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Suppose that pat is a string of length patlen and we 
wish to find the position i of the leftmost character in 
the first occurrence of pat in some string string: 
pa t :  AT-THAT 
s t r i n g :  . . .  WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .  

The obvious search algorithm considers each character  
position of string and determines whether  the succes- 
sive patlen characters of string starting at that position 
match the successive patlen characters of pat. Knuth,  
Morris,  and Pratt  [4] have observed that this algorithm 
is quadratic.  That  is, in the worst case, the number  of 
comparisons is on the order  of i * patlen.l 

Knuth,  Morris, and Pratt  have described a linear 
search algorithm which preprocesses pat in t ime linear 
in patlen and then searches string in t ime linear in i + 
patlen. In particular, their algorithm inspects each of 
the first i + patlen - 1 characters of string precisely 
once. 

We now present a search algorithm which is usually 
"subl inear":  It may not inspect each of the first i + 
patlen - 1 characters of string. By "usually sublinear" 
we mean that the expected value of the number  of 
inspected characters in string is c * (i + patlen), where 
c < 1 and gets smaller as patlen increases. There  are 
patterns and strings for which worse behavior  is ex- 
hibited. However ,  Knuth,  in [5], has shown that the 
algorithm is linear even in the worst case. 

The actual number  of characters inspected depends 
on statistical propert ies  of the characters in pat and 
string. However ,  since the number  of characters in- 
spected on the average decreases as patlen increases, 
our  algorithm actually speeds up on longer patterns.  

Fur thermore ,  the algorithm is sublinear in another  
sense: It has been implemented  so that on the average 
it requires the execution of fewer than i + patlen 
machine instructions per search. 

The organization of this paper  is as follows: In the 
next two sections we give an informal description of 
the algorithm and show an example of how it works. 
We then define the algorithm precisely and discuss its 
efficient implementat ion.  After  this discussion we pres- 
ent the results of a thorough test of a particular 
machine code implementat ion of our algorithm. We 
compare  these results to similar results for the Knuth,  
Morris,  and Pratt algorithm and the simple search 
algorithm. Following this empirical evidence is a theo- 
retical analysis which accurately predicts the perform- 
ance measured.  Next we describe some situations in 
which it may not be advantageous to use our algorithm. 
We conclude with a discussion of the history of our 
algorithm. 

1 The quadratic nature of this algorithm appears  when initial 
substrings of pat occur often in string. Because this is a relatively 
rare phenomenon  in string searches over English text, this simple 
algorithm is practically linear in i + patlen and therefore acceptable 
for most  applications. 
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2. Informal Description 

The basic idea behind the algori thm is that  more  
informat ion is ga ined by matching the pat tern  f rom 
the right than f rom the left. Imagine  that  pat is placed 
on top of  the left-hand end of  string so that  the first 
characters  of  the two strings are aligned. Consider  
what  we learn if we fetch the patlenth character ,  char, 
of string. This is the character  which is aligned with 
the last character  of  pat. 

Observation 1. If  char is known not  to occur  in pat, 
then we know we need not  consider  the possibility of  
an occurrence  of pat starting at string posit ions 1, 2, 
• . . or  patlen: Such an occurrence  would require  that  
char be a character  of  pat. 

Observation 2. More  generally,  if the last (right- 
most)  occurrence  o f  char in pat is deltal characters  
f rom the right end of  pat, then we know we can slide 
pat down delta~ positions without  checking for matches.  
The reason is that  if we were to move  pat by less than 
deltas, the occurrence  of  char in string would be aligned 
with some character  it could not  possibly match:  Such 
a match would require an occurrence  of  char in pat to 
the right of  the r ightmost .  

There fore  unless char matches  the last character  of  
pat we can move  past delta1 characters  of  string with- 
out  looking at the characters  skipped;  delta~ is a 
funct ion of  the character  char obta ined  f rom string. If  
char does not occur  in pat, delta~ is patlen. If  char does 
occur in pat, delta~ is the difference be tween patlen 
and the position of  the r ightmost  occurrence  of  char in 
pat. 

Now suppose that char matches  the last character  
of  pat. Then we must  de termine  whether  the previous 
character  in string matches  the second f rom the last 
character  in pat. I f  so, we cont inue backing up until 
we have matched all of  pat (and thus have succeeded 
in finding a match) ,  or  else we come to a mismatch at 
some new char after matching the last m characters  of  
pat. 

In this latter case, we wish to shift pat down to 
consider  the next plausible juxtaposi t ion.  Of  course,  
we would like to shift it as far down as possible. 

Observation 3(a). We can use the same reasoning 
described a b o v e - b a s e d  on the mismatched character  
char and del ta l - to  slide pat down k so as to align the 
two known occurrences  of  char. Then  we will want  to 
inspect the character  of  string aligned with the last 
character  of  pat. Thus we will actually shift our  at ten- 
tion down string by k + m. The  distance k we should 
slide pat depends  on where  char occurs in pat. If  the 
r ightmost  occurrence  of  char in pat is to the right of  
the mismatched character  (i.e. within that  part  of  pat 
we have already passed) we would have to move  pat 
backwards  to align the two known occurrences  of  char. 
We would not  want  to do this. In this case we say that  
delta~ is "wor th less"  and slide pat forward by k = 1 
(which is always sound).  This shifts our  a t tent ion down 
string by 1 + m. If  the r ightmost  occurrence  of  char in 
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pat is to the left of  the mismatch,  we can slide forward  
by k = deltal(char) - rn to align the two occurrences  
of  char. This shifts our  a t tent ion down string by 
deltal(char) - m + m = deltas(char). 

However ,  it is possible that  we can do bet ter  than 
this. 

Observation 3(b) .  We know that  the next m char- 
acters of string match the final m characters  of pat. Let  
this substring of  pat be subpat. We also know that  this 
occurrence  ofsubpat instring is preceded by a character  
(char) which is different f rom the character  preceding 
the terminal  occurrence  of  subpat in pat. Roughly  
speaking,  we can generalize the kind of  reasoning used 
above  and slide pat down by some amount  so that  the 
discovered occurrence  of  subpat in string is aligned 
with the r ightmost  occurrence  of  subpat in pat which is 
not  p receded  by the character  preceding its terminal  
occurrence  in pat. We call such a reoccur rence  of  
subpat in pat a "plausible r eoccur rence . "  The reason 
we said " roughly  speaking"  above  is that  we must  
allow for the r ightmost  plausible reoccurrence  ofsubpat 
to "fall off"  the left end of  pat. This is made  precise 
later. 

