
1/33

Applications of SAT solving to Mathematics:
Proofs and Heuristics

Marijn J.H. Heule and Oliver Kullmann

Fields Institute August 18, 2016

2/33

Pythagorean Triples Problem

Proofs of Unsatisfiability

Producing a Proof

Verifying a Proof

3/33

Pythagorean Triples Problem

4/33

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest finite counter-example?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

4/33

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest finite counter-example?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

4/33

Schur’s Theorem [Schur 1917]

Can the set of natural numbers N = {1, 2, 3, . . . } be k-colored
such that there is no monochromatic solution of a+b=c with
a < b < c? Else, what is the smallest finite counter-example?

Consider the case k = 2 with the colors named red and blue:

2 3 → 1 2 3 5 → 1 2 3 4 5 6 → ×

decide
1 + 2 = 3 1 + 4 = 5

2 + 4 = 6
2 + 3 = 5 1 + 5 = 6

Theorem (Schur’s Theorem)

For each k > 0, there exists a number S(k), known as Schur
number, such that there exists a k-coloring of [1, S(k)]
without a monochromatic solution of a + b = c with
a, b, c ≤ S(k), while this is impossible for [1, S(k)+1].

5/33

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest finite counter-example?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

5/33

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest finite counter-example?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

5/33

Pythagorean Triples Problem [Graham]

Can the set of natural numbers N = {1, 2, 3, . . . } be colored
with red and blue such that there is no monochromatic
Pythagorean triple (a, b, c ∈ N with a2 + b2 = c2)?
Otherwise, what is the smallest finite counter-example?

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean triple [Cooper & Overstreet 2015].

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean triple a2 + b2 = c2

two clauses are added: (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c).

Theorem (Main result via parallel SAT solving + proof logging)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825].

6/33

An Extreme Solution (a valid partition of [1, 7824]) I

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

1

101

201

301

401

501

2

102

202

302

402

502

3

103

203

303

403

503

4

104

204

304

404

504

5

105

205

305

405

505

6

106

206

306

306

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

1

101

201

301

401

501

2

102

202

302

402

502

3

103

203

303

403

503

4

104

204

304

404

504

5

105

205

305

405

505

6

106

206

306

306

10001000

20002000

30003000

40004000

50005000

60006000

70007000

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

7/33

Main Contribution

We present a framework that combines, for the first time, all
pieces to produce verifiable SAT results for very hard problems.

The status quo of using combinatorial solvers and years of
computation is arguably intolerable for mathematicians:

I Kouril and Paul [2008] computed the sixth van der
Waerden number (W (2, 6) = 1132) using dedicated
hardware without producing a proof.

I McKay’s and Radziszowski’s big result [1995] in Ramsey
Theory (R(4, 5) = 25) still cannot be reproduced.

We demonstrate our framework on the Pythagorean triples
problem, potentially the hardest problem solved with SAT yet.

8/33

Proofs of Unsatisfiability

9/33

The Boolean Schur Triples Problem F9

Can the set {1, . . . , n} be red/blue colored such that there is
no monochromatic solution of a + b = c with a < b < c?
Below the encoding of this problem with n = 9 (formula F9):

