
PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl,
Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

Haifa Verification Conference November 15, 2017



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

conflict → prune

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Satisfiability Solving (Highly Simplified)

2 / 25

SAT problem:
Given a propositional
formula, is it satisfiable?

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Input Formula in CNF

Satisfiable

xx

yy

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Key Idea: Prune Less Satisfiable Branches

3 / 25

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Can we prune earlier?

Even satisfiable branches?

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Key Idea: Prune Less Satisfiable Branches

3 / 25

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Can we prune earlier?

Even satisfiable branches?

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Key Idea: Prune Less Satisfiable Branches

3 / 25

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Can we prune earlier?

Even satisfiable branches?

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Key Idea: Prune Less Satisfiable Branches

3 / 25

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Can we prune earlier?

Even satisfiable branches?

“less satisfiable” → prune

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Key Idea: Prune Less Satisfiable Branches

3 / 25

(x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄)

Can we prune earlier?

Even satisfiable branches?

“less satisfiable” → prune

How to prune? Add redundant clauses!

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples: (x̄)

(ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples: (x̄) (ȳ)

(x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ)

(y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄)

(x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Pruning via Clause Addition

A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

4 / 25



Introduction

The Positive Reduct

Conditional Autarkies

The Algorithm

Evaluation

Conclusions and Future Work

5 / 25



The Positive Reduct

6 / 25



Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

7 / 25



Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

7 / 25



Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

7 / 25



Redundant Clauses

A clause C is redundant w.r.t. a formula F if and only if F
and F ∧ C are either both satisfiable or both unsatisfiable.

All Redundant Clauses

RES SET

PR PR = Propagation Redundant
Clauses [CADE’17]

RES = Resolvents

SET = Set-Blocked Clauses
[IJCAR’16]

8 / 25



Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C . Let α denote the smallest
assignment that falsifies C . The positive reduct of F and α is
a formula which is satisfiable if and only if C is SET w.r.t. F .

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula F , check whether the
positive reduct of F and the current assignment α is satisfiable.
In that case, prune the branch α.

9 / 25



Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C . Let α denote the smallest
assignment that falsifies C . The positive reduct of F and α is
a formula which is satisfiable if and only if C is SET w.r.t. F .

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula F , check whether the
positive reduct of F and the current assignment α is satisfiable.
In that case, prune the branch α.

9 / 25



Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C . Let α denote the smallest
assignment that falsifies C . The positive reduct of F and α is
a formula which is satisfiable if and only if C is SET w.r.t. F .

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula F , check whether the
positive reduct of F and the current assignment α is satisfiable.
In that case, prune the branch α.

9 / 25



Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C . Let α denote the smallest
assignment that falsifies C . The positive reduct of F and α is
a formula which is satisfiable if and only if C is SET w.r.t. F .

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula F , check whether the
positive reduct of F and the current assignment α is satisfiable.
In that case, prune the branch α.

9 / 25



The Positive Reduct: An Example

Given a formula F and a clause C . Let α denote the smallest
assignment that falsifies C . The positive reduct of F and α,
denoted by p(F , α), is the formula that contains C and all
assigned(D, α) with D ∈ F and D is satisfied by α.

Example

Consider the formula F := (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).

Let C1 = (x̄), so α1 = x .
The positive reduct p(F , α1) = (x̄) ∧ (x) ∧ (x) is unsatisfiable.

Let C2 = (x̄ ∨ ȳ), so α2 = x y .
The positive reduct p(F , α2) = (x̄ ∨ ȳ) ∧ (x ∨ y) ∧ (x ∨ ȳ) is
satisfiable.

10 / 25



Conditional Autarkies

11 / 25



Autarkies

A non-empty assignment α is an autarky for formula F if every
clause C ∈ F that is touched by α is also satisfied by α.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Assignment α1 = z̄ is an autarky: (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Assignment α2 = x ȳ z is an autarky: (x ∨ y)∧ (x ∨ ȳ)∧ (ȳ ∨ z̄).

Given an assignment α, F |α denotes a formula F without the
clauses satisfied by α and without the literals falsified by α.

Theorem ([Monien and Speckenmeyer 1985])

Let α be an autarky for formula F .
Then, F and F |α are satisfiability equivalent.

12 / 25



Autarkies

A non-empty assignment α is an autarky for formula F if every
clause C ∈ F that is touched by α is also satisfied by α.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Assignment α1 = z̄ is an autarky: (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Assignment α2 = x ȳ z is an autarky: (x ∨ y)∧ (x ∨ ȳ)∧ (ȳ ∨ z̄).

Given an assignment α, F |α denotes a formula F without the
clauses satisfied by α and without the literals falsified by α.

Theorem ([Monien and Speckenmeyer 1985])

Let α be an autarky for formula F .
Then, F and F |α are satisfiability equivalent.

12 / 25



Conditional Autarkies

An assignment α = αcon ∪ αaut is a conditional autarky for
formula F if αaut is an autarky for F |αcon.

Example

Consider the formula F := (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Let αcon = x and αaut = ȳ , then α = αcon ∪ αaut = x ȳ is a
conditional autarky for F :

αaut = ȳ is an autarky for F |αcon = (ȳ ∨ z̄).

Let α = αcon ∪ αaut be a conditional autarky for formula F .
Then F and F ∧ (αcon → αaut) are satisfiability-equivalent.

In the above example, we could therefore learn (x̄ ∨ ȳ).

13 / 25



Conditional Autarkies

An assignment α = αcon ∪ αaut is a conditional autarky for
formula F if αaut is an autarky for F |αcon.

Example

Consider the formula F := (x ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ ∨ z̄).
Let αcon = x and αaut = ȳ , then α = αcon ∪ αaut = x ȳ is a
conditional autarky for F :

αaut = ȳ is an autarky for F |αcon = (ȳ ∨ z̄).