There fore ,  according to Observat ion  3(b) ,  if we 
have matched  the last m characters  of  pat before  
finding a mismatch,  we can move  pat down by k 
characters ,  where k is based on the position in pat of 
the r ightmost  plausible reoccurrence  of  the terminal  
substring of  pat having m characters .  Af te r  sliding 
down by k,  we want  to inspect the character  of  string 
aligned with the last character  of pat. Thus we actually 
shift our  a t tent ion down string by k + rn characters .  
We call this distance deltaz, and we define deltaz as a 
funct ion of  the position ] in pat at which the mismatch 
occurred,  k is just the distance be tween the terminal  
occurrence  of  subpat and its r ightmost  plausible reoc- 
currence  and is always greater  than or  equal to 1. m is 
just patlen - ]. 

In the case where we have matched  the final m 
characters  of pat before  failing, we clearly wish to shift 
our  a t tent ion down string by 1 + m or deltal(char) or 
deltaz(]), according to whichever  allows the largest 
shift. F rom the definit ion of  deltae as k + m where  k is 
always greater  than or  equal to 1, it is clear that  delta2 
is at least as large as 1 + m. Therefore  we can shift 
our  at tent ion down string by the maximum of  just the 
two deltas. This rule also applies when m --- 0 (i.e. 
when we have not yet matched  any characters  of  pat), 
because in that case ] = patlen and delta2(]) >- 1. 

3. Example 

In the following example  we use an "1 '  " under  
string to indicate the current  char. When  this "po in t e r "  
is pushed to the right, imagine that it drags the right 
end of  pat with it (i.e. imagine pat has a hook  on its 
right end).  W h e n  the pointer  is moved  to the left, 
keep  pat fixed with respect  to string. 
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pat: AT-THAT 
s t r i n g :  ... WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .  

÷ 

Since "F"  is known not to occur in pat, we can appeal 
to Observation 1 and move the pointer (and thus pat) 
down by 7: 

pat :  AT-THAT 

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ... 

÷ 

Appealing to Observation 2, we can move the pointer 
down 4 to align the two hyphens: 

pat: AT-THAT 

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ... 

÷ 

Now char matches its opposite in pat. Therefore we 
step left by one: 

pa t :  AT-THAT 
s t r i n g :  . . .  WHICH-FINALLY-HALTS.--AT T~IAT POINT . . .  

÷ 

Appealing to Observation 3(a), we can move the 
pointer to the right by 7 positions because "L"  does 
not occur in pat. 2 Note that this only moves pat to the 
right by 6. 

pa t :  AT-THAT 
s t r i n g :  . . .  WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .  

÷ 

Again char matches the last character of pat. Stepping 
to the left we see that the previous character in string 
also matches its opposite in pat. Stepping to the left a 
second time produces: 

pa t :  AT-THAT 

string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ... 

÷ 

Noting that we have a mismatch, we appeal to Obser- 
vation 3(b). The delta2 move is best since it allows us 
to push the pointer to the right by 7 so as to align the 
discovered substring " A T "  with the beginning of pat. ~ 

pat: AT-THAT 
s t r i n g :  . . .  WHICH-FINALLY-HALTS.--AT-THAT-POINT . . .  

÷ 

This time we discover that each character of pat 
matches the corresponding character in string so we 
have found the pattern. Note that we made only 14 
references to string. Seven of these were required to 
confirm the final match. The other seven allowed us to 
move past the first 22 characters of string. 

2 Note that deltaz would allow us to move the pointer  to the 
right only 4 positions in order to align the discovered substring "T"  
in string with its second from last occurrence at the beginning of the 
word " T H A T "  in pat. 

3 The delta~ move only allows the pointer  to be pushed to the 
right by 4 to align the hyphens. 
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4. The Algorithm 

We now specify the algorithm. The notation pat(j) 
refers to the j th character in pat (counting from 1 on 
the left). 

We assume the existence of two tables, delta1 and 
deltas. The first has as many entries as there are 
characters in the alphabet. The entry for some charac- 
ter char will be denoted by deltas(char). The second 
table has as many entries as there are character posi- 
tions in the pattern. The j th entry will be denoted by 
delta2(j). Both tables contain non-negative integers. 

The tables are initialized by preprocessing pat, and 
their entries correspond to the values deltaa and delta2 
referred to earlier. We will specify their precise con- 
tents after it is clear how they are to be used. 

Our search algorithm may be specified as follows: 

stringlen ,,-- length of string. 
i ~ patlen. 

top: if i > stringlen then return false. 

j ,,-- patlen. 
loop: i f j  = 0 then re turnJ  + 1. 

if string(i) = pat(j) 
then 
j ~ " - j - 1 .  
i , ~ - - i - 1 .  
goto loop. 
close; 

i ~-- i + max(delta1 (string(i)), delta2 (j)). 
goto top. 

If the above algorithm returns false, then pat does not 
occur in string. If the algorithm returns a number,  
then it is the position of the left end of the first 
occurrence of pat in string. 

The deltal table has an entry for each character 
char in the alphabet. The definition of delta~ is: 

deltas(char) = If char does not occur in pat, then pat- 
len; else patlen - j, where j is the 
maximum integer such that pat(j) = 
char. 

The deltaz table has one entry for each of the integers 
from 1 to patlen. Roughly speaking, delta2(j) is (a) the 
distance we can slide pat down so as to align the 
discovered occurrence (in string) of the last patlen-j  
characters of pat with its rightmost plausible reoccurr- 
ence, plus (b) the additional distance we must slide the 
"pointer"  down so as to restart the process at the right 
end of pat. To define delta2 precisely we must define 
the rightmost plausible reoccurrence of a terminal 
substring of pat. To this end let us make the following 
conventions: Let $ be a character that does not occur 
in pat and let us say that if i is less than 1 then pat(i) is 
$. Let us also say that two sequences of characters [c~ 
• . . c,] and [d~ . . . d,]  "unify" if for all i from 1 to n 
either c~ = d i  or c~ = $ or d~ = $. 

