
1. Introduction

Programming
Techniques

G. Manacher, S.L. Graham
Editors

A Fast String
Searching Algorithm
Robert S. Boyer
Stanford Research Institute

J Strother Moore
Xerox Palo Alto Research Center

An algorithm is presented that searches for the
location, "i," of the first occurrence of a character
string, "'pat,'" in another string, "string." During the
search operation, the characters of pat are matched
starting with the last character of pat. The information
gained by starting the match at the end of the pattern
often allows the algorithm to proceed in large jumps
through the text being searched. Thus the algorithm
has the unusual property that, in most cases, not all of
the first i characters of string are inspected. The
number of characters actually inspected (on the aver-
age) decreases as a function of the length of pat. For a
random English pattern of length 5, the algorithm will
typically inspect i/4 characters of string before finding
a match at i. Furthermore, the algorithm has been
implemented so that (on the average) fewer than i +
patlen machine instructions are executed. These con-
clusions are supported with empirical evidence and a
theoretical analysis of the average behavior of the
algorithm. The worst case behavior of the algorithm is
linear in i + patlen, assuming the availability of array
space for tables linear in patlen plus the size of the
alphabet.

Key Words and Phrases: bibliographic search, com-
putational complexity, information retrieval, linear
time bound, pattern matching, text editing

CR Categories: 3.74, 4.40, 5.25

Copyright © 1977, Association for Comput ing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that A C M ' s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Comput ing Machinery.

Authors ' present addresses: R.S. Boyer, Compute r Science
Laboratory, Stanford Research Insti tute, Menlo Park, C A 94025.
This work was partially supported by O N R Contract N00014-75-C-
0816; JS. Moore was in the Compute r Science Laboratory, Xerox
Palo Alto Research Center , Palo Alto, C A 94304, when this work
was done. His current address is Compute r Science Laboratory, SRI
International, Menlo Park, CA 94025.

762

Suppose that pat is a string of length patlen and we
wish to find the position i of the leftmost character in
the first occurrence of pat in some string string:
pa t : AT-THAT
s t r i n g : . . . WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .

The obvious search algorithm considers each character
position of string and determines whether the succes-
sive patlen characters of string starting at that position
match the successive patlen characters of pat. Knuth,
Morris, and Pratt [4] have observed that this algorithm
is quadratic. That is, in the worst case, the number of
comparisons is on the order of i * patlen.l

Knuth, Morris, and Pratt have described a linear
search algorithm which preprocesses pat in t ime linear
in patlen and then searches string in t ime linear in i +
patlen. In particular, their algorithm inspects each of
the first i + patlen - 1 characters of string precisely
once.

We now present a search algorithm which is usually
"subl inear": It may not inspect each of the first i +
patlen - 1 characters of string. By "usually sublinear"
we mean that the expected value of the number of
inspected characters in string is c * (i + patlen), where
c < 1 and gets smaller as patlen increases. There are
patterns and strings for which worse behavior is ex-
hibited. However , Knuth, in [5], has shown that the
algorithm is linear even in the worst case.

The actual number of characters inspected depends
on statistical propert ies of the characters in pat and
string. However , since the number of characters in-
spected on the average decreases as patlen increases,
our algorithm actually speeds up on longer patterns.

Fur thermore , the algorithm is sublinear in another
sense: It has been implemented so that on the average
it requires the execution of fewer than i + patlen
machine instructions per search.

The organization of this paper is as follows: In the
next two sections we give an informal description of
the algorithm and show an example of how it works.
We then define the algorithm precisely and discuss its
efficient implementat ion. After this discussion we pres-
ent the results of a thorough test of a particular
machine code implementat ion of our algorithm. We
compare these results to similar results for the Knuth,
Morris, and Pratt algorithm and the simple search
algorithm. Following this empirical evidence is a theo-
retical analysis which accurately predicts the perform-
ance measured. Next we describe some situations in
which it may not be advantageous to use our algorithm.
We conclude with a discussion of the history of our
algorithm.

1 The quadratic nature of this algorithm appears when initial
substrings of pat occur often in string. Because this is a relatively
rare phenomenon in string searches over English text, this simple
algorithm is practically linear in i + patlen and therefore acceptable
for most applications.

Communica t ions October 1977
of Volume 20
the A C M Number 10

2. Informal Description

The basic idea behind the algori thm is that more
informat ion is ga ined by matching the pat tern f rom
the right than f rom the left. Imagine that pat is placed
on top of the left-hand end of string so that the first
characters of the two strings are aligned. Consider
what we learn if we fetch the patlenth character , char,
of string. This is the character which is aligned with
the last character of pat.

Observation 1. If char is known not to occur in pat,
then we know we need not consider the possibility of
an occurrence of pat starting at string posit ions 1, 2,
• . . or patlen: Such an occurrence would require that
char be a character of pat.

Observation 2. More generally, if the last (right-
most) occurrence o f char in pat is deltal characters
f rom the right end of pat, then we know we can slide
pat down delta~ positions without checking for matches.
The reason is that if we were to move pat by less than
deltas, the occurrence of char in string would be aligned
with some character it could not possibly match: Such
a match would require an occurrence of char in pat to
the right of the r ightmost .

There fore unless char matches the last character of
pat we can move past delta1 characters of string with-
out looking at the characters skipped; delta~ is a
funct ion of the character char obta ined f rom string. If
char does not occur in pat, delta~ is patlen. If char does
occur in pat, delta~ is the difference be tween patlen
and the position of the r ightmost occurrence of char in
pat.

Now suppose that char matches the last character
of pat. Then we must de termine whether the previous
character in string matches the second f rom the last
character in pat. I f so, we cont inue backing up until
we have matched all of pat (and thus have succeeded
in finding a match) , or else we come to a mismatch at
some new char after matching the last m characters of
pat.

In this latter case, we wish to shift pat down to
consider the next plausible juxtaposi t ion. Of course,
we would like to shift it as far down as possible.

Observation 3(a). We can use the same reasoning
described a b o v e - b a s e d on the mismatched character
char and del ta l - to slide pat down k so as to align the
two known occurrences of char. Then we will want to
inspect the character of string aligned with the last
character of pat. Thus we will actually shift our at ten-
tion down string by k + m. The distance k we should
slide pat depends on where char occurs in pat. If the
r ightmost occurrence of char in pat is to the right of
the mismatched character (i.e. within that part of pat
we have already passed) we would have to move pat
backwards to align the two known occurrences of char.
We would not want to do this. In this case we say that
delta~ is "wor th less" and slide pat forward by k = 1
(which is always sound). This shifts our a t tent ion down
string by 1 + m. If the r ightmost occurrence of char in

763

pat is to the left of the mismatch, we can slide forward
by k = deltal(char) - rn to align the two occurrences
of char. This shifts our a t tent ion down string by
deltal(char) - m + m = deltas(char).

However , it is possible that we can do bet ter than
this.

