a,c, x̄b,c (which can be simplified to the con-
straint (xa,b ≤ x̄a,b) ≡ x̄a,b); xa,b ≤ xa,c; and xa,c ≤ xb,c, respectively. These
constraints correspond to the clauses (x̄a,b), (x̄a,b ∨ xa,c), and (x̄a,c ∨ xb,c). �

6

C1 C2 C3

xa,b x̄a,b xa,c x̄a,c xb,c x̄b,c

C4 C5 C6

identity symmetry

C1 C2 C3

xa,bx̄a,b xa,cx̄a,c xb,cx̄b,c

C4 C5 C6

(xa,b, xa,c, xb,c, C1, C2, C3)
(x̄a,b, x̄a,c, x̄b,c, C4, C5, C6)

C1 C2C3

xa,b x̄a,bxa,c x̄a,c xb,c x̄b,c

C4 C5C6

(xa,b, C2, C5), (xa,c, C3, C6)

C1C2 C3

xa,b x̄a,b xa,c x̄a,cxb,c x̄b,c

C4C5 C6

(xa,c, C1, C4)(xb,c, C2, C5)

Fig. 2. Four isomorphic clause-literal graphs of the propositional formula of Example 4.
Notice that the four graphs are identical modulo the labelling of the nodes. Below each
graph, the permutation of the nodes is shown compared to the top-left graph. The
permutation of clauses is omitted in symmetries throughout this paper.

Expressing the constraint x1, x2, . . . , xn ≤ p1, p2, . . . , pn in clauses with (only)
variables in F can be done as follows:

(x̄1 ∨ p1) ∧ (x̄1 ∨ x̄2 ∨ p2) ∧ (p1 ∨ x̄2 ∨ p2) ∧ (x̄1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧
(x̄1 ∨ p2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ p2 ∨ x̄3 ∨ p3) ∧ . . .

The above scheme adds 2n−1 clauses. Using auxiliary variables, it requires only
a linear number of clauses, i.e., 3n− 2, to express this constraint:

(x̄1 ∨ p1) ∧ (a1 ∨ x̄1) ∧ (a1 ∨ p1) ∧ (ān−1 ∨ x̄n ∨ pn) ∧∧
i∈{2..n−1}

(
(āi−1 ∨ x̄i ∨ pi) ∧ (ai ∨ āi−1 ∨ x̄i) ∧ (ai ∨ āi−1 ∨ pi)

) (1)

Optionally some blocked clauses [11] can be added: (ā1∨x1∨ p̄1) and (āi∨ai−1)∧
(āi ∨xi ∨ p̄i) for i ∈ {2..n− 1}. State-of-the-art SAT solvers, such as Lingeling,
would remove them during preprocessing since they are useless in practice [18].

The main question that we will answer in the next two sections is how to
convert F into a satisfiability-equivalent formula F ′ such that the above clauses
have DRAT with respect to F ′ and can therefore be added.

7

5 Breaking a Single Symmetry

This section shows how to express breaking a single symmetry in a DRAT proof.
Breaking multiple symmetries is more complicated; this will be discussed in
Section 6. Breaking a single symmetry consists of three steps: adding definitions,
redefine involved clauses, and adding symmetry-breaking predicates. Below we
discuss these three steps in detail using the following notation. The formula F0

expresses the initial formula for which we want to break a symmetry σ. Formula
F1 expresses the result of adding definitions (step 1); formula F2 expresses the
result after redefining involved clauses in F1 (steps 1 and 2); and formula F3

expresses the result after adding symmetry-breaking predicates to F2 (all steps).

