A Little Blocked Literal Goes a Long Way

Benjamin Kiesl

TU Wien

WIEN

Marijn J.H. Heule
Martina Seidl

UT Austin
JKU Linz JOHANNES KEPLER
UNIVERSITÄT LINZ

Supported by the Austrian Science Fund (FWF) under project W1255-N23.

Overview

- Topic: Proofs for quantified Boolean formulas (QBFs).

Overview

- Topic: Proofs for quantified Boolean formulas (QBFs).

■ Brief overview of QBF and corresponding proof systems.

Overview

- Topic: Proofs for quantified Boolean formulas (QBFs).
- Brief overview of QBF and corresponding proof systems.

■ Main result: QRAT simulates long-distance resolution.

Overview

- Topic: Proofs for quantified Boolean formulas (QBFs).

■ Brief overview of QBF and corresponding proof systems.
■ Main result: QRAT simulates long-distance resolution.

- QRAT is the QBF generalization of DRAT.
- Simulation is polynomial.

Overview

- Topic: Proofs for quantified Boolean formulas (QBFs).

■ Brief overview of QBF and corresponding proof systems.
■ Main result: QRAT simulates long-distance resolution.

- QRAT is the QBF generalization of DRAT.
- Simulation is polynomial.

■ We have an implementation and evaluation of the simulation.

Satisfiability of Quantified Boolean Formulas (QSAT)

"For every truth value of x, does there exist a truth value of y, such that..."

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})$

Satisfiability of Quantified Boolean Formulas (QSAT)

$\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiability of Quantified Boolean Formulas (QSAT)

$$
\forall x \exists y \forall z(x \vee y) \wedge(\bar{x} \vee \bar{y}) \wedge(z \vee \bar{z})
$$

Satisfiable

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.
■ Popular system: long-distance resolution (LQ-Res)

- Perfect for search-based solving.

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.
■ Popular system: long-distance resolution (LQ-Res)

- Perfect for search-based solving.
- Alternative approach: QRAT (QBF variant of DRAT)
- Perfect for certifying correctness of preprocessing.

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.
■ Popular system: long-distance resolution (LQ-Res)

- Perfect for search-based solving.
- Alternative approach: QRAT (QBF variant of DRAT)
- Perfect for certifying correctness of preprocessing.
- Open question: If there is a short LQ-Res proof of a QBF, is there also a short QRAT proof?

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.
■ Popular system: long-distance resolution (LQ-Res)

- Perfect for search-based solving.
- Alternative approach: QRAT (QBF variant of DRAT)
- Perfect for certifying correctness of preprocessing.
- Open question: If there is a short LQ-Res proof of a QBF, is there also a short QRAT proof?
- Short $=$ polynomial with respect to the size of the formula.

Proof Systems for QBF: LQ-Res vs. QRAT

■ There exist various proof systems for QBF.
■ Popular system: long-distance resolution (LQ-Res)

- Perfect for search-based solving.
- Alternative approach: QRAT (QBF variant of DRAT)
- Perfect for certifying correctness of preprocessing.
- Open question: If there is a short LQ-Res proof of a QBF, is there also a short QRAT proof?
- Short $=$ polynomial with respect to the size of the formula.
- Our answer: Yes!

Simulating LQ-Res With QRAT

- How to show that there is a short QRAT proof for every short LQ-Res proof?

Simulating LQ-Res With QRAT

- How to show that there is a short QRAT proof for every short LQ-Res proof?
\Rightarrow Answer: With a simulation procedure.
- Takes as input an LQ-Res proof and transforms it into a short QRAT proof.

Proving Unsatisfiability of QBFs: Long-Distance Resolution

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

■ Precondition for \forall-red: u must be universal and right of every existential literal.

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I D D \vee I}{C \vee D}(\text { LQ-Res })
$$

■ Precondition for \forall-red: u must be universal and right of every existential literal.

■ Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:
$\frac{e_{1} \vee e_{2} \vee u_{2}}{e_{1} \vee e_{2}}(\forall-$ red $)$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for \forall-red: u must be universal and right of every existential literal.
- Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:

$$
\frac{e_{1} \vee e_{2} \vee u_{2}}{e_{1} \vee e_{2}}(\forall \text {-red }) \quad \checkmark \quad \frac{e_{1} \vee u_{1}}{e_{1}}(\forall \text {-red })
$$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I D D \vee I}{C \vee D}(\text { LQ-Res })
$$

■ Precondition for \forall-red: u must be universal and right of every existential literal.

- Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:
$\begin{array}{lll}\frac{e_{1} \vee e_{2} \vee u_{2}}{e_{1} \vee e_{2}}(\forall-\text { red }) & \checkmark & \frac{e_{1} \vee u_{1}}{e_{1}}(\forall \text {-red }) \\ \frac{e_{1} \vee u_{1} \vee e_{2}}{e_{1} \vee e_{2}}(\forall \text {-red }) & & \end{array}$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Each clause in an LQ-Res proof is either contained in the formula or derived via one of the following two rules:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee I}{C \vee D}(\text { LQ-Res })
$$

- Precondition for \forall-red: u must be universal and right of every existential literal.
- Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:
$\frac{e_{1} \vee e_{2} \vee u_{2}}{e_{1} \vee e_{2}}(\forall-$ red $)$

$$
\frac{e_{1} \vee u_{1}}{e_{1}}(\forall \text {-red })
$$

$$
\frac{e_{1} \vee u_{1} \vee e_{2}}{e_{1} \vee e_{2}}(\forall-\text { red })
$$

x

$$
\frac{e_{1} \vee u_{1} \vee e_{2}}{e_{1} \vee u_{1}}(\forall-\text { red })
$$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee \bar{I}}{C \vee D}(\text { LQ-Res })
$$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I}{C \vee D} \quad D \vee \bar{l}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall \text {-red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.
■ Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.
■ Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:
$\frac{e_{1} \vee u_{1} \quad \bar{e}_{1} \vee \bar{u}_{1}}{u_{1} \vee \bar{u}_{1}}($ LQ-Res $)$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.
■ Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:
$\frac{e_{1} \vee u_{1} \bar{e}_{1} \vee \bar{u}_{1}}{u_{1} \vee \bar{u}_{1}}$ (LQ-Res) $\checkmark \frac{e_{1} \vee u_{1} \bar{e}_{1} \vee \bar{u}_{2}}{u_{1} \vee \bar{u}_{2}}$ (LQ-Res)

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.
- Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Rules of LQ-Res:

$$
\frac{C \vee u}{C}(\forall-\text { red }) \quad \frac{C \vee I \quad D \vee \bar{l}}{C \vee D}(\text { LQ-Res })
$$

- Precondition for LQ-Res: (1) / is existential and (2) if there is an $x \in C$ such that $\bar{x} \in D$, then x is universal and right of I.
- Examples $\left(\exists e_{1} \forall u_{1} \exists e_{2} \forall u_{2}\right)$:

$$
\begin{aligned}
& \frac{e_{1} \vee u_{1} \quad \bar{e}_{1} \vee \bar{u}_{1}}{u_{1} \vee \bar{u}_{1}}(\text { LQ-Res }) \checkmark \\
& \frac{e_{1} \vee u_{1}}{u_{1} \vee \bar{u}_{2} \vee \bar{u}_{2}}(\text { LQ-Res }) \\
& e_{2} \vee \bar{e}_{2} \\
& \bar{e}_{1} \vee \bar{e}_{2} \\
& \text { (LQ-Res) }
\end{aligned} \times \frac{u_{1} \vee e_{2} \bar{u}_{1} \vee \bar{e}_{2}}{u_{1} \vee \bar{u}_{1}}(\text { LQ-Res }) \times \$
$$

Proving Unsatisfiability of QBFs: Long-Distance Resolution

- Example proof with long-distance resolution:

$$
\phi=\exists e_{1} \forall u_{1} \exists e_{2} \exists e_{3} .\left(\bar{e}_{1} \vee \bar{u}_{1} \vee e_{3}\right) \wedge\left(\bar{u}_{1} \vee e_{2} \vee \bar{e}_{3}\right) \wedge\left(e_{1} \vee u_{1} \vee e_{2}\right) \wedge\left(\bar{e}_{2}\right)
$$

Proving Unsatisfiability of QBFs: QRAT

- A QRAT proof is a sequence of formula modifications:
- Add or remove so-called QRAT clauses.
- Add or remove so-called QRAT literals.
- \forall-reduction of non-complementary literals.