Observation 3(b) . We know that the next m char-
acters of string match the final m characters of pat. Let
this substring of pat be subpat. We also know that this
occurrence ofsubpat instring is preceded by a character
(char) which is different f rom the character preceding
the terminal occurrence of subpat in pat. Roughly
speaking, we can generalize the kind of reasoning used
above and slide pat down by some amount so that the
discovered occurrence of subpat in string is aligned
with the r ightmost occurrence of subpat in pat which is
not p receded by the character preceding its terminal
occurrence in pat. We call such a reoccur rence of
subpat in pat a "plausible r eoccur rence . " The reason
we said " roughly speaking" above is that we must
allow for the r ightmost plausible reoccurrence ofsubpat
to "fall off" the left end of pat. This is made precise
later.

There fore , according to Observat ion 3(b) , if we
have matched the last m characters of pat before
finding a mismatch, we can move pat down by k
characters , where k is based on the position in pat of
the r ightmost plausible reoccurrence of the terminal
substring of pat having m characters . Af te r sliding
down by k, we want to inspect the character of string
aligned with the last character of pat. Thus we actually
shift our a t tent ion down string by k + rn characters .
We call this distance deltaz, and we define deltaz as a
funct ion of the position] in pat at which the mismatch
occurred, k is just the distance be tween the terminal
occurrence of subpat and its r ightmost plausible reoc-
currence and is always greater than or equal to 1. m is
just patlen -].

In the case where we have matched the final m
characters of pat before failing, we clearly wish to shift
our a t tent ion down string by 1 + m or deltal(char) or
deltaz(]), according to whichever allows the largest
shift. F rom the definit ion of deltae as k + m where k is
always greater than or equal to 1, it is clear that delta2
is at least as large as 1 + m. Therefore we can shift
our at tent ion down string by the maximum of just the
two deltas. This rule also applies when m --- 0 (i.e.
when we have not yet matched any characters of pat),
because in that case] = patlen and delta2(]) >- 1.

3. Example

In the following example we use an "1 ' " under
string to indicate the current char. When this "po in t e r "
is pushed to the right, imagine that it drags the right
end of pat with it (i.e. imagine pat has a hook on its
right end). W h e n the pointer is moved to the left,
keep pat fixed with respect to string.

Communications October 1977
of Volume 20
the ACM Number 10

pat: AT-THAT
s t r i n g : ... WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .

÷

Since "F" is known not to occur in pat, we can appeal
to Observation 1 and move the pointer (and thus pat)
down by 7:

pat : AT-THAT

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ...

÷

Appealing to Observation 2, we can move the pointer
down 4 to align the two hyphens:

pat: AT-THAT

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ...

÷

Now char matches its opposite in pat. Therefore we
step left by one:

pa t : AT-THAT
s t r i n g : . . . WHICH-FINALLY-HALTS.--AT T~IAT POINT . . .

÷

Appealing to Observation 3(a), we can move the
pointer to the right by 7 positions because "L" does
not occur in pat. 2 Note that this only moves pat to the
right by 6.

pa t : AT-THAT
s t r i n g : . . . WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .

÷

Again char matches the last character of pat. Stepping
to the left we see that the previous character in string
also matches its opposite in pat. Stepping to the left a
second time produces:

pa t : AT-THAT

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ...

÷

Noting that we have a mismatch, we appeal to Obser-
vation 3(b). The delta2 move is best since it allows us
to push the pointer to the right by 7 so as to align the
discovered substring " A T " with the beginning of pat. ~

pat: AT-THAT
s t r i n g : . . . WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .

÷

This time we discover that each character of pat
matches the corresponding character in string so we
have found the pattern. Note that we made only 14
references to string. Seven of these were required to
confirm the final match. The other seven allowed us to
move past the first 22 characters of string.

2 Note that deltaz would allow us to move the pointer to the
right only 4 positions in order to align the discovered substring "T"
in string with its second from last occurrence at the beginning of the
word " T H A T " in pat.

3 The delta~ move only allows the pointer to be pushed to the
right by 4 to align the hyphens.

764

4. The Algorithm

We now specify the algorithm. The notation pat(j)
refers to the j th character in pat (counting from 1 on
the left).

We assume the existence of two tables, delta1 and
deltas. The first has as many entries as there are
characters in the alphabet. The entry for some charac-
ter char will be denoted by deltas(char). The second
table has as many entries as there are character posi-
tions in the pattern. The j th entry will be denoted by
delta2(j). Both tables contain non-negative integers.

The tables are initialized by preprocessing pat, and
their entries correspond to the values deltaa and delta2
referred to earlier. We will specify their precise con-
tents after it is clear how they are to be used.

Our search algorithm may be specified as follows:

stringlen ,,-- length of string.
i ~ patlen.

top: if i > stringlen then return false.

j ,,-- patlen.
loop: i f j = 0 then re turnJ + 1.

if string(i) = pat(j)
then
j ~ " - j - 1 .
i , ~ - - i - 1 .
goto loop.
close;

i ~-- i + max(delta1 (string(i)), delta2 (j)).
goto top.

If the above algorithm returns false, then pat does not
occur in string. If the algorithm returns a number,
then it is the position of the left end of the first
occurrence of pat in string.

The deltal table has an entry for each character
char in the alphabet. The definition of delta~ is:

deltas(char) = If char does not occur in pat, then pat-
len; else patlen - j, where j is the
maximum integer such that pat(j) =
char.

The deltaz table has one entry for each of the integers
from 1 to patlen. Roughly speaking, delta2(j) is (a) the
distance we can slide pat down so as to align the
discovered occurrence (in string) of the last patlen-j
characters of pat with its rightmost plausible reoccurr-
ence, plus (b) the additional distance we must slide the
"pointer" down so as to restart the process at the right
end of pat. To define delta2 precisely we must define
the rightmost plausible reoccurrence of a terminal
substring of pat. To this end let us make the following
conventions: Let $ be a character that does not occur
in pat and let us say that if i is less than 1 then pat(i) is
$. Let us also say that two sequences of characters [c~
• . . c,] and [d~ . . . d,] "unify" if for all i from 1 to n
either c~ = d i or c~ = $ or d~ = $.

Finally, we define the position of the rightmost
plausible reoccurrence of the terminal substring which
starts at posit ionj + 1, rpr(j), for j from 1 topatlen, to
be the greatest k less than or equal to patlen such that

Communicat ions October 1977
of Volume 20
the ACM Number 10

[pat(j + 1) . . . pat(pat len)] and [pat(k) . . . p a t (k +
pa t l en - j - 1)] unify and ei ther k -< 1 or p a t (k - 1) :~
pat(]).4 (That is, the posit ion of the r ightmost plausible
reoccurrence of the substring s u b p a t , which starts at j
+ 1, is the r ightmost place where s u b p a t occurs in pat
and is not preceded by the character pat(j) which
precedes its terminal o c c u r r e n c e - w i t h suitable allow-
ances for either the reoccurrence or the preceding
character to fall beyond the left end of pat . Note that
rpr(j) may be negative because of these allowances.)