Adding definitions The first step consists of defining auxiliary variables.
A pivotal variable is the primal-swap variable s1. For a given symmetry σ =
(x1, . . . , xn)(p1, . . . , pn), s1 is false for every assignment for which x1, . . . , xn ≤
p1, . . . , pn and true otherwise. Only if si is assigned to true, we want to swap xi
and pi with i ∈ {1..n}. We will use auxiliary variables si with i ∈ {1..n} and
6n− 3 clauses to express the potential swap:∧

i∈{1..n−1}
(
(si ∨ x̄i ∨ pi) ∧ (si ∨ x̄i ∨ s̄i+1) ∧ (si ∨ pi ∨ s̄i+1) ∧

(s̄i ∨ xi ∨ p̄i) ∧ (s̄i ∨ xi ∨ si+1) ∧ (s̄i ∨ p̄i ∨ si+1)
)
∧

(sn ∨ x̄n ∨ pn) ∧ (s̄n ∨ xn) ∧ (s̄n ∨ p̄n)

These clauses can be added to the formula by blocked clause addition in the
reverse order as listed in the equation above: first add all clauses containing
literals sn and s̄n, second add clauses containing literals sn−1 and s̄n−1, etc.

Additionally we introduce n auxiliary Boolean variables x′i with i ∈ {1..n}
which are defined as follows. If the primal-swap variable s1 is assigned to false,
then x′i ↔ xi, otherwise x′i ↔ pi. In clauses this definition is expressed as∧

i∈{1..n}

(
(x′i ∨ x̄i ∨ s1) ∧ (x̄′i ∨ xi ∨ s1) ∧ (x′i ∨ p̄i ∨ s̄1) ∧ (x̄′i ∨ pi ∨ s̄1)

)
.

All these clauses are blocked on the xi and x̄i literals. The definitions of x′1 and
p′1 can be expressed more compactly using only three clauses per definition:

(x′1 ∨ x̄1 ∨ p̄1) ∧ (x̄′1 ∨ x1) ∧ (x̄′1 ∨ p1) ≡ x′1 := AND(x1, p1)

(p̄′1 ∨ x1 ∨ p1) ∧ (p′1 ∨ x̄1) ∧ (p′1 ∨ p̄1) ≡ p′1 := OR(x1, p1)

The more compact definitions are also blocked on the prime literals. All clauses
contain only one prime literal and all clauses are blocked on the prime literal.
Therefore, they can be added to the DRAT proof in arbitrary order.

Redefining Involved Clauses In the second step of expressing breaking
symmetry σ = (x1, . . . , xn)(p1, . . . , pn) as a sequence of DRAT operations, we
redefine the involved clauses Cj , i.e., those clauses in F0 that contain at least
one literal xi or x̄i with i ∈ {1..n} by clauses C ′j , a copy of Cj with all literals
xi and x̄i replaced by literals x′i and x̄′i, respectively.

8

The clauses C ′j do not have RAT with respect to F1, the formula resulting
after adding definitions. However, the clauses C ′j ∪ {s1} and C ′j ∪ {s̄1} have AT
with respect to F1, with s1 referring to the primal-swap variable from the prior
step. Using this observation, we express redefining Cj into C ′j with j ∈ {1..m}
using 4m operations: add C ′j ∪ {s1}, add C ′j , delete C ′j ∪ {s1} and delete Cj .
Notice that we use C ′j ∪ {s1} as an auxiliary clause to add C ′j : C

′
j has AT with

respect to F1 ∪ {C ′j ∪ {s1}} because C ′j ∪ {s̄1} has AT with respect to F1.

Adding Symmetry-Breaking Predicates After adding definitions (step 1)
and redefining involved clauses (step 2), all assignments for which x′1, . . . , x

′
n >

p′1, . . . , p
′
n are eliminated: if x1, . . . , xn > p1, . . . , pn, then s1 is assigned to true

with will swap xi and pi with i ∈ {1..n}. To express this knowledge, i.e.,
x′1, . . . , x

′
n ≤ p′1, . . . , p

′
n, in clauses that have DRAT with respected to F2, we

first introduce auxiliary variables yi as follows:

(y1 ∨ x̄′1) ∧ (y1 ∨ p′1) ∧ (ȳ1 ∨ x′1 ∨ p̄′1) ∧∧
i∈{2..n−1}

(
(yi ∨ ȳi−1 ∨ x̄′i) ∧ (yi ∨ ȳi−1 ∨ p′i) ∧ (ȳi ∨ yi−1) ∧ (ȳi ∨ x′i ∨ p̄′i)

) (2)

Notice that all these clauses have RAT on their first literal when added in the
order as shown in (2). Afterwards, we add the following clauses:

(x̄′1 ∨ p′1) ∧
∧

i∈{2..n}

(ȳi−1 ∨ x̄′i ∨ p′i) (3)

The clauses (3) are logically implied by F2 after the addition of (2). Notice that
the clauses (2) and (3) together are the same as (1), but with the blocked clauses.
The blocked clauses are required to add (3), but can be removed afterwards.