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧
(x1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x̄4 ∨ x̄5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x̄2 ∨ x̄3 ∨ x̄5) ∧
(x1 ∨ x5 ∨ x6) ∧ (x̄1 ∨ x̄5 ∨ x̄6) ∧ (x2 ∨ x4 ∨ x6) ∧ (x̄2 ∨ x̄4 ∨ x̄6) ∧
(x1 ∨ x6 ∨ x7) ∧ (x̄1 ∨ x̄6 ∨ x̄7) ∧ (x2 ∨ x5 ∨ x7) ∧ (x̄2 ∨ x̄5 ∨ x̄7) ∧
(x3 ∨ x4 ∨ x7) ∧ (x̄3 ∨ x̄4 ∨ x̄7) ∧ (x1 ∨ x7 ∨ x8) ∧ (x̄1 ∨ x̄7 ∨ x̄8) ∧
(x2 ∨ x6 ∨ x8) ∧ (x̄2 ∨ x̄6 ∨ x̄8) ∧ (x3 ∨ x5 ∨ x8) ∧ (x̄3 ∨ x̄5 ∨ x̄8) ∧
(x1 ∨ x8 ∨ x9) ∧ (x̄1 ∨ x̄8 ∨ x̄9) ∧ (x2 ∨ x7 ∨ x9) ∧ (x̄2 ∨ x̄7 ∨ x̄9) ∧
(x3 ∨ x6 ∨ x9) ∧ (x̄3 ∨ x̄6 ∨ x̄9) ∧ (x4 ∨ x5 ∨ x9) ∧ (x̄4 ∨ x̄5 ∨ x̄9)

Is this formula satisfiable?

10/33

Why NOT to use Resolution Proofs (1)

Resolution:
(y1 ∨ . . . ∨ yi ∨ z1 ∨ . . . ∨ zj) := (x ∨ y1 ∨ . . . ∨ yi) �x (x̄ ∨ z1 ∨ . . . ∨ zj)

Most clause addition steps in SAT solvers can be expressed as
a sequence of resolution steps, but

I The average sequence length is 400, making proofs huge;

I Memory consumption can explode, up to a factor of 100;

I Computing the order matters and is costly:

(x2 ∨ x3) := (x̄1 ∨ x̄5 ∨ x̄6) �x6 (x2 ∨ x4 ∨ x6) �x4 (x̄1 ∨ x̄4 ∨ x̄5) �x5
(x2 ∨ x3 ∨ x5) �x1 (x1 ∨ x2 ∨ x3)

(x̄1 ∨ x2 ∨ x3 ∨ x̄5) := (x2∨x4 ∨ x6) �x4 (x̄1 ∨ x̄4 ∨ x̄5) �x5 (x2 ∨ x3 ∨ x5) �x1
(x1 ∨ x2 ∨ x3) �x6 (x̄1 ∨ x̄5 ∨ x̄6)

11/33

Why NOT to use Resolution Proofs (2)

Some powerful techniques used in SAT solvers cannot be
expressed by resolutions, because they add and remove
solutions.

Examples: symmetry breaking and bounded variable addition

Symmetry-breaking techniques can significantly reduce the
solving time, but they remove solutions.

Example (Bounded variable addition)

Replace by

(a ∨ d) (a ∨ e)
(b ∨ d) (b ∨ e)
(c ∨ d) (c ∨ e)

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ c)
(x ∨ d) (x ∨ e)

12/33

Unit Clause Propagation to the Rescue

A clause C is solutions-preserving with respect to a formula F
if and only if for every solution ϕ of F satisfies C .

Or, equivalently, C = (y1 ∨ · · · ∨ yk) is solutions-preserving
w.r.t. a formula F if and only if F ∧ (ȳ1) ∧ · · · ∧ (ȳk) |= ε.

For an unsatisfiable formula all clauses are solutions-preserving,
but how to check solutions-preserving in polynomial time?

Unit Clause Propagation (UCP or `1) assigns unit clauses —all
literals, but one are assigned to false— till fixpoint or conflict.

Example

F9 ∧ (x̄2) ∧ (x̄3) `1 ε
(x1∨��x2∨��x3), (��x2∨��x3∨x5), (��̄x1∨x̄4∨��̄x5), (��x2∨��x4∨x6), (��̄x1∨��̄x5∨��̄x6)

Proposition

If F ∧ (ȳ1) ∧ · · · ∧ (ȳk) `1 ε, then F |= (y1 ∨ · · · ∨ yk).

12/33

Unit Clause Propagation to the Rescue

A clause C is solutions-preserving with respect to a formula F
if and only if for every solution ϕ of F satisfies C .