Thus the distance we must slide pat to align the
discovered substring which starts at j + 1 with its
r ightmost plausible reoccurrence is j + 1 - rpr (j) . The
distance we must move to get back to the end of pat is
just pat len - j . delta2(j) is just the sum of these two.
Thus we define delta2 as follows:

delta2(j) = pat len + 1 - rpr(j) .

To make this definition clear, consider the following
two examples:

j : 1 2 3 4 5 6 7 8 9
p a t : A B C X X X A B C
d e l t a 2 (J) : _ 14 13 12 11 10 9 11 10 1

j: 1 2 3 4 5 6 7 8 9
pat: A B Y X C D E Y X
delta2(J):_ 17 16 15 14 13 12 7 10 1

5. Implementation Considerations

The most frequently executed part of the algori thm
is the code that embodies Observat ions 1 and 2. The
following version of our algori thm is equivalent to the
original version provided that deltao is a table contain-
ing the same entries as delta1 except that
deltao(pat(patlen)) is set to an integer large which is
greater than s tr inglen + pat len (while del ta l (pat (pat len))
is always 0).

stringlen ,:-- length of string.
i ~-- patlen.
if i > stringlen then return false.

fast: i ,--- i + delta0(string(i)).
if i <- stringlen then goto fast.

undo: if i <- large then return false.
i ~-- (i - large) - 1.
j ~-- patlen - 1.

slow: ifj = 0then returni + 1.
if string(i) = pat(j)

then
j * . - j - 1 .
i * - . - i - 1 .
goto slow.
close;

i ,~- i + max(deltal(string(i)), deltaz(j)).
goto fast.

4 Note that whenj = patlen, the two sequences [pat(patlen + 1)
• . . pat(patlen)] and [pat(k). i • pat(k - 1)] are empty and therefore
unify. Thus, rpr(paden) is simply the greatest k less than or equal to
patlen such that k <- 1 or pat(k - 1) ~ pat(patlen).

765

Of course we do not actually have two versions of
deltax. Instead we use only deltao, and in place of deltax
in the m a x expression we merely use the deltao entry
unless it is large (in which case we use 0).

Note that the f a s t loop just scans down s t r ing ,
effectively looking for the last character pa t (pa t l en) in
pat , skipping according to deltax. (delta2 can be ignored
in this case since no terminal substring has yet been
matched, i.e. delta2(patlen) is always less than or equal
to the cor responding delta1.) Contro l leaves this loop
only when i exceeds s t r ing len . The test at u n d o decides
whether this situation arose because all of s tr ing has
been scanned or because pat (pa t len) was hit (which
caused i to be incremented by large). If the first case
obtains, pa t does not occur in s tr ing and the algori thm
returns false. If the second case obtains, then i is
res tored (by subtract ing large) and we enter the s low
loop which backs up checking for matches. When a
mismatch is found we skip ahead by the max imum of
the original delta1 and delta2 and reenter the f a s t loop.
We est imate that 80 percent of the time spent in
searching is spent in the f a s t loop.

T h e fas t loop can be coded in four machine instruc-
tions:

fast: char ~--string(i).
i *- i + deltao(char).
skip the next instruction if i > stringlen.
goto fast.

undo: . . .

We have implemented this algori thm in P D P - 1 0 assem-
bly language. In our implementa t ion we have reduced
the n u m b e r of instructions in the f a s t loop to three by
translating i down by s t r ing len; we can then test i
against 0 and condit ionally j ump to fa s t in one instruc-
tion.

On a byte addressable machine it is easy to imple-
ment "char ~- - s t r ing(i) " and "i ~-- i + del tao(char)" in
one instruction each. Since our implementa t ion was in
PDP-10 assembly language we had to employ byte
pointers to access characters in s tr ing. The PDP-10
instruction set provides an instruction for increment ing
a byte pointer by one but not by o ther amounts . Ou r
code therefore employs an array of 200 indexing byte
pointers which we use to access characters in s tr ing in
one indexed instruction (after comput ing the index) at
the cost of a small (five-instruction) overhead every
200 characters . It should be noted that this trick only
makes up for the lack of direct byte addressing; one
can expect our algori thm to run somewhat faster on a
byte-addressable machine.

6. Empirical Evidence

We have exhaustively tested the above PDP-10
implementa t ion on r andom test data. To ga ther the
test pat terns we wrote a p rogram which r andomly
selects a substring of a given length f rom a source
string. We used this p rogram to select 300 pat terns of

Communications October 1977
of Volume 20
the ACM Number 10

length patlen, for each patlen from 1 to 14. We then Fig. 1.
used our algorithm to search for each of the test 1.0 -
patterns in its source string, starting each search in a
random position somewhere in the first half of the

0.9

source string. All of the characters for both the patterns
and the strings were in pr imary memory (rather than a
secondary storage medium such as a disk). 0.8

We measured the cost of each search in two ways:
the number of references made to string and the total
number of machine instructions that actually got exe- ~ ~ 07
cuted (ignoring the preprocessing to set up the two
tables). ~ o.e

By dividing the number of references to string by i
the number of characters i - 1 passed before the ~ o.s
pattern was found (or string was exhausted), we ob- -~ i
tained the number of references to string per character
passed. This measure is independent of the particular ~ 0.,
implementat ion of the algorithm. By dividing the num-
ber of instructions executed by i - 1, we obtained the
average number of instructions spent on each character ~ 03 -
passed. This measure depends upon the implementa-
tion, but we feel that it is meaningful since the imple- 0.2 -
mentat ion is a straightforward encoding of the algo-
rithm as described in the last section.

We then averaged these measures across all 300 0.1-
samples for each pattern length.

Because the performance of the algorithm depends o _
upon the statistical propert ies of pat and string (and o
hence upon the propert ies of the source string from
which the test patterns were obtained), we per formed Fig. 2
this experiment for three different kinds of source 7
strings, each of length 10,000. The first source string
consisted of a random sequence of O's and l ' s . The 6
second source string was a piece of English text ob-
tained from an online manual . The third source string
was a random sequence of characters from a 100- ~
character alphabet.

In Figure 1 the average number of references to ~ ,
string per character in string passed is plotted against
the pattern length for each of three source strings.
Note that the number of references to string per o 3
character passed is less than 1. For example, for an ~_
English pattern of length 5, the algorithm typically -~
inspects 0.24 characters for every character passed.
That is, for every reference to string the algorithm

1
passes about 4 characters, or, equivalently, the algo-
rithm inspects only about a quarter of the characters it
passes when searching for a pattern of length 5 in an °o
English text string. Fur thermore , the number of refer-
ences per character drops as the patterns get longer.
This evidence supports the conclusion that the algo-
rithm is "subl inear" in the number of references to
string.

For comparison, it should be noted that the Knuth,
Morris, and Pratt algorithm references string precisely
1 t ime per character passed. The simple search algo-
rithm references string about 1.1 times per character
passed (determined empirically with the English sam-
ple above).