6 Breaking Multiple Symmetries

Given k symmetries, tools that add symmetry-breaking predicates simply add
the clauses (1) once for each symmetry. However, expressing breaking k > 1
symmetries in DRAT cannot simply be done by applying the above procedure (all
three steps) only once for each symmetry. In fact, it appears that in worst case
the procedure needs to be applied significantly more often than k times. First,
we will describe the origin of applying the procedure more than a linear number
of times: overlap in the variables in symmetries. Afterwards, we will explore how
to apply the procedure as few times as possible. We conclude this section by
showing that also the the length of symmetries can significantly increase the
number of applications of the procedure.

Overlapping Symmetries It can be quite costly to express breaking multiple
symmetries in DRAT, even in case all symmetries have length 1. The example
below illustrates the difficulties using two symmetries.

9

Example 5. Consider the formula F = (x1∨x2)∧(x1∨x3)∨(x2∨x3)∨(x̄1∨x̄2∨x̄3)
which has two symmetries: σ1 = (x1)(x2) and σ2 = (x2)(x3). Breaking symmetry
σ1 would result in adding the clauses

(x′1 ∨ x̄1 ∨ x̄2), (x̄′1 ∨ x1), (x̄′1 ∨ x2), (x̄′2 ∨ x1 ∨ x2), (x′2 ∨ x̄1), (x′2 ∨ x̄2).

Applying the definitions, F can be converted to F ′ = (x′1 ∨ x′2)∧ (x′1 ∨ x3)∨
(x′2∨x3)∨(x̄′1∨x̄′2∨x̄3). From the definitions it follows that x′1 ≤ x′2, or (x̄′1∨x′2).
Now, let us break symmetry σ2 by adding the clauses

(x′′2 ∨ x̄′2 ∨ x̄3), (x̄′′2 ∨ x′2), (x̄′′2 ∨ x3), (x̄′3 ∨ x′2 ∨ x3), (x′3 ∨ x̄′2), (x′3 ∨ x̄3).

Again, applying the definitions, F ′ can be converted to F ′′ = (x′1 ∨ x′′2) ∧
(x′1∨x′3)∨ (x′′2 ∨x′3)∨ (x̄′1∨ x̄′′2 ∨ x̄′3). Notice that (x̄′1∨x′′2), i.e., x′1 ≤ x′′2 does not
hold. Consider the satisfying assignment x1 = 1, x2 = 1, x3 = 0. Following the
definitions, x′1 = 1, x′2 = 1 and x′′2 = 0, x′3 = 1. Observe that 0 = x′′2 < x′1 = 1.
In order to break both σ1 and σ2, we need to break σ1 again. �

The problem in Example 5 is caused by the overlap (shared variables) in the
symmetries. In worst case, all symmetries overlap which requires applying the
symmetry-breaking procedure, i.e., the three steps to break a single symmetry,
again and again.

The symmetry-breaking procedure presented in Section 5 changes and arbi-
trary assignment A into an assignment A′ that is lexicographically smaller or
equal than A according to the symmetry at hand. This procedure has similarities
with sorting numbers if certain dependencies between symmetries are missing
(which will be discussed at the end of this section). Consequently, we can use
sorting technology to perform the procedure as few times as possible.

Sorting Networks A sorting network, consisting of k wires and c compara-
tors, sorts k values using c comparisons. The values flow across the wires. A
comparator connects two wires, compares the incoming values, and sorts them
by outputting the smaller value to one wire, and the larger to the other. The
left part of Fig. 3 shows a sorting network of four wires (horizontal lines) and
five comparators (vertical lines). This sorting network is optimal: there does
not exist a sorting network of four wires with less than five comparators. The
table in Fig. 3 shows the size of optimal sorting networks with few wires. Re-
cently it was shown that the smallest sorting network with ten wires requires 29
comparators [7].

