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First-Order Logic
(First-Order Predicate Calculus)
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Propositional vs. Predicate Logic

• In propositional logic, each possible atomic fact requires a
separate unique propositional symbol.

• If there are n people and m locations, representing the fact
that some person moved from one location to another
requires nm2 separate symbols.

• Predicate logic includes a richer ontology:

- objects (terms)

- properties (unary predicates on terms)

- relations (n-ary predicates on terms)

- functions (mappings from terms to other terms)

• Allows more flexible and compact representation of
knowledge

Move(x, y, z) for person x moved from location y to z.
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Syntax for First-Order Logic

Sentence→ AtomicSentence
| Sentence Connective Sentence
| Quantifier Variable Sentence
| ¬Sentence
 | (Sentence)

AtomicSentence→ Predicate(Term, Term, ...)
                                | Term=Term

Term→ Function(Term,Term,...)
| Constant
 | Variable

Connective→ ∨  |  ∧ | ⇒ |  ⇔

Quanitfier→   ∃ | ∀

Constant→ A | John| Car1

Variable → x | y | z |...

Predicate→ Brother| Owns|  ...

Function→ father-of | plus| ...
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First-Order Logic:
Terms and Predicates

• Objects are represented by terms :

- Constants :  Block1, John

- Function symbols:  father-of, successor, plus
An n-ary function maps a tuple of n terms to another
term:  father-of(John), succesor(0), plus(plus(1,1),2)

• Terms are simply names for objects.  Logical functions are
not procedural as in programming languages. They do not
need to be defined, and do not really return a value. Allows
for the representation of an infinite number of terms.

• Propositions are represented by a predicate  applied to a
tuple of terms.  A predicate represents a property of or
relation between terms that can be true or false:
Brother(John, Fred), Left-of(Square1, Square2)
GreaterThan(plus(1,1), plus(0,1))

• In a given interpretation, an n-ary predicate can defined as
a function from tuples of n terms to {True, False} or
equivalently, a set tuples that satisfy the predicate:

{<John, Fred>, <John, Tom>, <Bill, Roger>, ...}
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Sentences in First-Order Logic

• An atomic sentence is simply a predicate applied to a set of
terms.

Owns(John,Car1)
Sold(John,Car1,Fred)

Semantics is True or False depending on the interpretation,
i.e. is the predicate true of these arguments.

• The standard propositional connectives ( ∨   ¬   ∧  ⇒ ⇔)
can be used to construct complex sentences:

Owns(John,Car1) ∨ Owns(Fred, Car1)
Sold(John,Car1,Fred) ⇒ ¬Owns(John, Car1)

Semantics same as in propositional logic.
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Quantifiers

• Allows statements about entire collections of objects rather
than having to enumerate the objects by name.

• Universal quantifier: ∀x
Asserts that a sentence is true for all values of variable x

∀x Loves(x, FOPC)
∀x Whale(x) ⇒ Mammal(x)
∀x Grackles(x) ⇒ Black(x)
∀x (∀y Dog(y) ⇒ Loves(x,y)) ⇒ (∀z Cat(z) ⇒ Hates(x,z))

• Existential quantifier: ∃
Asserts that a sentence is true for at least one value of a
variable x

∃x Loves(x, FOPC)
∃x(Cat(x) ∧ Color(x,Black) ∧ Owns(Mary,x))
∃x(∀y Dog(y) ⇒ Loves(x,y)) ∧ (∀z Cat(z) ⇒ Hates(x,z))
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Use of Quantifiers

• Universal quantification naturally uses implication:

∀x Whale(x) ∧ Mammal(x)

Says that everything in the universe is both a whale and a
mammal.

• Existential quantification naturally uses conjunction:

∃x Owns(Mary,x) ⇒ Cat(x)

Says either there is something in the universe that Mary
does not own or there exists a cat in the universe.

∀x Owns(Mary,x) ⇒ Cat(x)

Says all Mary owns is cats (i.e. everthing Mary owns is a
cat).  Also true if Mary owns nothing.

∀x Cat(x) ⇒ Owns(Mary,x)

Says that Mary owns all the cats in the universe.
Also true if there are no cats in the universe.
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Nesting Quantifiers

• The order of quantifiers of the same type doesn’t matter

∀x∀y(Parent(x,y) ∧ Male(y) ⇒ Son(y,x))
∃x∃y(Loves(x,y) ∧ Loves(y,x))

• The order of mixed quantifiers does matter:

∀x∃y(Loves(x,y))

Says everybody loves somebody, i.e. everyone has
someone whom they love.

∃y∀x(Loves(x,y))

Says there is someone who is loved by everyone in the
universe.