Or, equivalently, C = (y1 ∨ · · · ∨ yk) is solutions-preserving
w.r.t. a formula F if and only if F ∧ (ȳ1) ∧ · · · ∧ (ȳk) |= ε.

For an unsatisfiable formula all clauses are solutions-preserving,
but how to check solutions-preserving in polynomial time?

Unit Clause Propagation (UCP or `1) assigns unit clauses —all
literals, but one are assigned to false— till fixpoint or conflict.

Example

F9 ∧ (x̄2) ∧ (x̄3) `1 ε
(x1∨��x2∨��x3), (��x2∨��x3∨x5), (��̄x1∨x̄4∨��̄x5), (��x2∨��x4∨x6), (��̄x1∨��̄x5∨��̄x6)

Proposition

If F ∧ (ȳ1) ∧ · · · ∧ (ȳk) `1 ε, then F |= (y1 ∨ · · · ∨ yk).

12/33

Unit Clause Propagation to the Rescue

A clause C is solutions-preserving with respect to a formula F
if and only if for every solution ϕ of F satisfies C .

Or, equivalently, C = (y1 ∨ · · · ∨ yk) is solutions-preserving
w.r.t. a formula F if and only if F ∧ (ȳ1) ∧ · · · ∧ (ȳk) |= ε.

For an unsatisfiable formula all clauses are solutions-preserving,
but how to check solutions-preserving in polynomial time?

Unit Clause Propagation (UCP or `1) assigns unit clauses —all
literals, but one are assigned to false— till fixpoint or conflict.

Example

F9 ∧ (x̄2) ∧ (x̄3) `1 ε
(x1∨��x2∨��x3), (��x2∨��x3∨x5), (��̄x1∨x̄4∨��̄x5), (��x2∨��x4∨x6), (��̄x1∨��̄x5∨��̄x6)

Proposition

If F ∧ (ȳ1) ∧ · · · ∧ (ȳk) `1 ε, then F |= (y1 ∨ · · · ∨ yk).

13/33

An SP`1 Proof for our Schur Triples Problem

A clause C = (y1∨ · · · ∨ yk) has property SP`1 (aka RUP) with
respect to formula F if and only if F ∧ (ȳ1) ∧ · · · ∧ (ȳk) `1 ε.

An SP`1 proof of a formula F is a sequence of clauses C1, . . . , ε
s.t. Ci has property SP`1 with respect to F ∧ C1 ∧ · · · ∧ Ci−1.

clause required SP`1 check

1 (x2 ∨ x3) F9 ∧ (x̄2) ∧ (x̄3) `1 ε
2 (x2 ∨ x5) F9 ∧ (x2 ∨ x3) ∧ (x̄2) ∧ (x̄5) `1 ε
3 (x2) F9 ∧ (x2 ∨ x3) ∧ (x2 ∨ x5) ∧ (x̄2) `1 ε
4 (x̄3) F9 ∧ (x2 ∨ x3) ∧ (x2 ∨ x5) ∧ (x2) ∧ (x3) `1 ε
5 (x̄5) F9 ∧ (x2 ∨ x3) ∧ (x2 ∨ x5) ∧ (x2) ∧ (x̄3) ∧ (x5) `1 ε
6 ε F9 ∧ (x2 ∨ x3) ∧ (x2 ∨ x5) ∧ (x2) ∧ (x̄3) ∧ (x̄5) `1 ε

SP`1 proofs are much more compact than resolution proofs

14/33

An SP`1 Proof with Deletion Information

Solvers realize fast performance by deleting clauses aggressively.