Sorting networks have been studied for over sixty years. There exists several
algorithms that produce small sorting networks. One of the most best algorithms
is Batcher’s Merge-Exchange algorithm [19] which produces sorting networks
with O(k log2 k) comparators with k being the number of wires. There exists a
construction method the uses only O(k log k) comparators [20], but this method
produces larger networks compared to Batcher’s Merge-Exchange for small k.

If symmetries are broken using a sorting network scheme, we obtain the
same bounds for the number of swaps unless certain dependencies between the
symmetries exist. Below we discuss the exception.

10

k 2 3 4 5 6 7 8 9 10

optimal 1 3 5 9 12 16 19 25 29
k(k − 1)/2 1 3 6 10 15 21 28 36 45

Fig. 3. Left, an optimal (fewest wires) sorting network with four inputs and five wires.
Right, a table showing the size of optimal k-input sorting network for small k [7].

Breaking Multiple Long Symmetries To this point, we considered sym-
metries of length 1, which lack certain dependencies. In general, however, sym-
metries tend to be larger. For k symmetries with length n > 1, it may require
more than O(k log k) swaps to fully break the symmetries.

Example 6. Consider a formula with two symmetries: σ1 = (x1, x4)(x2, x5) and
σ2 = (x2, x4)(x3, x6). Notice that the variables are not uniquely mapped to each
other: x4 is mapped to x5 in σ1 and to x6 in σ2. When variables are not uniquely
mapped to each other, which is the case for unavoidable graph problems, then
more than k log k swaps may be needed to convert each assignment such that it
is lexicographically smallest with respect to all k symmetries. Given two sym-
metries such that the variables are uniquely mapped, then we would need at
most 3 swaps (the size of the smallest sorting network with (k + 1) = 3 wires).
However, the sequence below shows that with σ1 and σ2 we need four swaps for
the assignment x1 = x2 = x4 = x6 = 1 and x3 = x5 = 0.

x1 x2 x3
1 1 0
1 0 1
x4 x5 x6

σ1−−−→

x′1 x
′
2 x3

1 1 0
0 1 1
x′4 x

′
5 x6

σ2−−−→

x′1 x
′′
2 x
′
3

1 0 1
1 1 0
x′′4 x

′
5 x
′
6

σ1−−−→

x′′1 x′′′2 x′3
0 1 1
1 1 0
x′′′4 x′′5 x′6

σ2−−−→

x′′1 x′′′′2 x′′3
0 1 1
0 1 1
x′′′′4 x′′5 x′′6

�

We experimented with unavoidable graph problems and observed that given
k symmetries of length n, nk log k swaps are required: apply the k log k steps n
times. We conjecture that this is the worst case.

Conjecture 1. Given a CNF formula F with k symmetries of length n, it requires
in worst case O(nk log k) swaps to convert a symbolic assignment A into an
assignment A′ for which hold that A′ is the lexicographically smallest assignment
according to all k symmetries.

7 Tools and Evaluation

Producing a DRAT proof for a given formula F that incorporates symmetry
breaking involves the use of several tools. Fig. 4 shows an overview of the tool
chain. Six tools are used: a formula-to-graph converter, a symmetry extractor, a
symmetry-breaking converter, a SAT solver, and a DRAT proof checker. These
tools are used in four phases:

11

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : sym2drat

partial
DRAT proof

DRAT proof
of formula F ′

4 : SAT solver

5 : merge6 : drat-trim

symmetry-free
formula F ′

DRAT proof
of formula F

verification
result

Fig. 4. Tool chain to produce DRAT proofs that incorporate symmetry breaking. The
rectangle boxes are files, while the round boxes are tools. Phase I consists of the tools
transformer and saucy, phase II consists of the sym2drat tool, phase III uses an off-
the-shelf SAT solver, and phase IV consists of tools to merge and validate the proofs.