766

EMPIRICAL CO~T

2 4 6 8 10 12 14
LENGTH OF PATTERN

I I I I I I I I I I I I [

EMPIRICAL COST

3.56

I O.473
0.266

I I I I i]] [I I I [I
2 4 6 8 10 12 14

LENGTH OF PATTERN

In Figure 2 the average number of instructions
executed per character passed is plotted against the
pattern length. The most obvious feature to note is
that the search speeds up as the patterns get longer.
That is, the total number of instructions executed in
order to pass over a character decreases as the length
of the pattern increases.

Figure 2 also exhibits a second interesting feature
of our implementat ion of the algorithm: For sufficiently

Communica t ions October 1977
of Volume 20
the A C M Number 10

large alphabets and sufficiently long patterns the algo-
rithm executes fewer than 1 instruction per character
passed. For example, in the English sample, less than
1 instruction per character is executed for patterns of
length 5 or more. Thus this implementat ion is "sub-
l inear" in the sense that it executes fewer than i +
patlen instructions before finding the pat tern at i. This
means that no algorithm which references each char-
acter it passes could possibly be faster than ours in
these cases (assuming it takes at least one instruction
to reference each character).

The best alternative algorithm for finding a single
substring is that of Knuth, Morris, and Pratt. If that
algorithm is implemented in the extraordinarily effi-
cient way described in [4, pp. 11-12] and [2, I tem
179]) then the cost of looking at a character can be
expected to be at least 3 - p instructions, where p is
the probability that a character just fetched from string
is equal to a given character of pat. Hence a horizontal
line at 3 - p instructions/character represents the best
(and, practically, the worst) the Knuth, Morris, and
Pratt algorithm can achieve.

The simple string searching algorithm (when coded
with a 3-instruction fast loop 6) executes about 3.3
instructions per character (determined empirically on
the English sample above).

As noted, the preprocessing time for our algorithm
(and for Knuth, Morris, and Pratt) has been ignored.
The cost of this preprocessing can be made linear in
patlen (this is discussed further in the next section) and
is trivial compared to a reasonably long search. We
made no at tempt to code this preprocessing efficiently.
However , the average cost (in our implementat ion)
ranges from 160 instructions (for strings of length 1)
to about 500 instructions (for strings of length 14). It
should be explained that our code uses a block transfer
instruction to clear the 128-word delta~ table at the
beginning of the preprocessing, and we have counted
this single instruction as though it were 128 instruc-
tions. This accounts for the unexpectedly large instruc-
tion count for preprocessing a one-character pattern.

7. Theoretical Analysis

The preprocessing for delta~ requires an array the
size of the alphabet. Our implementat ion first initial-
izes all entries of this array to patlen and then sets up

s This implementation automatically compiles pat into a machine
code program which implicitly has the skip table built in and which
is executed to perform the search itself. In [2] they compile code
which uses the PDP-10 capability of fetching a character and
incrementing a byte address in one instruction. This compiled code
executes at least two or three instructions per character fetched
from string, depending on the outcome of a comparison of the
character to one from pat.

6 This loop avoids checking whether string is exhausted by
assuming that the first character of pat occurs at the end of string.
This can be arranged ahead of time. The loop actually uses the same
three instruction codes used by the above-referenced implementation
of the Knuth, Morris, and Pratt algorithm.

767

delta1 in a linear scan through the pattern. Thus our
preprocessing for delta1 is linear in patlen plus the size
of the alphabet.

At a slight loss of efficiency in the search speed
one could eliminate the initialization of the deltal
array by storing with each entry a key indicating the
number of times the algorithm has previously been
called. This approach still requires initializing the array
the first t ime the algorithm is used.

To implement our algorithm for extremely large
alphabets, one might implement the deltal table as a
hash array. In the worst case, accessing delta~ during
the search itself could require order patlen instruc-
tions, significantly impairing the speed of the algo-
rithm. Hence the algorithm as it stands almost certainly
does not run in time linear in i + patlen for infinite
alphabets.

Knuth, in analyzing the algorithm, has shown that
it still runs in linear time when deltaa is omitted, and
this result holds for infinite alphabets. Doing this,
however, will drastically degrade the performance of
the algorithm on the average. In [5] Knuth exhibits an
algorithm for setting up delta2 in time linear in patlen.

From the preceding empirical evidence, the reader
can conclude that the algorithm is quite good in the
average case. However , the question of its behavior in
the worst case is nontrivial. Knuth has recently shed
some light on this question. In [5] he proves that the
execution of the algorithm (after preprocessing) is
linear in i + patlen, assuming the availability of array
space linear in patlen plus the size of the alphabet . In
particular, he shows that in order to discover that pat
does not occur in the first i characters of string, at
most 6 * i characters from string are matched with
characters in pat. He goes on to say that the constant 6
is probably much too large, and invites the reader to
improve the theorem. His proof reveals that the linear-
ity of the algorithm is entirely due to delta2.

We now analyze the average behavior of the algo-
rithm by presenting a probabilistic model of its per-
formance. As will become clear, the results of this
analysis will support the empirical conclusions that the
algorithm is usually "subl inear" both in the number of
references to string and the number of instructions
executed (for our implementat ion).

The analysis below is based on the following simpli-
fying assumption: Each character of pat and string is
an independent random variable. The probabili ty that
a character from pat or string is equal to a given
character of the alphabet is p .

Imagine that we have just moved pat down string
to a new position and that this position does not yield
a match. We want to know the expected value of the
ratio between the cost of discovering the mismatch
and the distance we get to slide pat down upon findir/g
the mismatch. If we define the cost to be the total
number of references made to string before discovering
the mismatch, we can obtain the expected value of the
average number of references to string per character

Communications October 1977
of Volume 20
the ACM Number 10

passed. If we define the cost to be the total number of
machine instructions executed in discovering the mis-
match, we can obtain the expected value of the number
of instructions executed per character passed.

In the following we say "only the last m characters
of pat match" to mean "the last m characters of pat
match the corresponding m characters in string but the
(m + 1)-th character from the right end of pat fails tO
match the corresponding character in string."

The expected value of the ratio of cost to characters
passed is given by:

~=o cost(m) * prob(m)

)) m=0 prob(m) * ~ k~=l sk ip(m,k) * k

where cost(m) is the cost associated with discovering
that only the last m characters of pat match; prob(m) is
the probability that only the last m characters of pat
match; and skip (m, k) is the probability that, supposing
only the last m characters of pat match, we will get to
slide pat down by k.

Under our assumptions, the probability that only
the last m characters of pat match is:

prob(m) = pro(1 - p)/(1 - ppatten).

(The denominator is due to the assumption that a
mismatch exists.)

The probability that we will get to slide pat down
by k is determined by analyzing how i is incremented.
However, note that even though we increment i by the
maximum max of the two deltas, this will actually only
slide pat down by max - m, since the increment of i
also includes the m necessary to shift our attention
back to the end of pat. Thus when we analyze the
contributions of the two deltas we speak of the amount
by which they allow us to slide pat down, rather than
the amount by which we increment i. Finally, recall
that if the mismatched character char occurs in the
already matched final m characters of pat, then deltaa
is worthless and we always slide by deltas. The proba-
bility that deltal is worthless is just (1 - (1 - p)m). Let
us call this probdelta~worthless(m).