Finally, we define the position of the rightmost 
plausible reoccurrence of the terminal substring which 
starts at posit ionj + 1, rpr(j), for j  from 1 topatlen, to 
be the greatest k less than or equal to patlen such that 
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[pat( j  + 1) . . .  pat(pat len)]  and [pat(k)  . . .  p a t ( k  + 
pa t l en  - j - 1)] unify and ei ther k -< 1 or p a t ( k  - 1) :~ 
pat(]).4 (That  is, the posit ion of  the r ightmost  plausible 
reoccurrence  of  the substring s u b p a t ,  which starts at j 
+ 1, is the r ightmost  place where s u b p a t  occurs in pat  
and is not preceded by the character  pat( j )  which 
precedes  its terminal o c c u r r e n c e - w i t h  suitable allow- 
ances for either the reoccurrence  or  the preceding 
character  to fall beyond  the left end of  pat .  Note  that 
rpr( j )  may be negative because of  these allowances.) 

Thus the distance we must  slide pat  to align the 
discovered substring which starts at j + 1 with its 
r ightmost  plausible reoccurrence  is j + 1 - rpr ( j ) .  The 
distance we must move  to get back to the end of  pat  is 
just pat len  - j .  delta2(j) is just the sum of these two. 
Thus we define delta2 as follows: 

delta2(j) = pat len  + 1 - rpr( j ) .  

To make  this definition clear, consider  the following 
two examples:  

j :  1 2 3 4 5 6 7 8 9 
p a t :  A B C X X X A B C 
d e l t a 2 ( J ) : _  14 13 12 11 10 9 11 10 1 

j: 1 2 3 4 5 6 7 8 9 
pat: A B Y X C D E Y X 
delta2(J):_ 17 16 15 14 13 12 7 10 1 

5. Implementation Considerations 

The most  frequently executed part  of  the algori thm 
is the code that embodies  Observat ions  1 and 2. The 
following version of  our  algori thm is equivalent  to the 
original version provided that  deltao is a table contain- 
ing the same entries as delta1 except  that 
deltao(pat(patlen))  is set to an integer large which is 
greater  than s tr inglen + pat len  (while del ta l (pat (pat len) )  
is always 0). 

stringlen ,:-- length of string. 
i ~-- patlen. 
if i > stringlen then return false. 

fast: i ,--- i + delta0(string(i)). 
if i <- stringlen then goto fast. 

undo: if i <- large then return false. 
i ~-- (i - large) - 1. 
j ~-- patlen - 1. 

slow: ifj = 0then returni + 1. 
if string(i) = pat(j) 

then 
j * . - j - 1 .  
i * - . - i - 1 .  
goto slow. 
close; 

i ,~- i + max(deltal(string(i)), deltaz(j)). 
goto fast. 

4 Note that whenj = patlen, the two sequences [pat(patlen + 1) 
• . . pat(patlen)] and [pat(k). i • pat(k - 1)] are empty and therefore 
unify. Thus, rpr(paden) is simply the greatest k less than or equal to 
patlen such that k <- 1 or pat(k - 1) ~ pat(patlen). 
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Of course we do not  actually have two versions of  
deltax. Instead we use only deltao, and in place of  deltax 
in the m a x  expression we merely  use the deltao entry 
unless it is large (in which case we use 0). 

Note  that the f a s t  loop just scans down s t r ing ,  
effectively looking for the last character  pa t (pa t l en )  in 
pat ,  skipping according to deltax. (delta2 can be ignored 
in this case since no terminal  substring has yet  been 
matched,  i.e. delta2(patlen) is always less than or  equal 
to the cor responding  delta1.) Contro l  leaves this loop 
only when i exceeds s t r ing len .  The test at u n d o  decides 
whether  this situation arose because all of  s tr ing  has 
been scanned or  because pat (pa t len)  was hit (which 
caused i to be incremented  by large).  If  the first case 
obtains,  pa t  does not occur  in s tr ing and the algori thm 
returns false. If  the second case obtains,  then i is 
res tored (by subtract ing large) and we enter  the s low  
loop which backs up checking for matches.  When  a 
mismatch is found we skip ahead  by the max imum of 
the original delta1 and delta2 and reenter  the f a s t  loop.  
We est imate that  80 percent  of  the time spent in 
searching is spent in the f a s t  loop.  

T h e  fas t  loop can be coded  in four  machine instruc- 
tions: 

fast: char ~--string(i). 
i *- i  + deltao(char). 
skip the next instruction if i > stringlen. 
goto fast. 

undo: . . . 

We have implemented  this algori thm in P D P - 1 0  assem- 
bly language.  In our  implementa t ion  we have reduced  
the n u m b e r  of  instructions in the f a s t  loop to three by 
translating i down by s t r ing len;  we can then test i 
against 0 and condit ionally j ump  to fa s t  in one  instruc- 
tion. 

On  a byte addressable machine  it is easy to imple- 
ment  "char  ~- - s t r ing( i ) "  and "i ~-- i  + del tao(char)"  in 
one  instruction each.  Since our  implementa t ion  was in 
PDP-10  assembly language we had to employ  byte 
pointers to access characters  in s tr ing.  The PDP-10  
instruction set provides an instruction for increment ing 
a byte pointer  by one but not by o ther  amounts .  Ou r  
code therefore  employs  an array of  200 indexing byte 
pointers  which we use to access characters  in s tr ing  in 
one indexed instruction (after comput ing  the index) at 
the cost of  a small (five-instruction) overhead  every 
200 characters .  It should be noted that this trick only 
makes  up for the lack of  direct byte addressing;  one 
can expect  our  algori thm to run somewhat  faster on a 
byte-addressable  machine.  