Proving Unsatisfiability of QBFs: QRAT

- A QRAT proof is a sequence of formula modifications:
- Add or remove so-called QRAT clauses.
- Add or remove so-called QRAT literals.
- \forall-reduction of non-complementary literals.
- A formula is unsatisfiable iff the empty clause can be obtained.

Proving Unsatisfiability of QBFs: QRAT

- A QRAT proof is a sequence of formula modifications:
- Add or remove so-called QRAT clauses.
- Add or remove so-called QRAT literals.
- \forall-reduction of non-complementary literals.
- A formula is unsatisfiable iff the empty clause can be obtained.
- Our simulation does not need the full power of QRAT, only:
- Resolution
- \forall-reduction of non-complementary literals
- Blocked-literal elimination
- Blocked-literal addition

Proving Unsatisfiability of QBFs: QRAT

- A QRAT proof is a sequence of formula modifications:
- Add or remove so-called QRAT clauses.
- Add or remove so-called QRAT literals.
- \forall-reduction of non-complementary literals.
- A formula is unsatisfiable iff the empty clause can be obtained.
- Our simulation does not need the full power of QRAT, only:
- Resolution (QRAT-clause addition)
- \forall-reduction of non-complementary literals
- Blocked-literal elimination (QRAT-literal elimination)
- Blocked-literal addition (QRAT-literal addition)

Example: QRAT proof

$$
\begin{array}{rll}
\text { 1. } & a_{n} \vee \bar{x}_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \\
\text { 2. } & b_{n} \vee x_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \\
\text { 3. } & a_{n-1} \vee \bar{x}_{n-1} \vee \bar{b}_{n} \vee \bar{x}_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \tag{Q-res}\\
\text { 4. } & b_{n-1} \vee x_{n-1} \vee \bar{a}_{n} \vee x_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \\
\text { 5. } & a_{n-1} \vee \bar{x}_{n-1} \vee \bar{b}_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (BLE of } \bar{x}_{n} \text { from 3) } \\
\text { 6. } & b_{n-1} \vee x_{n-1} \vee \bar{a}_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (BLE of } x_{n} \text { from 4) } \\
\text { 7. } & a_{n-1} \vee \bar{x}_{n-1} \vee x_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \\
\text { 8. } & b_{n-1} \vee x_{n-1} \vee \bar{x}_{n} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (Q-res) } \\
\text { 9. } & a_{n-1} \vee \bar{x}_{n-1} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (BLE of } x_{n} \text { from 7) } \\
\text { 10. } & b_{n-1} \vee x_{n-1} \vee \bar{c}_{1} \vee \cdots \vee \bar{c}_{n-1} & \text { (BLE of } \bar{x}_{n} \text { from 8) }
\end{array}
$$

Central Concept for our Simulation: Blocked Literals

■ The blocked-literal definition is based on outer resolvents:

- The outer resolvent of $C \vee I$ and $D \vee \bar{I}$ consists of all literals in C together with the literals of D that are left of \bar{I}.

Central Concept for our Simulation: Blocked Literals

- The blocked-literal definition is based on outer resolvents:
- The outer resolvent of $C \vee I$ and $D \vee \bar{I}$ consists of all literals in C together with the literals of D that are left of \bar{I}.
- Example $\left(\exists c_{1} \exists d_{1} \exists \exists \exists c_{2} \exists d_{2}\right): \frac{c_{1} \vee I \vee c_{2} \quad d_{1} \vee \bar{I} \vee d_{2}}{c_{1} \vee c_{2} \vee d_{1}}$

Central Concept for our Simulation: Blocked Literals

- The blocked-literal definition is based on outer resolvents:
- The outer resolvent of $C \vee I$ and $D \vee \bar{I}$ consists of all literals in C together with the literals of D that are left of \bar{I}.
- Example $\left(\exists c_{1} \exists d_{1} \exists \exists \exists c_{2} \exists d_{2}\right): \frac{c_{1} \vee I \vee c_{2} \quad d_{1} \vee \bar{I} \vee d_{2}}{c_{1} \vee c_{2} \vee d_{1}}$
- A universal literal is blocked in a clause if all outer resolvents of the clause upon this literal are tautologies:

$$
e_{1} \vee e_{2} \vee I \quad \begin{gathered}
e_{2} \vee \bar{l} \vee u_{2} \\
\bar{e}_{1} \vee \bar{l} \vee \bar{u}_{1} \\
\\
e_{1} \vee \bar{u}_{1} \vee e_{3}
\end{gathered}
$$