I The symmetries σ of F are computed by transforming F into a clause-literal
graph (see Section 4). A symmetry-extraction tool, such as saucy [21], can
be used to obtain the symmetries.

II Formula F is converted into a satisfiability-equivalent formula F ′, a copy of
F for which the symmetries σ are broken. F ′ is equivalent (modulo variable
renaming) to adding symmetry-breaking predicates to F using a symmetry-
breaking tool, such as shatter [8]. Additionally, the conversion from F to F ′

is expressed as a partial DRAT proof. Our new tool, sym2drat, implements
this second phase, i.e., computing F ′ and a partial DRAT proof.

III The formula F ′ is solved by a SAT solver, which produces a DRAT proof.
Most state-of-the-art SAT solvers now support emission of such proofs.

IV The last step consists of verifying the result of both the symmetry-breaking
tool and the SAT solver. The partial DRAT proof and the DRAT proof of
F ′ are merged, which can be simply done by concatenating the proofs. A
proof checker, such as drat-trim [4], validates whether the merged proof is
a refutation for the input formula F .

Below we will discuss the tools that we developed for phases II and IV. We
used off-the-shelf tools for the phases I and III.

12

7.1 The tool sym2drat

The main tool that we developed for expressing symmetry-breaking as DRAT
proofs is sym2drat. This tool requires two inputs: a CNF formula F and a
set of symmetries of F . Two files are emitted by sym2drat: a CNF formula F ′

with symmetry-breaking predicates and a partial DRAT proof that expresses the
conversion of F into F ′. Our tool sym2drat constructs sorting networks based
on the Batcher’s Merge-Exchange algorithm [19] which reduces the number of
swaps (and thus the size of the partial DRAT proof) by roughy a factor of two
compared to bubble sort on most problems we experimented with, i.e., problems
containing around 20 symmetries. The sym2drat tool is still in a prototype phase
as we do not know yet the exact bounds for the number of swaps required to
break all symmetries. Throughout our experimentation we determined manually
whether to apply a sorting network once or multiple times.

7.2 Improving DRAT proof-checking tools

Apart from implementing sym2drat, we improved two tools that validate DRAT
proofs. The first tool we improved is drat-trim: the fast DRAT proof checking
written in C that was used to validate the results of SAT Competition 2014.
The current version of drat-trim does not support validating partial proofs:
a sequence of clauses that are all redundant with respect to a given formula,
but that does not terminate with the empty clause. Being able to check partial
proofs allows the validation of the output of sym2drat. We extended drat-trim

with the option to validate partial proofs1. This feature was very useful for
developing our method to express using symmetry-breaking in DRAT proofs.
We expect this feature to be helpful to discover how other techniques, such as
Gaussian Elimination and cardinality resolution, can be expressed with DRAT
proofs. Moreover, this feature allows checking partial runs of SAT solvers and it
can be used for checking runs on satisfiable problems.

Our mechanically-verified, RAT validation tool [22], written in ACL2, has
undergone significant improvements. This tool was originally designed to demon-
strate the soundness of a basic algorithm used to validate RAT proofs. Efficiency
of the tool was not a priority. Recent work [23] has been devoted to improving the
performance of this tool while maintaining its proof of correctness (soundness).
The underlying data structures have been moved from cons-based lists to ACL2
STOBJs (Single Thread OBJects) which offer support for LISP arrays, reducing
the linear-time cost for accesses and updates to constant-time. This seemingly
small change has a large impact on performance but also required a substantial
proof effort. A new ACL2 data structure, called farray, was developed to fa-
cilitate proof development with STOBJs. A mechanical proof of equivalence was
established to show that the new tool behaves exactly the same as the original
tool, preserving much of the proof of correctness of the original tool.

1 available at http://www.cs.utexas.edu/~marijn/drat-trim/

http://www.cs.utexas.edu/~marijn/drat-trim/

13

8 Evaluation

We evaluate the usefulness of our new method by computing and validating
“compact” DRAT proofs2 of some hard combinatorial problems.