6. Empirical Evidence 

We have exhaustively tested the above PDP-10  
implementa t ion  on r andom test data.  To ga ther  the 
test pat terns  we wrote  a p rogram which r andomly  
selects a substring of  a given length f rom a source 
string. We used this p rogram to select 300 pat terns  of 
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length patlen, for each patlen from 1 to 14. We then Fig. 1. 
used our algorithm to search for each of the test 1.0 - 
patterns in its source string, starting each search in a 
random position somewhere in the first half of the 

0.9 

source string. All of the characters for both the patterns 
and the strings were in pr imary memory  (rather than a 
secondary storage medium such as a disk). 0.8 

We measured the cost of each search in two ways: 
the number  of references made to string and the total 
number  of machine instructions that actually got exe- ~ ~ 07 
cuted (ignoring the preprocessing to set up the two 
tables). ~ o.e 

By dividing the number  of references to string by i 
the number  of characters i - 1 passed before the ~ o.s 
pattern was found (or string was exhausted),  we ob- -~ i 
tained the number  of references to string per character 
passed. This measure is independent  of the particular ~ 0., 
implementat ion of the algorithm. By dividing the num- 
ber of instructions executed by i - 1, we obtained the 
average number  of instructions spent on each character ~ 03 - 
passed. This measure depends upon the implementa-  
tion, but we feel that it is meaningful since the imple- 0.2 - 
mentat ion is a straightforward encoding of the algo- 
rithm as described in the last section. 

We then averaged these measures across all 300 0.1- 
samples for each pattern length. 

Because the performance of the algorithm depends o _ 
upon the statistical propert ies  of pat and string (and o 
hence upon the propert ies of the source string from 
which the test patterns were obtained),  we per formed Fig. 2 
this experiment  for three different kinds of source 7 
strings, each of length 10,000. The first source string 
consisted of a random sequence of O's and l ' s .  The 6 
second source string was a piece of English text ob- 
tained from an online manual .  The third source string 
was a random sequence of characters from a 100- ~ 
character alphabet.  

In Figure 1 the average number  of references to ~ , 
string per character in string passed is plotted against 
the pattern length for each of three source strings. 
Note that the number  of references to string per o 3 
character passed is less than 1. For example,  for an ~_ 
English pattern of length 5, the algorithm typically -~ 
inspects 0.24 characters for every character passed. 
That  is, for every reference to string the algorithm 

1 
passes about  4 characters,  or, equivalently, the algo- 
rithm inspects only about  a quarter  of the characters it 
passes when searching for a pattern of length 5 in an °o 
English text string. Fur thermore ,  the number  of refer- 
ences per character drops as the patterns get longer. 
This evidence supports the conclusion that the algo- 
rithm is "subl inear"  in the number  of references to 
string. 

For comparison,  it should be noted that the Knuth,  
Morris, and Pratt  algorithm references string precisely 
1 t ime per character passed. The simple search algo- 
rithm references string about  1.1 times per character 
passed (determined empirically with the English sam- 
ple above).  
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EMPIRICAL CO~T 

2 4 6 8 10 12 14 
LENGTH OF PATTERN 

I I I I I I I I I I I I [ 

EMPIRICAL COST 

3.56 

I O.473 
0.266 

I I I I i ] ] [ I I I [ I 
2 4 6 8 10 12 14 

LENGTH OF PATTERN 

In Figure 2 the average number  of instructions 
executed per character passed is plotted against the 
pattern length. The most obvious feature to note is 
that the search speeds up as the patterns get longer. 
That  is, the total number  of instructions executed in 
order to pass over  a character decreases as the length 
of the pattern increases. 

Figure 2 also exhibits a second interesting feature 
of our implementat ion of the algorithm: For sufficiently 
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large alphabets and sufficiently long patterns the algo- 
rithm executes fewer than 1 instruction per character 
passed. For example,  in the English sample,  less than 
1 instruction per character is executed for patterns of 
length 5 or more.  Thus this implementat ion is "sub- 
l inear" in the sense that it executes fewer than i + 
patlen instructions before finding the pat tern at i. This 
means that no algorithm which references each char- 
acter it passes could possibly be faster than ours in 
these cases (assuming it takes at least one instruction 
to reference each character).  

The best alternative algorithm for finding a single 
substring is that of Knuth,  Morris, and Pratt.  If  that 
algorithm is implemented in the extraordinarily effi- 
cient way described in [4, pp. 11-12] and [2, I tem 
179])  then the cost of looking at a character can be 
expected to be at least 3 - p instructions, where p is 
the probability that a character just fetched from string 
is equal to a given character of pat. Hence a horizontal 
line at 3 - p instructions/character represents the best 
(and, practically, the worst) the Knuth,  Morris,  and 
Pratt algorithm can achieve. 

The simple string searching algorithm (when coded 
with a 3-instruction fast loop 6) executes about  3.3 
instructions per character (determined empirically on 
the English sample above).  

As noted, the preprocessing time for our algorithm 
(and for Knuth,  Morris, and Pratt) has been ignored. 
The cost of this preprocessing can be made linear in 
patlen (this is discussed further in the next section) and 
is trivial compared to a reasonably long search. We 
made no at tempt to code this preprocessing efficiently. 
However ,  the average cost (in our implementat ion)  
ranges from 160 instructions (for strings of length 1) 
to about 500 instructions (for strings of length 14). It 
should be explained that our code uses a block transfer 
instruction to clear the 128-word delta~ table at the 
beginning of the preprocessing, and we have counted 
this single instruction as though it were 128 instruc- 
tions. This accounts for the unexpectedly large instruc- 
tion count for preprocessing a one-character  pattern.  

7. Theoretical Analysis 

The preprocessing for delta~ requires an array the 
size of the alphabet.  Our  implementat ion first initial- 
izes all entries of this array to patlen and then sets up 

s This implementation automatically compiles pat into a machine 
code program which implicitly has the skip table built in and which 
is executed to perform the search itself. In [2] they compile code 
which uses the PDP-10 capability of fetching a character and 
incrementing a byte address in one instruction. This compiled code 
executes at least two or three instructions per character fetched 
from string, depending on the outcome of a comparison of the 
character to one from pat. 

6 This loop avoids checking whether string is exhausted by 
assuming that the first character of pat occurs at the end of string. 
This can be arranged ahead of time. The loop actually uses the same 
three instruction codes used by the above-referenced implementation 
of the Knuth, Morris, and Pratt algorithm. 
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delta1 in a linear scan through the pattern.  Thus our 
preprocessing for delta1 is linear in patlen plus the size 
of the alphabet.  

At a slight loss of efficiency in the search speed 
one could eliminate the initialization of the deltal 
array by storing with each entry a key indicating the 
number  of times the algorithm has previously been 
called. This approach still requires initializing the array 
the first t ime the algorithm is used. 