The conditions under which delta~ will naturally let
us slide forward by k can be broken down into four
cases as follows: (a) delta~ will let us slide down by 1 if
char is the (m + 2)-th character from the righthand
end of pat (or else there are no more characters in pat)
and char does not occur to the right of that position
(which has probability (1 - p)" * (if m + 1 = patlen
then 1 else p)). (b) delta1 allows us to slide down k,
where 1 < k < patlen - m, provided the rightmost
occurrence of char in pat is m + k characters from the
right end of pat (which has probability p * (1 -
p)k+m-~). (c) When patlen - m > 1, deltai allows us to
slide past patlen - m characters if char does not occur
in pat at all (which has probability (1 - p)paae,-1 given
that we know char is not the (m + 1)-th character from

7 6 8

the right end of pat). Finally, (d) delta~ never allows a
slide longer than patlen - m (since the maximum
value of deltal is patlen).

Thus we can define the probability probdelta~(m,
k) that when only the last m characters of pat match,
delta~ will allow us to move down by k as follows:

probdeltal(m, k) = i f k = 1
t h e n

(1 - p) m . (i f m + 1 = patlen t h e n 1 else p) ;

e lse i f I < k < patlen - m t h e n p * (1 - p)k+, . -1;
e lseif k = patlen - m t hen (1 - p)p . ae . -1 ;

else (i .e . k > patlen - m) O.

(It should be noted that we will not put these formulas
into closed form, but will simply evaluate them to
verify the validity of our empirical evidence.)

We now perform a similar analysis for deltas; deltas
lets us slide down by k if (a) doing so sets up an
alignment of the discovered occurrence of the last m
characters of pat in string with a plausible reoccurrence
of those m characters elsewhere in pat, and (b) no
smaller move will set up such an alignment. The
probability probpr(m, k) that the terminal substring of
pat of length m has a plausible reoccurrence k charac-
ters to the left of its first character is:

probpr(m, k) = if m + k < patlen
t hen (1 - p) * p "
else ptaatlen-k

Of course, k is just the distance delta2 lets us slide
provided there is no earlier reoccurrence. We can
therefore define the probability probdelta2(m, k) that,
when only the last m characters of pat match, delta2
will allow us to move down by k recursively as follows:

probdelta2(m, k)

=probpr(m,k)(1-k~=11Probdelta2(m,n)) •

We slide down by the maximum allowed by the
two deltas (taking adequate account of the possibility
that delta1 is worthless). If the values of the deltas
were independent, the probability that' we would ac-
tually slide down by k would just be the sum of the
products of the probabilities that one of the deltas
allows a move of k while the other allows a move of
less than or equal to k.

However, the two moves are not entirely indepen-
dent. In particular, consider the possibility that delta1
is worthless. Then the char just fetched occurs in the
last m characters of pat and does not match the (m +
1)-th. But if delta2 gives a slide of 1 it means that
sliding these m characters to the left by i produces a
match. This implies that all of the last m characters of
pat are equal to the character m + 1 from the right.
But this character is known not to be char. Thus char
cannot occur in the last m characters of pat, violating
the hypothesis that delta~ was worthless. Therefore if
delta~ is worthless, the probability that delta2 specifies
a skip of 1 is 0 and the probability that it specifies one
of the larger skips is correspondingly increased.

C o m m u n i c a t i o n s O c t o b e r 1 9 7 7
of V o l u m e 20
the A C M N u m b e r 10

This interaction between the two deltas is also felt
(to a lesser extent) for the next m possible delta2's, but
we ignore these (and in so doing accept that our
analysis may predict slightly worse results than might
be expected since we allow some short delta2 moves
when longer ones would actually occur).

The probability that delta2 will allow us to slide
down by k when only the last m characters of pat
match, assuming that deltai is worthless, is:

probdelta~(m,k) = i f k = 1

then 0
else

probpr(m, k) 1 - probdelta'2(m, n) .

Finally, we can define skip(m, k), the probability
that we will slide down by k if only the last m characters
of pat match:

skip(m, k) = if k = 1

then probdeltal(m, 1) * probdelta2(m, 1)

else probdeltalworthless(m) * probdelta~(m, k)
k - I

+ ~_. probdeltal(m, k) * probdelta2(m, n)
n = l

k- -1

+ ~. probdeltal(m, n) * probdelta2(m, k)
n = l

+ probdeltal(m, k) * probdelta=(m, k).

Now let us consider the two alternative cost func-
tions. In order to analyze the number of references to
string per character passed over, cost(m) should just be
m + 1, the number of references necessary to confirm
that only the last m characters of pat match.

In order to analyze the number of instructions
executed per character passed over, cost(m) should be
the total number of instructions executed in discovering
that only the last m characters of pat match. By
inspection of our PDP-10 code:

cost(m) = i f m = 0 then 3 else 12 + 6 m.

We have computed the expected value of the ratio
of cost per character skipped by using the above
formulas (and both definitions of cost). We did so for
pattern lengths running from 1 to 14 (as in our empiri-
cal evidence) and for the values of p appropriate for
the three source strings used: For a random binary
string p is 0.5, for an arbitrary English string it is
(approximately) 0.09, and for a random string over a
100-character alphabet it is 0.01. The value of p for
English was determined using a standard frequency
count for the alphabetic characters [3] and empirically
determining the frequency of space, carriage return,
and line feed to be 0.23, 0.03, and 0.03, respectivelyF

In Figure 3 we have plotted the theoretical ratio of
references to string per character passed over against

7 6 9

0 2 4 10 12 14

Fig. 3.
1.0

I I I I I

I I I I I I
4 6 8 10 12 14

LENGTH OF PATTERN

Fig. 4.

r We have d e t e r m i n e d empi r ica l ly tha t the a lgo r i t hm ' s perfor-
mance on t ruly r a n d o m str ings whe re p = 0.09 is v i r tua l ly ident ica l
to its pe r fo rmance on Engl i sh str ings. In par t i cu la r , the re fe rence
count and ins t ruc t ion coun t curVes g e n e r a t e d by such r a n d o m s t r ings
are a lmos t co inc iden ta l wi th the Eng l i sh curves in F igures 1 and 2.

6 8
LENGTH OF PATTERN

0,24

the pattern length. The most important fact to observe
in Figure 3 is that the algorithm can be expected to
make fewer than i + patlen references to string before
finding the pattern at location i. For example, for
English text strings of length 5 or greater , the algorithm
may be expected to make less than (i + 5)/4 refer-
ences to string. The comparable figure for the Knuth,

C o m m u n i c a t i o n s O c t o b e r 1977
of V o l u m e 20
the A C M N u m b e r 10

Morris, and Pratt algorithm is of course precisely i.
The figure for the intuitive search algorithm is always
greater than or equal to i.

The reason the number of references per character
passed decreases more slowly as patlen increases is
that for longer patterns the probability is higher that
the character just fetched occurs somewhere in the
pattern, and therefore the distance the pattern can be
moved forward is shortened.