In order to check SP`1 efficiently, the clause deletion
information has to be included in the proof.

clause required SP`1 check

1 (x2 ∨ x3) F9 ∧ (x̄2) ∧ (x̄3) `1 ε
2 (x2 ∨ x5) F9 ∧ (x2 ∨ x3) ∧ (x̄2) ∧ (x̄5) `1 ε
3 (x2) F9 ∧ (x2 ∨ x3) ∧ (x2 ∨ x5) ∧ (x̄2) `1 ε
d (x2 ∨ x3)
d (x2 ∨ x5)
4 (x̄3) F9 ∧ (x2) ∧ (x3) `1 ε
5 (x̄5) F9 ∧ (x2) ∧ (x̄3) ∧ (x5) `1 ε
6 ε F9 ∧ (x2) ∧ (x̄3) ∧ (x̄5) `1 ε

Efficient validation also requires a dedicated UCP algorithm.

15/33

Solutions-Preserving Modulo x

Let ϕ be an assignment and x a literal. We denote with ϕ⊗ x
a copy of ϕ in which the assignment to x is flipped. If ϕ does
not assign x , then ϕ⊗ x assigns x to true.

A clause C is solutions-preserving modulo x with respect to a
formula F if and only if for every solution ϕ of F , ϕ or ϕ⊗ x
satisfies F and C .

Example

Consider the formula F = (x ∨ y)∧ (x ∨ ȳ). The clause (x̄ ∨ y)
is solutions-preserving modulo y with respect to F . F has two
solutions ϕ1 := {x = 1, y = 1} and ϕ2 := {x = 1, y = 0}.
ϕ1 satisfies C (and F) and ϕ2 ⊗ y satisfies F and C .

Now, C = (x ∨ y1 ∨ · · · ∨ yk) is solutions-preserving modulo x
w.r.t. a formula F if and only if for every (x̄ ∨ z1 ∨ · · · ∨ zm)
holds that F ∧ (x̄) ∧ (ȳ1) ∧ · · · ∧ (ȳk) ∧ (z̄1) ∧ · · · ∧ (z̄m) |= ε.

16/33

Checking Solutions-Preserving Module x via UCP

Definition (SPMx`1 (RAT [Järvisalo, Heule, and Biere 2012]))

A clause C = (x ∨ y1 ∨ · · · ∨ yk) has property SPMx`1 w.r.t. a
formula F if and only if for every (x̄ ∨ z1 ∨ · · · ∨ zm) holds that
F ∧ (x̄) ∧ (ȳ1) ∧ · · · ∧ (ȳk) ∧ (z̄1) ∧ · · · ∧ (z̄m) `1 ε.

All techniques used in SAT solvers, including preprocessing
techniques such as symmetry breaking and bounded variable
addition can be expressed as addition of SPMx`1 clauses.

Example (Bounded variable addition)

Replace by

(a ∨ d) (a ∨ e)
(b ∨ d) (b ∨ e)
(c ∨ d) (c ∨ e)

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ c)
(x ∨ d) (x ∨ e)

Notice that SPMx`1 simulates Extended Resolution

17/33

An SPMx Proof

A SPMx`1 proof of a formula F is a sequence of clauses C1, . . . , ε
s.t. Ci has property SPMx`1 with respect to F ∧ C1 ∧ · · · ∧ Ci−1.

SPMx`1 proofs can be exponentially smaller than SP`1 proofs!

clause required SPMx`1 check

1 (x1 ∨ x4) F9 ∧ (x̄1) ∧ (x̄4) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x2) ∧ (x3) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x3) ∧ (x4) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x4) ∧ (x5) `1 ε

2 (x1) F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x5) ∧ (x6) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x6) ∧ (x7) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x7) ∧ (x8) `1 ε
F9 ∧ (x1 ∨ x4) ∧ (x̄1) ∧ (x8) ∧ (x9) `1 ε

3 (x4) ... similar as the (x1) SPMx`1 check ...
4 ε F9 ∧ (x1 ∨ x4) ∧ (x1) ∧ (x4) `1 ε

18/33

Producing a Proof

19/33

Overview of Solving Framework

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

20/33

Phase 1: Encode

Input: encoder program

Output: the “original” CNF formula

Goal: make the translation to
SAT as simple as possible

1: encode

encoder

original
formulafor (int a = 1; a <= n; a++)

for (int b = a; b <= n; b++) {

int c = sqrt (a*a + b*b);

if ((c <= n) && ((a*a + b*b) == (c*c))) {

addClause (a, b, c);

addClause (-a, -b, -c); } }

F7824 has 6492 (occurring) variables and 18930 clauses, and
F7825 has 6494 (occurring) variables and 18944 clauses.