To implement  our algorithm for extremely large 
alphabets,  one might implement  the deltal table as a 
hash array. In the worst case, accessing delta~ during 
the search itself could require order patlen instruc- 
tions, significantly impairing the speed of the algo- 
rithm. Hence the algorithm as it stands almost certainly 
does not run in time linear in i + patlen for infinite 
alphabets.  

Knuth,  in analyzing the algorithm, has shown that 
it still runs in linear time when deltaa is omitted,  and 
this result holds for infinite alphabets.  Doing this, 
however,  will drastically degrade the performance of 
the algorithm on the average.  In [5] Knuth exhibits an 
algorithm for setting up delta2 in time linear in patlen. 

From the preceding empirical evidence, the reader  
can conclude that the algorithm is quite good in the 
average case. However ,  the question of its behavior  in 
the worst case is nontrivial. Knuth has recently shed 
some light on this question. In [5] he proves that the 
execution of the algorithm (after preprocessing) is 
linear in i + patlen, assuming the availability of array 
space linear in patlen plus the size of the alphabet .  In 
particular, he shows that in order to discover that pat 
does not occur in the first i characters of string, at 
most 6 * i characters from string are matched with 
characters in pat. He goes on to say that the constant 6 
is probably much too large, and invites the reader  to 
improve the theorem.  His proof  reveals that the linear- 
ity of the algorithm is entirely due to delta2. 

We now analyze the average behavior  of the algo- 
rithm by presenting a probabilistic model of its per- 
formance.  As will become clear, the results of this 
analysis will support  the empirical conclusions that the 
algorithm is usually "subl inear"  both in the number  of 
references to string and the number  of instructions 
executed (for our implementat ion).  

The analysis below is based on the following simpli- 
fying assumption: Each character of pat and string is 
an independent random variable. The probabili ty that 
a character from pat or string is equal to a given 
character of the alphabet  is p .  

Imagine that we have just moved pat down string 
to a new position and that this position does not yield 
a match.  We want to know the expected value of the 
ratio between the cost of discovering the mismatch 
and the distance we get to slide pat down upon findir/g 
the mismatch. If  we define the cost to be the total 
number  of references made to string before discovering 
the mismatch, we can obtain the expected value of the 
average number  of references to string per character 
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passed. If we define the cost to be the total number of 
machine instructions executed in discovering the mis- 
match, we can obtain the expected value of the number 
of instructions executed per character passed. 

In the following we say "only the last m characters 
of pat match" to mean "the last m characters of pat 
match the corresponding m characters in string but the 
(m + 1)-th character from the right end of pat fails tO 
match the corresponding character in string." 

The expected value of the ratio of cost to characters 
passed is given by: 

~=o cost(m) * prob(m) 

)) m=0 prob(m) * ~ k~=l sk ip(m,k)  * k 

where cost(m) is the cost associated with discovering 
that only the last m characters of pat match; prob(m) is 
the probability that only the last m characters of pat 
match; and skip (m, k) is the probability that, supposing 
only the last m characters of pat match, we will get to 
slide pat down by k. 

Under  our assumptions, the probability that only 
the last m characters of pat match is: 

prob(m) = pro(1 - p)/(1 - ppatten).  

(The denominator is due to the assumption that a 
mismatch exists.) 

The probability that we will get to slide pat down 
by k is determined by analyzing how i is incremented. 
However,  note that even though we increment i by the 
maximum max of the two deltas, this will actually only 
slide pat down by max - m, since the increment of i 
also includes the m necessary to shift our attention 
back to the end of pat. Thus when we analyze the 
contributions of the two deltas we speak of the amount 
by which they allow us to slide pat down, rather than 
the amount by which we increment i. Finally, recall 
that if the mismatched character char occurs in the 
already matched final m characters of pat, then deltaa 
is worthless and we always slide by deltas. The proba- 
bility that deltal is worthless is just (1 - (1 - p)m). Let 
us call this probdelta~worthless(m). 

The conditions under which delta~ will naturally let 
us slide forward by k can be broken down into four 
cases as follows: (a) delta~ will let us slide down by 1 if 
char is the (m + 2)-th character from the righthand 
end of pat (or else there are no more characters in pat) 
and char does not occur to the right of that position 
(which has probability (1 - p )"  * (if m + 1 = patlen 
then 1 else p)).  (b) delta1 allows us to slide down k, 
where 1 < k < patlen - m, provided the rightmost 
occurrence of char in pat is m + k characters from the 
right end of pat (which has probability p * (1 - 
p)k+m-~). (c) When patlen - m > 1, deltai allows us to 
slide past patlen - m characters if char does not occur 
in pat at all (which has probability (1 - p)paae,-1 given 
that we know char is not the (m + 1)-th character from 

7 6 8  

the right end of pat). Finally, (d) delta~ never allows a 
slide longer than patlen - m (since the maximum 
value of deltal is patlen). 

Thus we can define the probability probdelta~(m, 
k) that when only the last m characters of pat match, 
delta~ will allow us to move down by k as follows: 

probdeltal(m, k) = i f k  = 1 
t h e n  

(1 - p ) m .  ( i f m  + 1 = patlen t h e n  1 else p ) ;  

e lse i f  I < k < patlen - m t h e n p  * (1 - p)k+, . -1;  
e lseif  k = patlen - m t hen  (1 - p )p . ae . -1 ;  

else ( i .e .  k > patlen - m) O. 

(It should be noted that we will not put these formulas 
into closed form, but will simply evaluate them to 
verify the validity of our empirical evidence.) 

We now perform a similar analysis for deltas; deltas 
lets us slide down by k if (a) doing so sets up an 
alignment of the discovered occurrence of the last m 
characters of pat in string with a plausible reoccurrence 
of those m characters elsewhere in pat, and (b) no 
smaller move will set up such an alignment. The 
probability probpr(m, k) that the terminal substring of 
pat of length m has a plausible reoccurrence k charac- 
ters to the left of its first character is: 

probpr(m,  k) = if m + k < patlen 
t hen  (1 - p )  * p "  
else ptaatlen-k 

Of course, k is just the distance delta2 lets us slide 
provided there is no earlier reoccurrence. We can 
therefore define the probability probdelta2(m, k) that, 
when only the last m characters of pat match, delta2 
will allow us to move down by k recursively as follows: 

probdelta2(m, k) 

=probpr(m,k)(1-k~=11Probdelta2(m,n) ) • 

We slide down by the maximum allowed by the 
two deltas (taking adequate account of the possibility 
that delta1 is worthless). If the values of the deltas 
were independent,  the probability that' we would ac- 
tually slide down by k would just be the sum of the 
products of the probabilities that one of the deltas 
allows a move of k while the other allows a move of 
less than or equal to k. 