Ramsey number four. Ramsey theory addresses unavoidable patterns. The most
well-known pattern is unavoidable cliques. The size of the smallest graph that
has an unavoidable clique of size k is called Ramsey number k. Ramsey number
four is 18. Showing that any graph of size 18 has and unavoidable clique of size
4 can be encoded using a formula consisting of 2 ·

(
18
4

)
= 6120 clauses, each of

length 6. We tried to solve this formula using the SAT solvers Lingeling and
glucose, but both solvers were unable to determine in 24 hours that the formula
is unsatisfiable.

The CNF formula F that encodes Ramsey number four has 18 symmetries:
any permutation of vertices and complementing the graph. SAT solvers can
determine that formula F ′ with symmetry-breaking predicates, produced by
sym2drat, is unsatisfiable in less than a second. We merged the proof of F ′,
produced by glucose 3.0, with the partial DRAT proof, produced by sym2drat.
This proof can be checked by drat-trim in 1.9 seconds. We validated the proof
using our ACL2-based, mechanically-verified RAT checker [23] as well. Notice
that these tools allow to obtain a mechanically-verified proof in the theorem
prover ACL2 that Ramsey number four is 18. We envision that this tool chain is
a useful template to obtain trustworthy results of hard combinatorial problems.

Erdős Discrepancy Conjecture. Let S = 〈s1, s2, s3, . . . 〉 be an infinite sequence
of 1’s or −1’s. Erdős Discrepancy Conjecture states that for any C there exists
an d and k such that ∣∣∣∣∣

k∑
i=1

si·d

∣∣∣∣∣ > C

Recently, the case C = 2 was proved using SAT solvers, resulting in a DRUP
proof of 13Gb [5]. The problem contains a symmetry (swapping 1’s and −1’s),
but it was not broken in the original approach. We proved the conjecture using
our tool chain with glucose 3.0 and validated the DRAT proof using drat-trim.
The size of our proof is slightly more than 2Gb in syntactically the same format
as the original proof. Symmetry breaking allowed us to pick a variable which
can be added to the formula, similar to the unit (x̄a,b) in Example 4. We choose
unit (s̄60) as it occurs frequently in the original CNF formula. The combination
of symmetry-breaking and selecting a good unit resulted in a proof a sixth of
the size of the original one. The tool drat-trim can reduce the new proof to 850
Mb by removing redundant lemmas and discarding the deletion information.

Two Pigeons per Hole. One family of hard problems of the SAT Competitions
of 2013 and 2014 are a variation of the pigeon hole principle. The Two-Pigeons-
per-Hole (TPH) family consists of problems encoding that 2k + 1 pigeons can

2 available at http://www.cs.utexas.edu/~marijn/sbp/

http://www.cs.utexas.edu/~marijn/sbp/

14

be placed into k holes such that each hole has at most two pigeons. Most SAT
solvers can refute the problem for k = 6, but they cannot solve problems of
size k > 6 within an hour, unless symmetry breaking or cardinality resolution is
applied. It is not known yet how to express cardinality resolution in the existing
SAT proof formats. Thus, there existed no approach to produce DRAT proofs
for the difficult instances of this family (k > 6). Using our method, we were able
to produce and check DRAT proofs for these problems for k ≤ 12 within an
hour.

A TPH problem of size k contains 2k + 1 symmetries of length k express-
ing that the pigeons are interchangeable. After breaking these symmetries, TPH
problems become very easy and can be solved instantly. These symmetries are
overlapping, but grouped. Therefore, “only” (2k + 1) log(2k + 1) swaps are re-
quired. However, the number of involved clauses per symmetry is large and the
formula contains many clauses. As a consequence, expressing a single swap re-
sults in many DRAT steps. For k = 12, our method results in a 4Gb proof. The
size of the DRAT proof sharply increases with k and so does the time to validate
the proof.

9 Conclusions

Validating proofs of unsatisfiability helps to gain confidence in the correctness
of results by SAT solvers which have been shown to contain errors on the im-
plementation [24] and conceptual level [17]. We presented a method to express
symmetry breaking in DRAT, the most widely-supported proof format for SAT
solvers. Our method allows, for the first time, validation of SAT solver results
obtained via symmetry breaking, thereby validating the results of symmetry
extraction tools as well.