In Figure 4 we have plotted the theoretical ratio of
the number of instructions executed per character
passed versus the pattern length. Again we find that
our implementation of the algorithm can be expected
(for sufficiently large alphabets) to execute fewer than
i + patlen instructions before finding the pattern at
location i. That is, our implementation is usually "sub-
linear" even in the number of instructions executed.
The comparable figure for the Knuth, Morris, and
Pratt algorithm is at best (3 - p) * (i + patlen - 1). 8
For the simple search algorithm the expected value of
the number of instructions executed per character
passed is (approximately) 3.28 (for p = 0.09).

It is difficult to fully appreciate the role played by
delta2. For example, if the alphabet is large and pat-
terns are short, then computing and trying to use delta2
probably does not pay off much (because the chances
are high that a given character in string does not occur
anywhere in pat and one will almost always stay in the
fast loop ignoring delta2). 9 Conversely, delta2 becomes
very important when the alphabet is small and the
patterns are long (for now execution will frequently
leave the fast loop; deltal will in general be small
because many of the characters in the alphabet will
occur in pat and only the terminal substring observa-
tions could cause large shifts). Despite the fact that it
is difficult to appreciate the role of delta2, it should be
noted that the linearity result for the worst case behav-
ior of the algorithm is due entirely to the presence of
delta2.

Comparing the empirical evidence (Figures 1 and
2) with the theoretical evidence (Figures 3 and 4,
respectively), we note that the model is completely
accurate for English and the 100-character alphabet.
The model predicts much bet ter behavior than we
actually experience in the binary case. Our only expla-
nation is that since delta2 predominates in the binary
alphabet and sets up alignments of the pattern and the
string, the algorithm backs up over longer terminal
substrings of the pattern before finding mismatches.
Our analysis ignores this phenomenon.

However, in summary, the theoretical analysis sup-
ports the conclusion that on the average the algorithm
is sublinear in the number of references to string and,
for sufficiently large alphabets and patterns, sublinear
in the number of instructions executed (in our imple-
mentation).

8. Caveat Programmer

It should be observed that the preceding analysis
has assumed that string is entirely in primary memory
and that we can obtain the ith character in it in one
instruction after computing its byte address. However ,
if string is actually on secondary storage, then the
characters in it must be read in. TM This transfer will
entail some time delay equivalent to the execution of,
say, w instructions per character brought in, and (be-
cause of the nature of computer I/O) all of the first i +
patlen - 1 characters will eventually be brought in
whether we actually reference all of them or not. (A
representative figure for w for paged transfers from a
fast disk is 5 instructions/character.) Thus there may
be a hidden cost of w instructions per character passed
over.

According to the statistics presented above one
might expect our algorithm to be approximately three
times faster than the Knuth, Morris, and Pratt algo-
rithm (for, say, English strings of length 6) since that
algorithm executes about three instructions to our one.
However , if the CPU is idle for the w instructions
necessary to read each character, the actual ratios are
closer to w + 3 instructions than to w + 1 instructions.
Thus for paged disk transfers our algorithm can only
be expected to be roughly 4/3 faster (i.e. 5 + 3
instructions to 5 + 1 instructions) if we assume that
we are idle during I/O. Thus for large values of w the
difference between the various algorithms diminishes
if the CPU is idle during I/O.

Of course, in general, programmers (or operating
systems) try to avoid the situation in which the CPU is
idle while awaiting an I /O transfer by overlapping I/O
with some other computation. In this situation, the
chances are that our algorithm will be I/O bound (we
will search a page faster than it can be brought in),
and indeed so will that of Knuth, Morris, and Pratt if
w > 3. Our algorithm will require that fewer CPU
cycles be devoted to the search itself so that if there
are other jobs to perform, there will still be an overall
advantage in using the algorithm..

s Although the Knuth, Morris, and Pratt algorithm will fetch
each of the first i + patlen - 1 characters of string precisely once,
sometimes a character is involved in several tests against characters
in pat. The number of such tests (each involving three instructions)
is bounded by log.(patlen), where qb is the golden ratio.

9 However, if the algorithm is implemented without deltaz,
recall that, in exiting the slow loop, one must now take the max of
delta1 and patlen - ./ + 1 to allow for the possibility that deltal is
worthless.

x0 We have implemented a version of our algorithm for searching
through disk files. It is available as the subroutine FFILEPOS in the
latest release of INTERLISP-10. This function uses the TENEX
page mapping capability to identify one file page at a time with a
buffer area in virtual memory. In addition to being faster than
reading the page by conventional methods, this means the operating
system's memory management takes care of references to pages
which happen to still be in memory, etc. The algorithm is as much
as 50 times faster than the standard INTERLISP-10 FILEPOS
function (depending on the length of the pattern).

770 Communications October 1977
of Volume 20
the ACM Number 10

There are several situations in which it may not be
advisable to use our algorithm. If the expected penetra-
tion i at which the pattern is found is small, the
preprocessing time is significant and one might there-
fore consider using the obvious intuitive algorithm.

As previously noted, our algorithm can be most
efficiently implemented on a byte-addressable ma-
chine. On a machine that does not allow byte addresses
to be incremented and decremented directly, two pos-
sible sources of inefficiency must be addressed: The
algorithm typically skips through string in steps larger
than 1, and the algorithm may back up through string.
Unless these processes are coded efficiently, it is prob-
ably not worthwhile to use our algorithm.

Fur thermore, it should be noted that because the
algorithm can back up through string, it is possible to
cross a page boundary more than once. We have not
found this to be a serious source of inefficiency.
However , it does require a certain amount of code to
handle the necessary buffering (if page I /O is being
handled directly as in our FFILEPOS) . One beauty of
the Knuth, Morris, and Pratt algorithm is that it avoids
this problem altogether.

A final situation in which it is unadvisable to use
our algorithm is if the string matching problem to be
solved is actually more complicated than merely finding
the first occurrence of a single substring. For example,
if the problem is to find the first of several possible
substrings or to identify a location in string defined by
a regular expression, it is much more advantageous to
use an algorithm such as that of Aho and Corasick [1].

It may of course be possible to design an algorithm
that searches for multiple patterns or instances of
regular expressions by using the idea of starting the
match at the right end of the pattern. However , we

• have not designed such an algorithm.

9. Historical Remarks

Our earliest formulation of the algorithm involved
only delta1 and implemented Observations 1, 2, and
3(a). We were aware that we could do something
along the lines of delta2 and Observation 3(b), but did
not precisely formulate it. Instead, in April 1974, we
coded the delta1 version of the algorithm in Interlisp,
merely to test its speed. We considered coding the
algorithm in PDP-10 assembly language but abandoned
the idea as impractical because of the cost of incre-
menting byte pointers by arbitrary amounts.

We have since learned that R.W. Gosper , of Stan-
ford University, simultaneously and independently dis-
covered the deltal version of the algorithm (private
communication).