However,  the two moves are not entirely indepen- 
dent. In particular, consider the possibility that delta1 
is worthless. Then the char just fetched occurs in the 
last m characters of pat and does not match the (m + 
1)-th. But if delta2 gives a slide of 1 it means that 
sliding these m characters to the left by i produces a 
match. This implies that all of the last m characters of 
pat are equal to the character m + 1 from the right. 
But this character is known not to be char. Thus char 
cannot occur in the last m characters of pat, violating 
the hypothesis that delta~ was worthless. Therefore if 
delta~ is worthless, the probability that delta2 specifies 
a skip of 1 is 0 and the probability that it specifies one 
of the larger skips is correspondingly increased. 
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This interaction between the two deltas is also felt 
(to a lesser extent) for the next m possible delta2's, but 
we ignore these (and in so doing accept that our 
analysis may predict slightly worse results than might 
be expected since we allow some short delta2 moves 
when longer ones would actually occur). 

The probability that delta2 will allow us to slide 
down by k when only the last m characters of pat 
match, assuming that deltai is worthless, is: 

probdelta~(m,k) = i f k  = 1 

then  0 
else 

probpr(m, k) 1 - probdelta'2(m, n) . 

Finally, we can define skip(m, k), the probability 
that we will slide down by k if only the last m characters 
of pat match: 

skip(m, k) = if k = 1 

then  probdeltal(m, 1) * probdelta2(m, 1) 

else probdeltalworthless(m) * probdelta~(m, k) 
k - I  

+ ~_. probdeltal(m, k) * probdelta2(m, n) 
n = l  

k- -1  

+ ~. probdeltal(m, n) * probdelta2(m, k) 
n = l  

+ probdeltal(m, k) * probdelta=(m, k). 

Now let us consider the two alternative cost func- 
tions. In order to analyze the number  of references to 
string per character passed over,  cost(m) should just be 
m + 1, the number  of references necessary to confirm 
that only the last m characters of pat match. 

In order to analyze the number  of instructions 
executed per character passed over, cost(m) should be 
the total number  of instructions executed in discovering 
that only the last m characters of pat match. By 
inspection of our PDP-10 code: 

cost(m) = i f m  = 0 then 3 else 12 + 6 m.  

We have computed the expected value of the ratio 
of cost per character skipped by using the above 
formulas (and both definitions of cost). We did so for 
pattern lengths running from 1 to 14 (as in our empiri- 
cal evidence) and for the values of p appropriate  for 
the three source strings used: For a random binary 
string p is 0.5, for an arbitrary English string it is 
(approximately) 0.09, and for a random string over  a 
100-character alphabet it is 0.01. The value of p for 
English was determined using a standard frequency 
count for the alphabetic characters [3] and empirically 
determining the frequency of space, carriage return,  
and line feed to be 0.23, 0.03, and 0.03, respectivelyF 

In Figure 3 we have plotted the theoretical ratio of 
references to string per character passed over  against 
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the pattern length. The most important  fact to observe 
in Figure 3 is that the algorithm can be expected to 
make fewer than i + patlen references to string before 
finding the pattern at location i. For example,  for 
English text strings of length 5 or greater ,  the algorithm 
may be expected to make less than (i + 5)/4 refer- 
ences to string. The comparable  figure for the Knuth,  
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Morris, and Pratt algorithm is of course precisely i. 
The figure for the intuitive search algorithm is always 
greater than or equal to i. 

The reason the number of references per character 
passed decreases more slowly as patlen increases is 
that for longer patterns the probability is higher that 
the character just fetched occurs somewhere in the 
pattern, and therefore the distance the pattern can be 
moved forward is shortened. 

In Figure 4 we have plotted the theoretical ratio of 
the number of instructions executed per character 
passed versus the pattern length. Again we find that 
our implementation of the algorithm can be expected 
(for sufficiently large alphabets) to execute fewer than 
i + patlen instructions before finding the pattern at 
location i. That is, our implementation is usually "sub- 
linear" even in the number of instructions executed. 
The comparable figure for the Knuth, Morris, and 
Pratt algorithm is at best (3 - p) * (i + patlen - 1). 8 
For the simple search algorithm the expected value of 
the number of instructions executed per character 
passed is (approximately) 3.28 (for p = 0.09). 

It is difficult to fully appreciate the role played by 
delta2. For example, if the alphabet is large and pat- 
terns are short, then computing and trying to use delta2 
probably does not pay off much (because the chances 
are high that a given character in string does not occur 
anywhere in pat and one will almost always stay in the 
fast loop ignoring delta2). 9 Conversely, delta2 becomes 
very important when the alphabet is small and the 
patterns are long (for now execution will frequently 
leave the fast loop; deltal will in general be small 
because many of the characters in the alphabet will 
occur in pat and only the terminal substring observa- 
tions could cause large shifts). Despite the fact that it 
is difficult to appreciate the role of delta2, it should be 
noted that the linearity result for the worst case behav- 
ior of the algorithm is due entirely to the presence of 
delta2. 

Comparing the empirical evidence (Figures 1 and 
2) with the theoretical evidence (Figures 3 and 4, 
respectively), we note that the model is completely 
accurate for English and the 100-character alphabet. 
The model predicts much bet ter  behavior than we 
actually experience in the binary case. Our only expla- 
nation is that since delta2 predominates in the binary 
alphabet and sets up alignments of the pattern and the 
string, the algorithm backs up over longer terminal 
substrings of the pattern before finding mismatches. 
Our analysis ignores this phenomenon.  

However,  in summary, the theoretical analysis sup- 
ports the conclusion that on the average the algorithm 
is sublinear in the number of references to string and, 
for sufficiently large alphabets and patterns, sublinear 
in the number of instructions executed (in our imple- 
mentation). 