Notice F7825 = F7824 + 14 clauses. These 14 make it UNSAT.

21/33

Phase 2: Transform

Input: original CNF formula

Output: transformed formula
and transformation proof

Goal: optimize the formula for
the later (solving) phases

2: transform

original
formula

transformed
formula

transform
proof

We applied two transformations (via SPMx):

I Pythagorean Triple Elimination removes Pythagorean
Triples that contain an element that does not occur in any
other Pythagorean Triple, e.g. 32 + 42 = 52 (till fixpoint).

I Symmetry breaking colors the number most frequently
occurring in Pythagorean triples (2520) red.

All transformation (pre-processing) techniques can be
expressed using SPMx steps [Järvisalo, Heule, and Biere 2012].

22/33

Phase 3: Split

Input: transformed formula

Output: cubes and tautology proof

Goal: partition the given formula to
minimize total wallclock time

Two layers of splitting F7824:

I The top level split partitions
the transformed formula into
exactly a million subproblems;

I Each subproblem is
partitioned into tens of
thousands of subsubproblems.
Total time: 25,000 CPU hours

x5

x2x3

x7 x3

x6

ft

f t

ft

t f

t f

f t

D = (x5 ∧ x̄3) ∨
(x5 ∧ x3 ∧ x7) ∨
(x5 ∧ x3 ∧ x̄7) ∨
(x̄5 ∧ x2) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x̄6) ∨
(x̄5 ∧ x̄2 ∧ x3 ∧ x6) ∨
(x̄5 ∧ x̄2 ∧ x̄3)

23/33

Phase 4: Solve

Input: transformed formula and cubes

Output: cube proofs (or a solution)

Goal: solve —with proof logging—
all subproblems as fast as possible

4: solve

cubes

transformed
formula

cube proofs
Let ϕi be the i th cube with i ∈ [1, 1 000 000].

We first solved all F7824 ∧ ϕi , total runtime was 13, 000 CPU
hours or, just a wall-clock day). One subproblem is satisfiable.

The backbone of a formula is the set of literals that are
assigned to true in all solutions. The backbone of F7824 after
symmetry breaking (2520) consists of 2304 literals, including

I x5180 and x5865, while 51802 + 58652 = 78252 → 7825

I x̄625 and x̄7800, while 6252 + 78002 = 78252 → 7825

24/33

Phase 5: Validate Pythagorean Triples Proofs

5: validate

original
formula

transform
proof

tautology
proof

cube
proofs

We check the proofs with the DRAT-trim checker, which has
been used to validate the UNSAT results of the international
SAT Competitions since 2013.

Recently it was shown how to validate DRAT proofs in
parallel [Heule and Biere 2015].

The size of the merged proof is almost 200 terabyte and has
been validated in 16,000 CPU hours.

25/33

Overview of Solving Framework: Contributions

1: encode 2: transform 3: split 4: solve

5: validate

cubes

encoder

original
formula

transformed
formula

transform
proof

tautology
proof

cube
proofs

[HVC 2011]

[LPAR 2010]

[JAR 2012]

[JAIR 2015]

[CADE 2012]

[JSAT 2011]

[APPA 2014]

[HVC 2012]

[ITP 2013]

[FMCAD 2013][SAT 2014]
[STVR 2014]

[LPAR 2015]

[ICGI 2010]

Joint work with: Armin Biere, Warren Hunt, Matti Järvisalo, Oliver
Kullmann, Florian Lonsing, Victor Marek, Martina Seidl, Antonio Ramos,
Peter van der Tak, Sicco Verwer, Nathan Wetzler and Siert Wieringa.