Central Concept for our Simulation: Blocked Literals

- The blocked-literal definition is based on outer resolvents:
- The outer resolvent of $C \vee I$ and $D \vee \bar{I}$ consists of all literals in C together with the literals of D that are left of \bar{I}.
- Example $\left(\exists c_{1} \exists d_{1} \exists ⿰ \exists c_{2} \exists d_{2}\right): \frac{c_{1} \vee I \vee c_{2} \quad d_{1} \vee \bar{l} \vee d_{2}}{c_{1} \vee c_{2} \vee d_{1}}$
- A universal literal is blocked in a clause if all outer resolvents of the clause upon this literal are tautologies:

Central Concept for our Simulation: Blocked Literals

- The blocked-literal definition is based on outer resolvents:
- The outer resolvent of $C \vee I$ and $D \vee \bar{I}$ consists of all literals in C together with the literals of D that are left of \bar{I}.
- Example $\left(\exists c_{1} \exists d_{1} \exists \exists \exists c_{2} \exists d_{2}\right): \frac{c_{1} \vee I \vee c_{2} \quad d_{1} \vee \bar{l} \vee d_{2}}{c_{1} \vee c_{2} \vee d_{1}}$
- A universal literal is blocked in a clause if all outer resolvents of the clause upon this literal are tautologies:

Main Idea Behind the Simulation

- Problem: \forall-red of QRAT cannot remove complementary literals:

$$
\frac{e_{1} \vee u_{1} \vee \bar{u}_{1}}{e_{1} \vee u_{1}}(\forall \text {-red }) \quad \Leftarrow \text { Allowed in LQ-Res but not in QRAT }
$$

Main Idea Behind the Simulation

- Problem: \forall-red of QRAT cannot remove complementary literals:

$$
\frac{e_{1} \vee u_{1} \vee \bar{u}_{1}}{e_{1} \vee u_{1}}(\forall \text {-red }) \quad \Leftarrow \text { Allowed in LQ-Res but not in QRAT }
$$

- Solution: Get rid of resolvents with complementary literals.

Main Idea Behind the Simulation

- Problem: \forall-red of QRAT cannot remove complementary literals:

$$
\frac{e_{1} \vee u_{1} \vee \bar{u}_{1}}{e_{1} \vee u_{1}}(\forall \text {-red }) \quad \Leftarrow \text { Allowed in LQ-Res but not in QRAT }
$$

■ Solution: Get rid of resolvents with complementary literals.

$$
\frac{e_{1} \vee u_{1} \vee e_{2} \bar{e}_{1} \vee \bar{u}_{1} \vee e_{2}}{u_{1} \vee \bar{u}_{1} \vee e_{2}} \text { (LQ-res) }
$$

Main Idea Behind the Simulation

- Problem: \forall-red of QRAT cannot remove complementary literals:

$$
\frac{e_{1} \vee u_{1} \vee \bar{u}_{1}}{e_{1} \vee u_{1}}(\forall \text {-red }) \quad \Leftarrow \text { Allowed in LQ-Res but not in QRAT }
$$

■ Solution: Get rid of resolvents with complementary literals.

- The literal u_{1} is a blocked literal and can be removed:
- The outer resolvent $e_{1} \vee \bar{e}_{1}$ of the two clauses is a tautology.

Main Idea Behind the Simulation

- Problem: \forall-red of QRAT cannot remove complementary literals:

$$
\frac{e_{1} \vee u_{1} \vee \bar{u}_{1}}{e_{1} \vee u_{1}}(\forall \text {-red }) \quad \Leftarrow \text { Allowed in LQ-Res but not in QRAT }
$$

■ Solution: Get rid of resolvents with complementary literals.

- The literal u_{1} is a blocked literal and can be removed:
- The outer resolvent $e_{1} \vee \bar{e}_{1}$ of the two clauses is a tautology.

$$
\frac{e_{1} \vee u_{1} \vee e_{2}}{\frac{e_{1} \vee e_{2}}{(B L E)} \quad \bar{e}_{1} \vee \bar{u}_{1} \vee e_{2}} \bar{u}_{1} \vee e_{2}(\text { LQ-res) }
$$

Main Idea Behind the Simulation

- In the preceding example, u_{1} was a blocked literal.
- This is not always the case.