8. Caveat Programmer 

It should be observed that the preceding analysis 
has assumed that string is entirely in primary memory 
and that we can obtain the ith character in it in one 
instruction after computing its byte address. However ,  
if string is actually on secondary storage, then the 
characters in it must be read in. TM This transfer will 
entail some time delay equivalent to the execution of, 
say, w instructions per character brought in, and (be- 
cause of the nature of computer  I/O) all of the first i + 
patlen - 1 characters will eventually be brought in 
whether we actually reference all of them or not. (A 
representative figure for w for paged transfers from a 
fast disk is 5 instructions/character.) Thus there may 
be a hidden cost of w instructions per character passed 
over. 

According to the statistics presented above one 
might expect our algorithm to be approximately three 
times faster than the Knuth,  Morris, and Pratt algo- 
rithm (for, say, English strings of length 6) since that 
algorithm executes about three instructions to our one. 
However ,  if the CPU is idle for the w instructions 
necessary to read each character,  the actual ratios are 
closer to w + 3 instructions than to w + 1 instructions. 
Thus for paged disk transfers our algorithm can only 
be expected to be roughly 4/3 faster (i.e. 5 + 3 
instructions to 5 + 1 instructions) if we assume that 
we are idle during I/O. Thus for large values of w the 
difference between the various algorithms diminishes 
if the CPU is idle during I/O. 

Of course, in general, programmers (or operating 
systems) try to avoid the situation in which the CPU is 
idle while awaiting an I /O transfer by overlapping I/O 
with some other computation.  In this situation, the 
chances are that our algorithm will be I/O bound (we 
will search a page faster than it can be brought in), 
and indeed so will that of Knuth,  Morris, and Pratt if 
w > 3. Our algorithm will require that fewer CPU 
cycles be devoted to the search itself so that if there 
are other  jobs to perform, there will still be an overall 
advantage in using the algorithm.. 

s Although the Knuth, Morris, and Pratt algorithm will fetch 
each of the first i + patlen - 1 characters of string precisely once, 
sometimes a character is involved in several tests against characters 
in pat. The number  of such tests (each involving three instructions) 
is bounded by log.(patlen), where qb is the golden ratio. 

9 However, if the algorithm is implemented without deltaz, 
recall that, in exiting the slow loop, one must now take the max of 
delta1 and patlen - ./ + 1 to allow for the possibility that deltal is 
worthless. 

x0 We have implemented a version of our algorithm for searching 
through disk files. It is available as the subroutine FFILEPOS in the 
latest release of INTERLISP-10. This function uses the TENEX 
page mapping capability to identify one file page at a time with a 
buffer area in virtual memory. In addition to being faster than 
reading the page by conventional methods, this means the operating 
system's memory management takes care of references to pages 
which happen to still be in memory, etc. The algorithm is as much 
as 50 times faster than the standard INTERLISP-10 FILEPOS 
function (depending on the length of the pattern). 
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There are several situations in which it may not be 
advisable to use our algorithm. If the expected penetra-  
tion i at which the pattern is found is small, the 
preprocessing time is significant and one might there- 
fore consider using the obvious intuitive algorithm. 

As previously noted, our algorithm can be most 
efficiently implemented on a byte-addressable ma- 
chine. On a machine that does not allow byte addresses 
to be incremented and decremented directly, two pos- 
sible sources of inefficiency must be addressed: The 
algorithm typically skips through string in steps larger 
than 1, and the algorithm may back up through string. 
Unless these processes are coded efficiently, it is prob- 
ably not worthwhile to use our algorithm. 

Fur thermore,  it should be noted that because the 
algorithm can back up through string, it is possible to 
cross a page boundary more than once. We have not 
found this to be a serious source of inefficiency. 
However ,  it does require a certain amount  of code to 
handle the necessary buffering (if page I /O is being 
handled directly as in our FFILEPOS) .  One beauty of 
the Knuth,  Morris, and Pratt algorithm is that it avoids 
this problem altogether.  

A final situation in which it is unadvisable to use 
our algorithm is if the string matching problem to be 
solved is actually more complicated than merely finding 
the first occurrence of a single substring. For example,  
if the problem is to find the first of several possible 
substrings or to identify a location in string defined by 
a regular expression, it is much more advantageous to 
use an algorithm such as that of Aho and Corasick [1]. 

It may of course be possible to design an algorithm 
that searches for multiple patterns or instances of 
regular expressions by using the idea of starting the 
match at the right end of the pattern.  However ,  we 

• have not designed such an algorithm. 

9. Historical Remarks 

Our earliest formulation of the algorithm involved 
only delta1 and implemented Observations 1, 2, and 
3(a). We were aware that we could do something 
along the lines of delta2 and Observation 3(b),  but did 
not precisely formulate it. Instead,  in April 1974, we 
coded the delta1 version of the algorithm in Interlisp, 
merely to test its speed. We considered coding the 
algorithm in PDP-10 assembly language but abandoned 
the idea as impractical because of the cost of incre- 
menting byte pointers by arbitrary amounts.  

We have since learned that R.W. Gosper ,  of Stan- 
ford University, simultaneously and independently dis- 
covered the deltal version of the algorithm (private 
communication).  

In April 1975, we started thinking about  the imple- 
mentation again and discovered a way to increment 
byte pointers by indexing through a table. We then 
formulated a version of deltas and coded the algorithm 

more or less as it is presented here. This original 
definition of delta2 differed from the current one in the 
following respect: If only the last m characters of pat 
(call this substring subpat) were matched,  deltas spec- 
ified a slide to the second from the rightmost occur- 
rence ofsubpat in pat (allowing this occurrence to "fall 
off" the left end of pat) but without any special 
consideration of the character  preceding this occur- 
rence. 

The average behavior  of that version of the algo- 
rithm was virtually indistinguishable from that pre- 
sented in this paper  for large alphabets,  but was 
somewhat  worse for small alphabets.  However ,  its 
worst case behavior was quadratic (i.e. required on 
the order of i * patlen comparisons).  For example,  
consider searching for a pattern of the form CA(BA)  r 
in a string of the form ( (XX)r (AA)(BA)r )  * (e.g. r = 
2, pat = " C A B A B A , "  and string = " X X X X A A B A -  
B A X X X X A A B A B A  . . . " ) .  The original definition 
of deltas allowed only a slide of 2 if the last " B A "  of 
pat was matched before the next " A "  failed to match. 
Of  course in this situation this only sets up another  
mismatch at the same character in string, but the 
algorithm had to reinspect the previously inspected 
characters to discover it. The total number  of refer- 
ences to string in passing i characters in this situation 
was (r + 1) * (r + 2) * i/(4r + 2), where r = (patlen - 
2)/2. Thus the number  of references was on the order 
of i * patlen. 