In April 1975, we started thinking about the imple-
mentation again and discovered a way to increment
byte pointers by indexing through a table. We then
formulated a version of deltas and coded the algorithm

more or less as it is presented here. This original
definition of delta2 differed from the current one in the
following respect: If only the last m characters of pat
(call this substring subpat) were matched, deltas spec-
ified a slide to the second from the rightmost occur-
rence ofsubpat in pat (allowing this occurrence to "fall
off" the left end of pat) but without any special
consideration of the character preceding this occur-
rence.

The average behavior of that version of the algo-
rithm was virtually indistinguishable from that pre-
sented in this paper for large alphabets, but was
somewhat worse for small alphabets. However , its
worst case behavior was quadratic (i.e. required on
the order of i * patlen comparisons). For example,
consider searching for a pattern of the form CA(BA) r
in a string of the form ((XX)r (AA)(BA)r) * (e.g. r =
2, pat = " C A B A B A , " and string = " X X X X A A B A -
B A X X X X A A B A B A . . . ") . The original definition
of deltas allowed only a slide of 2 if the last " B A " of
pat was matched before the next " A " failed to match.
Of course in this situation this only sets up another
mismatch at the same character in string, but the
algorithm had to reinspect the previously inspected
characters to discover it. The total number of refer-
ences to string in passing i characters in this situation
was (r + 1) * (r + 2) * i/(4r + 2), where r = (patlen -
2)/2. Thus the number of references was on the order
of i * patlen.

However , on the average the algorithm was blind-
ingly fast. To our surprise, it was several times faster
than the string searching algorithm in the Tenex T E C O
text editor. This algorithm is reputed to be quite an
efficient implementat ion of the simple search algorithm
because it searches for the first character of pat one
full word at a time (rather than one byte at a time).

In the summer of 1975, we wrote a brief paper on
the algorithm and distributed it on request.

In December 1975, Ben Kuipers of the M.I .T.
Artificial Intelligence Labora tory read the paper and
brought to our attention the improvement to deltas
concerning the character preceding the terminal sub-
string and its reoccurrence (private communication).
Almost simultaneously, Donald Knuth of Stanford
University suggested the same improvement and ob-
served that the improved algorithm could certainly
make no more than order (i + patlen) * log(patlen)
references to string (private communication).

We mentioned this improvement in the next revi-
sion of the paper and suggested an additional improve-
ment , namely the replacement of both d e l t a I and deltas
by a single two-dimensional table. Given the mis-
matched char from string and the position j in pat at
which the mismatch occurred, this table indicated the
distance to the last occurrence (if any) of the substring
[char, pat(] + 1) pat(patlen)] in pat. The revised
paper concluded with the question of whether this
improvement or a similar one produced an algorithm

771 Communications October 1977
of Volume 20
the ACM Number 10

which was at worst linear and on the average "sub-
linear."

In January 1976, Knuth [5] proved that the simpler
improvement in fact produces linear behavior, even in
the worst case. We therefore revised the paper again
and gave delta2 its current definition.

In April 1976, R.W. Floyd of Stanford University
discovered a serious statistical fallacy in the first version
of our formula giving the expected value of the ratio
of cost to characters passed. He provided us (private
communication) with the current version of this for-
mula.

Thomas Standish, of the University of California at
Irvine, has suggested (private communication) that the
implementation of the algorithm can be improved by
fetching larger bytes in the fast loop (i.e. bytes contain-
ing several characters) and using a hash array to encode
the extended deltat table. Provided the difficulties at
the boundaries of the pattern are handled efficiently,
this could improve the behavior of the algorithm enor-
mously since it exponentially increases the effective
size of the alphabet and reduces the frequency of
common characters.

Acknowledgments. We would like to thank B.
Kuipers, of the M.I.T. Artificial Intelligence Labora-

tory, for his suggestion concerning delta2 and D. Knuth,
of Stanford University, for his analysis of the improved
algorithm. We are grateful to the anonymous reviewer
for Communications who suggested the inclusion of
evidence comparing our algorithm with that of Knuth,
Morris, and Pratt, and for the warnings contained in
Section 8. B. Mont-Reynaud, of the Stanford Research
Institute, and L. Guibas, of Xerox Palo Alto Research
Center, proofread drafts of this paper and suggested
several clarifications. We would also like to thank E.
Taft and E. Fiala of Xerox Palo Alto Research Center
for their advice regarding machine coding the algo-
rithm.

R e c e i v e d J u n e 1 9 7 5 ; r ev i sed A p r i l 1 9 7 6

R e f e r e n c e s
1. A h o , A . V . , a n d C o r a s i c k , M . J . Fas t p a t t e r n m a t c h i n g : A n a id
to b i b l i o g r a p h i c s e a r c h . C o m m . A C M 18, 6 (J u n e , 1 9 7 5) , 3 3 3 - 3 4 0 .
2 . B e e l e r , M . , G o s p e r , R . W . , a n d S c h r o e p p e l , R . H a k m e m .
M e m o N o . 2 3 9 , M . I . T . Ar t i f i c i a l I n t e l l i gence L a b . , M . I . T . , C a m -
b r i d g e , M a s s . , Feb . 2 9 , 1 9 7 2 .
3 . D e w e y , G . Relat iv Frequency o f Engl ish Speech Sounds . H a r -
v a r d U . P re s s , C a m b r i d g e , M a s s . , 1 9 2 3 , p. 185 .
4 . K n u t h , D . E . , M o r r i s , J . H . , a n d P r a t t , V . R . Fas t p a t t e r n m a t c h -
ing in s t r ings . T R C S - 7 4 - 4 4 0 , S t a n f o r d U . , S t a n f o r d , Ca l i f . , 1 9 7 4 .
5 . K n u t h , D . E . , M o r r i s , J . H . , a n d P r a t t , V . R . Fas t p a t t e r n m a t c h -
ing in s t r ings . (to a p p e a r in S I A M J. C o m p u t .) .

Profess iona l Act ivi t ies
C a l e n d a r of Even t s

ACM's calendar policy is to list open com-
puter science meetings that are held on a not-for-
profit basis. Not included in the calendar are edu-
cational seminars institutes, and courses. Sub-
mittals should be substantiated with name of the
sponsoring organization, fee schedule, and chair-
man ' s name and full address.

One telephone number contact for those in-
terested in attending a meeting will be given when
a number is specified for this purpose in the news
release text or in a direct communicat ion to this
periodical.

All requests for ACM sponsorship or coop-
eration should be addressed to Chairman, Con-
ferences and Symposia Committee. Dr. W.S.
Dorsey, Dept. 503/504 Rockwell International
Corporation, Anaheim, CA 92803. For European
events, a copy of the request should also be sent
to the European Regional Representative. Tech-
nical Meeting Request Forms for this purpose
can be obtained f rom ACM Headquar ters or
from the European Regional Representative. Lead
time should include 2 months (3 months if for
Europe) for processing of the request, plus the
necessary months (minimum 2) for any publicity
to appear in Communications.

Events for which ACM or a subunit of ACM
is a sponsor or collaborator are indicated by • .
Dates precede titles.
In this issue the calendar is given to April
1978. New Listings are shown first; they will ap-
pear next month as Previous Listings.