Main Idea Behind the Simulation

■ In the preceding example, u_{1} was a blocked literal.

- This is not always the case.
- But, using blocked-literal addition, we can always remove complementary literals.
- For details, see our paper.

Main Idea Behind the Simulation

■ In the preceding example, u_{1} was a blocked literal.

- This is not always the case.
- But, using blocked-literal addition, we can always remove complementary literals.
- For details, see our paper.

■ By successively removing complementary literals from resolution steps, we obtain a valid QRAT proof.

Simulation Procedure: Results

■ Our simulation procedure produces a QRAT proof with at most a quadratic blow-up in size.

Simulation Procedure: Results

■ Our simulation procedure produces a QRAT proof with at most a quadratic blow-up in size.
■ We implemented the procedure, the tool is called ld2qrat.

Simulation Procedure: Results

■ Our simulation procedure produces a QRAT proof with at most a quadratic blow-up in size.

- We implemented the procedure, the tool is called ld2qrat.
- Input: Long-distance-resolution proof in the QPR format.
- Output: QRAT proof.

Simulation Procedure: Results

■ Our simulation procedure produces a QRAT proof with at most a quadratic blow-up in size.
■ We implemented the procedure, the tool is called ld2qrat.

- Input: Long-distance-resolution proof in the QPR format.
- Output: QRAT proof.
- Several optimizations to reduce proof size (clause deletion!).

Simulation Procedure: Results

■ Our simulation procedure produces a QRAT proof with at most a quadratic blow-up in size.
■ We implemented the procedure, the tool is called ld2qrat.

- Input: Long-distance-resolution proof in the QPR format.
- Output: QRAT proof.
- Several optimizations to reduce proof size (clause deletion!).
- The tool allows to merge a QRAT proof of a preprocessor with a long-distance-resolution proof of a search-based solver.

Kleine Büning Formulas (KBKF): LDQ-Res to QRAT

File size of generated proofs: LDQ-Res (Egly et al. 2013) to QRAT with and without deletion.

Simulation Procedure: Results

■ Our simulation also gave insight for constructing short QRAT proofs by hand.

Simulation Procedure: Results

■ Our simulation also gave insight for constructing short QRAT proofs by hand.

- Formulas well-known for having short LQ-Res proofs but being hard for other proof systems: Kleine Büning formulas

Simulation Procedure: Results

■ Our simulation also gave insight for constructing short QRAT proofs by hand.

- Formulas well-known for having short LQ-Res proofs but being hard for other proof systems: Kleine Büning formulas
- We have hand-crafted QRAT proofs of these formulas that are shorter than the LQ-Res proofs.

Kleine Büning Formulas (KBKF): QRAT vs. LDQ-Res

File size of hand-crafted proofs: LDQ-Res (Egly et al. 2013) vs. QRAT.

Complexity Landscape: QRAT and Resolution Systems

- Open question: Can QRAT simulate $\mathrm{LQU}^{+}-$Res?
- LQU^{+}-Res allows long-distance resolution upon universal literals.

Complexity Landscape: QRAT and Resolution Systems

- Open question: Can QRAT simulate LQU ${ }^{+}$-Res?
- LQU^{+}-Res allows long-distance resolution upon universal literals.

■ Relationship between QRAT and expansion-based systems?

Conclusion

■ We shed light on the relationship between LQ-Res and QRAT

Conclusion

■ We shed light on the relationship between LQ-Res and QRAT

- LQ-Res is a popular system for QBF solving.

Conclusion

■ We shed light on the relationship between LQ-Res and QRAT

- LQ-Res is a popular system for QBF solving.
- QRAT is the best system for QBF preprocessing.

Conclusion

■ We shed light on the relationship between LQ-Res and QRAT

- LQ-Res is a popular system for QBF solving.
- QRAT is the best system for QBF preprocessing.

■ QRAT turns out to be stronger than LQ-Res.

Conclusion

■ We shed light on the relationship between LQ-Res and QRAT

- LQ-Res is a popular system for QBF solving.
- QRAT is the best system for QBF preprocessing.

■ QRAT turns out to be stronger than LQ-Res.

- Our tool allows to transform LQ-Res proofs into QRAT proofs.