∀y∃x(Loves(x,y))

Says everyone has someone who loves them.

∃x∀y(Loves(x,y))

Says there is someone who loves everyone in the universe.
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Variable Scope

• The scope  of a variable is the sentence to which the
quantifier syntactically applies.

• As in a block structured programming language, a variable
in a logical expression refers to the closest quantifier within
whose scope it appears.

∃x (Cat(x) ∧ ∀x(Black (x)))

The x in Black(x) is universally quantified

Says cats exist and everything is black

• In a well-formed formula  (wff )  all variables should be
properly introduced:

∃xP(y) not well-formed

• A ground  expression contains no variables.
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Relation Between Quantifiers

• Universal and existential quantification are logically related
to each other:

∀x ¬Love(x,Saddam) ⇔      ¬∃x Loves(x,Saddam)

∀x Love(x,Princess-Di) ⇔      ¬∃x ¬Loves(x,Princess-Di)

• General Identities

-   ∀x ¬P ⇔ ¬∃x P

-   ¬∀x P ⇔ ∃x ¬P

-   ∀x P ⇔ ¬∃x ¬P

-   ∃x P ⇔ ¬∀x ¬P

- ∀x P(x)∧Q(x) ⇔ ∀xP(x) ∧ ∀xQ(x)

- ∃x P(x)∨Q(x) ⇔ ∃xP(x)  ∨ ∃xQ(x)
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Equality

• Can include equality as a primitive predicate in the logic, or
require it to be introduced and axiomitized as the identity
relation .

• Useful in representing certain types of knowledge:

∃x∃y(Owns(Mary, x) ∧ Cat(x)  ∧ Owns(Mary,y) ∧ Cat(y)
∧ ¬(x=y))

Mary owns two cats.  Inequality needed to insure x and y
are distinct.

∀x ∃y married(x, y) ∧ ∀z(married(x,z) ⇒ y=z)

Everyone is married to exactly one person.  Second
conjunct is needed to guarantee there is only one unique
spouse.
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Higher-Order Logic

• FOPC is called first-order  because it allows quantifiers to
range over objects (terms) but not properties, relations, or
functions applied to those objects.

• Second-order  logic allows quantifiers to range over
predicates and functions as well:

∀ x ∀ y [ (x=y) ⇔  (∀ p p(x) ⇔ p(y)) ]

Says that two objects are equal if and only if they have
exactly the same properties.

∀ f ∀ g [ (f=g) ⇔  (∀ x f(x) = g(x)) ]

Says that two functions are equal if and only if they have the
same value for all possible arguments.

• Third-order would allow quantifying over predicates of
predicates, etc.

For example, a second-order predicate would be
Symetric(p) stating that a binary predicate
p represents a symmetric relation.
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Notational Variants

• In Prolog, variables in sentences are assumed to be
universally quantified and implications are represented in a
particular syntax.

son(X, Y) :- parent(Y,X), male(X).

• In Lisp, a slightly different syntax is common.

(forall ?x (forall ?y (implies (and (parent ?y ?x) (male ?x))
                                           (son ?x ?y)))

• Generally argument order follows the convention that P(x,y)
in English would read “x is (the) P of y”
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Logical KB

• KB contains general axioms describing the relations
between predicates and definitions  of predicates using ⇔.

∀x,y Bachelor(x) ⇔ Male(x) ∧ Adult(x) ∧ ¬∃yMarried(x,y).
∀x Adult(x) ⇔ Person(x) ∧ Age(x) >=18.

• May also contain specific ground facts.

Male(Bob), Age(Bob)=21, Married(Bob, Mary)

• Can provide queries  or goals  as questions to the KB:

Adult(Bob)   ?
Bachelor(Bob)  ?

• If query is existentially quantified, would like to return
substitutions or binding lists specifying values for the
existential variables that satisfy the query.

∃x Adult(x) ? ∃x Married(Bob,x)  ?
{x/Bob}                            {x/Mary}

∃x,y Married(x,y)  ?
{x/Bob, y/Mary}

15

Sample Representations

• There is a barber in town who shaves all men in town who
do not shave themselves.

∃x (Barber(x) ∧ InTown(x) ∧
∀y (Man(y) ∧ InTown(y) ∧ ¬Shave(y,y) ⇒ Shave(x,y)))

• There is a barber in town who shaves only and all men in
town who do not shave themselves.

∃x (Barber(x) ∧ InTown(x) ∧
∀y (Man(y) ∧ InTown(y) ∧ ¬Shave(y,y)  ⇔ Shave(x,y)))

• Classic example of Bertrand Russell used to illustrate a
paradox in set theory: Does the set of all sets contain itself?