Let α = αcon ∪ αaut be a conditional autarky for formula F .
Then F and F ∧ (αcon → αaut) are satisfiability-equivalent.

In the above example, we could therefore learn (x̄ ∨ ȳ).

13 / 25



Learning PR clauses

Theorem
Given a formula F and an assignment α. Every satisfying
assignment ω of p(F , α) is a conditional autarky of F .

Recall: Given a formula F and a clause C . Let α denote the
smallest assignment that falsifies C . C is SET w.r.t. F if and
only if p(F , α) is satisfiable.

Let assignment ω satisfy p(F , α). Removing all but one of the
literals in C that are satisfied by ω results in a PR clause w.r.t. F .

14 / 25



The Algorithm

15 / 25



Pseudo-Code of CDCL (formula F )

1 α := ∅
2 forever do
3 α := Simplify (F , α)
4 if F |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 F := F ∪ {C}
8 α := BackJump (C , α)

13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}

16 / 25



Pseudo-Code of SDCL (formula F )
1 α := ∅
2 forever do
3 α := Simplify (F , α)
4 if F |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 F := F ∪ {C}
8 α := BackJump (C , α)
9 else if p(F , α) is satisfiable then

10 C := AnalyzeWitness ()
11 F := F ∪ {C}
12 α := BackJump (C , α)
13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}

16 / 25



Evaluation

17 / 25



Benchmark Suite: Pigeon Hole Formulas

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHPn :=
∧

1≤ p≤ n+1

(x1,p ∨ · · · ∨ xn,p) ∧
∧

1≤ h≤ n,

∧
1≤ p< q≤ n+1

(xh,p ∨ xh,q)

The binary clauses encode the constraint ≤1 (xh,1; . . . ; xh,n+1).

There exists more compact encodings, such as the sequential
counter and minimal encoding, for at-most-one constraints.

We include these encodings to evaluate the robustness of the solver.

18 / 25



Tool Comparison

We used three tools in our evaluation:

Ebddres: A tool based on binary decision diagrams that
can convert a refutation into an extended resolution proof.

GlucosER: A SAT solver with extended learning, i.e., a
technique that introduces new variables and could
potentially solve pigeon hole formulas in polynomial time.

Lingeling (PR): Our SDCL solver.

19 / 25



Results on Small Pigeon Hole Formulas

input Ebddres GlucosER Lingeling (PR)
formula #var #cls time #node time #lemma time #lemma

PHP10-std 110 561 1.00 3M 22.71 329,470 0.07 329
PHP11-std 132 738 3.47 9M 146.61 1,514,845 0.11 439
PHP12-std 156 949 10.64 27M 307.29 2,660,358 0.16 571
PHP13-std 182 1,197 30.81 76M 982.84 6,969,736 0.22 727
PHP10-seq 220 311 OF —— 1.62 25,712 0.07 327
PHP11-seq 264 375 OF —— 6.94 77,747 0.10 437
PHP12-seq 312 445 OF —— 19.40 174,084 0.14 569
PHP13-seq 364 521 OF —— 172.76 1,061,318 0.18 725
PHP10-min 180 281 28.60 81M 0.64 15,777 0.06 329
PHP11-min 220 342 143.92 399M 1.82 34,561 0.10 439
PHP12-min 264 409 OF —— 9.87 121,321 0.13 571
PHP13-min 312 482 OF —— 57.66 483,789 0.18 727

OF = 32-bit overflow TO = timeout of 9000 seconds

20 / 25



Results on Large Pigeon Hole Formulas

input Ebddres GlucosER Lingeling (PR)
formula #var #cls time #node time #lemma time #lemma

PHP20-std 420 4,221 OF —— TO —— 1.61 2,659
PHP30-std 930 13,981 OF —— TO —— 13.45 8,989
PHP40-std 1,640 32,841 OF —— TO —— 67.41 21,319
PHP50-std 2,550 63,801 OF —— TO —— 241.14 41,649
PHP20-seq 840 1,221 OF —— TO —— 1.05 2,657
PHP30-seq 1,860 2,731 OF —— TO —— 6.55 8,987
PHP40-seq 3,280 4,841 OF —— TO —— 27.10 21,317
PHP50-seq 5,100 7,551 OF —— TO —— 86.30 41,647
PHP20-min 760 1,161 OF —— TO —— 1.03 2,659
PHP30-min 1,740 2,641 OF —— TO —— 6.30 8,989
PHP40-min 3,120 4,721 OF —— TO —— 26.65 21,319
PHP50-min 4,900 7,401 OF —— TO —— 85.00 41,649

OF = 32-bit overflow TO = timeout of 9000 seconds

21 / 25



Conclusions and Future Work

22 / 25



Conclusions

SDCL generalizes the well-known CDCL paradigm by
allowing to prune branches that are potentially satisfiable:

Such branches can be found using the positive reduct;

Pruning can be expressed in the PR proof system;

Runtime and proofs can be exponentially smaller.

Our SDCL solver finds short proofs of pigeon hole formulas:

Integrated in the state-of-the-art solver Lingeling;

Linear sized proofs in O(n3) can be found fully automatically;

The implementation is efficient, robust, and open source.

23 / 25



Future Work

SDCL likely requires different heuristics compared to CDCL

Can more branches be pruned using stronger SAT calls?

How to minimize clauses from pruning through satisfaction?

Can SLS techniques be used to find conditional autarkies?

24 / 25



PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl,
Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

Haifa Verification Conference November 15, 2017


	Introduction
	The Positive Reduct
	Conditional Autarkies
	The Algorithm
	Evaluation
	Conclusions and Future Work