N E W LISTINGS
16-17 November 1977

• Workshop on Future Directions in Computer
Architecture, Austin, Tex. Sponsors: ACM SIG-
ARCH, IEEE-CS TCCA, and University of Texas
at Austin. Conf. chm: G. Jack Lipovski. Dept. of
EE, University of Texas, Austin, TX 78712.

5-9 December 1977
Third International Symposium on Com-

puting Methods in Applied Sciences and Engi-
neering, Versailles, France. Organized by IRIA.
Sponsors: AFCET, GAMNI, IFIP WG7.2 Con-
tact: Institut de Recherche D' Informat ique et
D'Automatique, Domaine de Voincean, Rocquen-
court, 78150 Le Chesnay, France.

13-15 February 1978
• Symposium on Computer Network Proto-
cols, Li6ge, Belgium. Sponsors: IFIP T.C.6 and
A C M Belgian Chapter. Contact: A. Danthine,
Symposium on Computer Network Protocols,
Avenue des Tilleuls, 49, B-4000, Li6ge, Belgium.

3 March 1978
Indiana University Computer Network Con-

ference on Instructional Computing Applications,
Indiana University-East, Richmond, Ind. Sponsor:

7 7 2

Indiana University Computing Network. Chm:
Tom Osgood, IU-EAST, 2325 Chester Boulevard,
Richmond, IN 47374.

12-17 March 1978
Symposium on Computer Simulation of Bulk

Matter from Molecular Perspective, Anaheim,
Calif.; par t of 1978 Annual Spring Meeting of
American Chemical Society. Sponsor: ACS Div.
Computers in Chemistry. Contact: Peter Lykes,
Illinois Institute of Technology, Chicago, IL
60616; 312 567-3430.

28-30 March 1978
3rd Symposium on Programming, Paris,

France. Sponsor: Centre National de la Recherche
Sciantifique (CNRS) and Universit6 Pierre et
Marie Curie. Contact S6cretariat du Colloque,
Institut de Programmation, 4, Place Jussieu,
75230 Paris Cedex 05, France.

29-31 March 1978
Conference on Information Sciences and

Systems, Johns Hopkins University, Baltimore,
Md. Contact: 1978 CISS, Depar tment of Electri-
cal Engineering, Johns Hopkins University, Balti-
more, MD 21218.

3-7 April 1978
Fifth International Symposium on Comput-

ing in Literary and Linguistic Research, Univer-
sity of Aston, Birmingham, England. Sponsor:
Association for Li terary and Linguistic Comput-
ing. Contact: The Secretary (CLLR), Modern
Languages Dept., University of Aston, Birming-
ham B4 7ET, England.

4-8 April 1978
Second International Conference on Combi-

natoriaI Mathematics, Barbizon-Plaza Hotel, New
York City. Sponsor: New York Academy of Sci-
ences. Contact: Conference Dept., New York
Academy of Sciences, 2 East 63 St., New York,
NY 10021; 212 838-0230.

15-19 May 1978
16th Annual Convention of the Association

for Educational Data Systems, Atlanta, Ga.
Sponsor: AEDS. Contact: James E. Eisele, Office
of Computing Activities, University of Georgia,
Athens, G A 30602.

22-25 May 1978
Sixth International C O D A T A Conference,

Taormina, Italy. Sponsor: International Council
of Scientific Unions Comm. on Da ta for Science
and Technology. Contact: CODATA Secretariat,
51, Boulevard de Montmorency, 75016 Paris,
France.

24-26 May 1978
• 1978 S I A M National Meeting, University of
Wisconsin, Madison, Wis. Sponsor: SIAM in co-
operation with ACM SIGSAM. Contact: H.B.
Hair , SIAM, 33 South 17 St., Philadelphia, PA
19103; 215 564-2929.

26 May 1978
• Computer Algebra Symposium, University of
Wisconsin, Madison, Wis.; par t of the 1978 SIAM
National Meeting. Sponsor: SIAM in cooperat ion
with A C M SIGSAM. Syrup. chin: George E.

C o m m u n i c a t i o n s
o f
t h e A C M

Collins, Computer Sciences Dept,, University of
Wisconsin, 1210 W. Dayton Street, Madison WI
53706.

12-16 June 1978
7th Triennial IFAC World Congress. Spon-

sor: IFAC. Contact: IFAC 78 Secretariat, PUB
192, 00101 Helsinki 10, Finland.

19-22 June 1978
Annual Conference of the American Society

for Engineering Education (Computers in Edu-
cation Division Program), University of British
Columbia, Vancouver, B.C., Canada. Sponsor:
ASEE Computers in Education Division. Contact:
ASEE, Suite 400, One DuPont Circle, Washing-
ton, DC 20036.

22-23 June 1978
• International Conference on the Perform-
ance of Computer Installations, Gardone Riviera,
Lake Garda, Italy. Sponsor: Sperry Univac, Italy,
with cooperation of ACM SIGMETRICS,
ECOMA, AICA, ACM Italian Chapter. Contact:
Conference Secretariat, CILEA, Via Raffaello
Sanzio 4, 20090 Segrate, Milan, Italy.

2-4 August 1978
• International Conference on Databases: Im-
proving Usability and Responsiveness, Technion,
Haifa, Israel. Sponsor: Technion in cooperat ion
with ACM. Prog. chm: Ben Shneiderman, Dept.
of Information Systems Management, University
of Maryland, College Park, MD 20742.

13-18 August 1978
Symposium on Modeling and Simulation

Methodology, Weizmann Institute of Science, Re-
hovot, Israel. Contact: H.J. Highland, State Uni-
versity Technical College Farmingdale, N.Y., or
B.P. Zeigler, Dept. of Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel.

30 October-1 November 1978
1978 S I A M Fall Meeting, Hyat t Regency

Hotel, Knoxville, Tenn. Sponsor: SIAM. Contact:
H.B. Hair , SIAM, 33 South 17th St., Philadelphia,
PA 19103; 215 564-2929.

PREVIOUS LISTINGS

17-19 October 1977
• A C M 77 Annual Conference, Olympic Ho-
tel. Seattle, Wash. Gen. chin: James S. Ketchel.
Box 16156, Seattle, WA 98116; 206 935-6776.

17-21 October 1977
Systems 77, Computer Systems and Their

Application, Munich, Federal Republic of Ger-
many. Contact: Miinehener Messe- und Ausstel-
lungsgesellschaft mbh, Kongresszentrum, Kong-
ressbiiro Systems 77, Postfach 12 10 09, D-8000
Mfinchen 12, Federal Republic of Germany.

18-19 October 1977
M S F C / V A H Data Management Symposium,

Sheraton Motor Inn, Huntsville, Ala. Sponsors:
NASA Marshall Space Flight Center, University
of Alabama in Huntsville. Contact: General Chair-

(Calendar continued on p. 781)

O c t o b e r 1 9 7 7
V o l u m e 2 0
N u m b e r 10