26/33

Verifying a Proof

27/33

Base Rules

Given a formula Fi (multi-set), a clause C and a modification

m ∈ {a, d}, a proof step is denoted as Fi
m(C)−−−−→ Fi+1.

ADD:

F
a(C)−−−−→ F C

where C has SPMx`1 w.r.t. F

DEL:

F C
d(C)−−−−→ F

(no side condition)

DEL has no side condition for refutations (unsatisfiability).
For satisfiability proofs, DEL has the ADD side condition.

Consider the proof and the SEQ rule

F0
m1(C1)−−−−−→ F1

m2(C2)−−−−−→ F2 . . . Fn−1
mn(Cn)−−−−−→ Fn

= m1(C1)m2(C2) · · ·mn(Cn) gives a derivation from F0 to Fn.

28/33

Compositional Triples

We represent rules using compositional triples: (Fpre, ,Fpost).

Triples consists of a pre-CNF Fpre, a proof , and a post-CNF
Fpost, denoting that proof is a derivation from Fpre to Fpost.

Triple (Fpre, ,Fpost) is valid if and only if Fpre −−→ Fpost.

Proposition: Given a valid composition triple (Fpre, ,Fpost),
if Fpre is satisfiable then Fpost is satisfiable as well.

The first rule SEQ, short for “sequential”, combines two
compositional triples for which the post-CNF of one triple
equals the pre-CNF of the other triple.

F0
1−−→ F1 F1

2−−→ F2

F0
1 2−−−−→ F2

29/33

Parallel Proof Checking using SEQ Rule

Given a refutation for formula F0, apply the following steps:

I partition into k subproofs 1, . . . , k (sequential).
Simply use Unix’ split.

I compute the post-formulas Fi by applying subproof i to
formula Fi−1 (sequential).

I check that all Fi
i+1−−−→ Fi+1 are valid derivations for

i ∈ {0, . . . , k − 1} with Fk = ε (parallel).

Costs of first two (sequential) steps are relatively small.

F0
1−−→ F1 F1

2−−→ F2 . . . Fk−1
k−−→ ε

F0
1 2... k−−−−−−→ ε

30/33

Forward vs Backward Proof Checking (1)

original formula

backward checking

forward checking

ε

31/33

Forward vs Backward Proof Checking (2)
Forward Checking checks each addition step in a derivation.

Backward Checking initializes by marking the empty clause.
Afterwards the proof is checked is reverse order. Only marked
clauses are checked, which will mark clauses using conflict
analysis. Many addition steps may be skipped (up to 99%).

How to perform backward checking subproofs without ε?

I Initialize marking only clauses that are added, but not
deleted;

I Unmark clauses that are subsumed by a marked clause;

I Proceed as usual by checking the proof in reverse order.

Backward checking generalization: empty clause subsumes all.

For subproofs: many addition steps can be skipped, although
not as many as with refutations.

32/33

Conclusions and Future Work

Theorem (Main result)

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean triple. This is impossible for [1, 7825] with a
validated clausal proof.

Proof checking for SAT is now mature:

I All techniques is state-of-the-art solvers can be validated.

I Even a clausal proof of 200 terabytes can be verified.

I All UNSAT results of the SAT Competitions are checked.

Next, apply our solving framework to other challenges:

I Existing results for which no proof was produced, for
example W(2,6) = 1132 [Kouril and Paul 2008].

I Century-old open problems are solvable: Schur (5) = 160.

33/33

Applications of SAT solving to Mathematics:
Proofs and Heuristics

Marijn J.H. Heule and Oliver Kullmann

Fields Institute August 18, 2016

	Pythagorean Triples Problem
	Proofs of Unsatisfiability
	Producing a Proof
	Verifying a Proof