Symmetry breaking is often crucial to solve hard combinatorial problems. Our
method provides a missing link to establish trust that results on these problems
are correct. We demonstrated our method on hard combinatorial problems such
as Ramsey number four and the Erdős Discrepancy Conjecture. We also con-
structed DRAT proofs of two-pigeons-per-hole (TPH) problems. TPH problems
are special as they were among the few formulas used in recent SAT competi-
tions that can be solved, but only without a proof. Hence, this work brings us
closer to validation of all SAT solver results.

References

1. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Proc. KR96, 5th Int. Conf. on Knowledge Representation and
Reasoning. Morgan Kaufmann (1996) 148–159

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat in-
stances in the presence of symmetry. In: Design Automation Conference, 2002.
Proceedings. 39th. (2002) 731–736

15

3. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In Horn,
W., ed.: ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, August 20-25, 2000, IOS Press (2000) 599–603

4. Wetzler, N., Heule, M.J.H., Hunt, Warren A., J.: Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Sinz, C., Egly, U., eds.: SAT 2014.
Volume 8561 of LNCS. Springer (2014) 422–429

5. Konev, B., Lisitsa, A.: A SAT attack on the Erdős Discrepancy Conjecture. In
Sinz, C., Egly, U., eds.: SAT 2014. Volume 8561 of LNCS. Springer (2014) 219–226

6. Kouril, M., Paul, J.L.: The van der Waerden number W(2, 6) is 1132. Experimental
Mathematics 17(1) (2008) 53–61

7. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five com-
parators is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI
2014, IEEE Computer Society (2014) 186–193

8. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. IEEE Trans. Computers 55(5) (2006) 549–558

9. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking by
simulating zykov contraction. In Kullmann, O., ed.: SAT 2009. Volume 5584 of
LNCS. Springer (2009) 223–236

10. Radziszowski, S.P.: Small Ramsey numbers. The Electronic Journal of Combina-
torics #DS1 (2014)

11. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97 (1999) 149–176

12. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE. (2003)
10880–10885

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,
A., eds.: SAT. Volume 2919 of LNCS., Springer (2003) 502–518

14. Biere, A.: Picosat essentials. JSAT 4(2-4) (2008) 75–97
15. Van Gelder, A.: Verifying rup proofs of propositional unsatisfiability. In: ISAIM.

(2008)
16. Heule, M.J.H., Hunt, Jr., W.A., Wetzler, N.: Verifying refutations with extended

resolution. In: International Conference on Automated Deduction (CADE). Vol-
ume 7898 of LNAI., Springer (2013) 345–359

17. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In Gramlich, B., Miller,
D., Sattler, U., eds.: IJCAR. Volume 7364 of LNCS., Springer (2012) 355–370

18. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In Esparza,
J., Majumdar, R., eds.: TACAS. Volume 6015 of LNCS., Springer (2010) 129–144

19. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of Spring
Joint Computer Conference. AFIPS ’68, ACM (1968) 307–314

20. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n logn) sorting network. In: Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing. STOC
’83, New York, NY, USA, ACM (1983) 1–9

21. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in
symmetry detection for cnf. In: DAC. DAC ’04, ACM (2004) 530–534

22. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of sat refutations
with extended resolution. In: ITP 2013. ITP’13, Springer (2013) 229–244

23. Wetzler, N.: Mechanically-Verified Validation of Satisfiability Solvers. (To Appear.)
24. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT

and QBF solvers. In: SAT 2010. SAT’10, Springer (2010) 44–57

	Expressing Symmetry Breaking in DRAT Proofs
	Introduction
	Preliminaries
	Validating DRAT Proofs
	Symmetries in Propositional Formulas
	Breaking a Single Symmetry
	Breaking Multiple Symmetries
	Tools and Evaluation
	The tool sym2drat
	Improving DRAT proof-checking tools

	Evaluation
	Conclusions

