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Abstract
• Machine learning applied to optimize kick power entirely on the real

robot – Aibo ERS-7.
• Learned kick significantly more powerful than UT Austin Villa’s best

hand-coded kick.
• Model inversion to create a parameterized, variable distance kick.

Novelty
• First application of machine learning to the problem of kick learning

entirely on the real robot.
• Learned with a larger parameter space than previous non-simulation

work. [2] Very little domain engineering required.

Kick Parameterization
• 66 total parameters learned:

6 poses with 10 joints each
+ 6 pose timing parameters.

Parameter Space Reductions:
• Using bilateral symmetry,

leg joints mirror each other.
• Eliminated both tail joints.

• Minimal domain specific
knowledge required.

Learning Framework
• Adjustable incline ramp created for semi-autonomous learning.

Inclined ramp for optimizing kick distance

• Human required to reposition Aibo after each kick.
• Two metrics for kick power: time since kick until ball returns, kick

distance up ramp.
• Speed: 7-8 seconds per trial.

Learning Algorithms
• Hill Climbing: 5 policies evaluated per iteration.
• Policy Gradient [1]: 10 policies per iteration, η = 2.0.
• Incremented random joint angle: random(0, 1

10 ) ∗ jointRange.

Learning
• Initial Policy: UT Austin Villa’s Power Kick
• Policy Gradient run for 65 iterations (650 kicks)
• Subsequently, Hill Climbing used for 27 iterations on best policy.

Policy Gradient learning from power kick

Results
• Evaluated on 10 different Aibos with 5 kicks per Aibo.
• Learned Kick significantly more powerful than Power Kick:

373cm vs. 322cm on average.

Resting Location of 50 Power and Learned Kicks

Variable Distance Kick
• Model inversion applied to create variable distance kick.
• Identified “hit” pose in which Aibo makes contact with the ball.
• Varying the time in this pose was observed to change kick power.
• Quadratic curve fit to kick distance data points.
• Accurate to within 58cm of requested distance.

Quadratic function models the relationship between kick distance and pose time.
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