However ,  on the average the algorithm was blind- 
ingly fast. To our surprise, it was several times faster 
than the string searching algorithm in the Tenex T E C O  
text editor. This algorithm is reputed to be quite an 
efficient implementat ion of the simple search algorithm 
because it searches for the first character of pat one 
full word at a time (rather than one byte at a time). 

In the summer  of 1975, we wrote a brief paper  on 
the algorithm and distributed it on request.  

In December  1975, Ben Kuipers of the M.I .T.  
Artificial Intelligence Labora tory  read the paper  and 
brought to our attention the improvement  to deltas 
concerning the character preceding the terminal sub- 
string and its reoccurrence (private communication).  
Almost  simultaneously, Donald Knuth of Stanford 
University suggested the same improvement  and ob- 
served that the improved algorithm could certainly 
make no more than order (i + patlen) * log(patlen) 
references to string (private communication).  

We mentioned this improvement  in the next revi- 
sion of the paper  and suggested an additional improve- 
ment ,  namely the replacement  of both d e l t a  I and deltas 
by a single two-dimensional table. Given the mis- 
matched char from string and the position j in pat at 
which the mismatch occurred, this table indicated the 
distance to the last occurrence (if any) of the substring 
[char, pat(] + 1) . . . . .  pat(patlen)] in pat. The revised 
paper  concluded with the question of whether  this 
improvement  or a similar one produced an algorithm 
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which was at worst linear and on the average "sub- 
linear." 

In January 1976, Knuth [5] proved that the simpler 
improvement in fact produces linear behavior, even in 
the worst case. We therefore revised the paper again 
and gave delta2 its current definition. 

In April 1976, R.W. Floyd of Stanford University 
discovered a serious statistical fallacy in the first version 
of our formula giving the expected value of the ratio 
of cost to characters passed. He provided us (private 
communication) with the current version of this for- 
mula. 

Thomas Standish, of the University of California at 
Irvine, has suggested (private communication) that the 
implementation of the algorithm can be improved by 
fetching larger bytes in the fast loop (i.e. bytes contain- 
ing several characters) and using a hash array to encode 
the extended deltat table. Provided the difficulties at 
the boundaries of the pattern are handled efficiently, 
this could improve the behavior of the algorithm enor- 
mously since it exponentially increases the effective 
size of the alphabet and reduces the frequency of 
common characters. 
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b r i d g e ,  M a s s . ,  Feb .  2 9 ,  1 9 7 2 .  
3 .  D e w e y ,  G .  Relat iv  Frequency  o f  Engl ish  Speech Sounds .  H a r -  
v a r d  U .  P re s s ,  C a m b r i d g e ,  M a s s . ,  1 9 2 3 ,  p.  185 .  
4 .  K n u t h ,  D . E . ,  M o r r i s ,  J . H . ,  a n d  P r a t t ,  V . R .  Fas t  p a t t e r n  m a t c h -  
ing in s t r ings .  T R  C S - 7 4 - 4 4 0 ,  S t a n f o r d  U . ,  S t a n f o r d ,  Ca l i f . ,  1 9 7 4 .  
5 .  K n u t h ,  D . E . ,  M o r r i s ,  J . H . ,  a n d  P r a t t ,  V . R .  Fas t  p a t t e r n  m a t c h -  
ing in s t r ings .  ( to  a p p e a r  in S I A M  J. C o m p u t . ) .  

Profess iona l  Act ivi t ies  
C a l e n d a r  of  Even t s  

ACM's  calendar policy is to list open com- 
puter science meetings that are held on a not-for- 
profit basis. Not included in the calendar are edu- 
cational seminars institutes, and courses. Sub- 
mittals should be substantiated with name of the 
sponsoring organization, fee schedule, and chair- 
man ' s  name and full address. 

One telephone number contact  for  those in- 
terested in attending a meeting will be given when 
a number is specified for  this purpose in the news 
release text or in a direct communicat ion to this 
periodical. 

All requests for  ACM sponsorship or coop- 
eration should be addressed to Chairman,  Con- 
ferences and Symposia Committee. Dr. W.S. 
Dorsey, Dept. 503/504 Rockwell International 
Corporation,  Anaheim, CA 92803. For  European 
events, a copy of the request should also be sent 
to the European Regional Representative. Tech- 
nical Meeting Request Forms for this purpose 
can be obtained f rom ACM Headquar ters  or 
from the European Regional Representative. Lead 
time should include 2 months (3 months if for 
Europe) for processing of the request, plus the 
necessary months (minimum 2) for any publicity 
to appear  in Communications. 

Events for which ACM or a subunit of ACM 
is a sponsor or collaborator are indicated by • .  
Dates precede titles. 
In this issue the calendar is given to April  
1978. New Listings are shown first; they will ap- 
pear next month as Previous Listings. 

N E W  LISTINGS 
16-17 November  1977 

• Workshop on Future Directions in Computer 
Architecture, Austin, Tex. Sponsors: ACM SIG- 
ARCH,  IEEE-CS TCCA, and University of Texas 
at Austin. Conf. chm: G. Jack Lipovski. Dept.  of 
EE, University of Texas, Austin, TX 78712. 

5-9 December 1977 
Third International Symposium on Com- 

puting Methods in Applied Sciences and Engi- 
neering, Versailles, France.  Organized by IRIA. 
Sponsors: AFCET,  GAMNI,  IFIP WG7.2 Con- 
tact: Institut de Recherche D' Informat ique  et 
D'Automatique,  Domaine de Voincean, Rocquen- 
court, 78150 Le Chesnay, France.  

13-15 February  1978 
• Symposium on Computer Network Proto- 
cols, Li6ge, Belgium. Sponsors: IFIP  T.C.6 and 
A C M  Belgian Chapter.  Contact: A. Danthine, 
Symposium on Computer  Network Protocols, 
Avenue des Tilleuls, 49, B-4000, Li6ge, Belgium. 

3 March 1978 
Indiana University Computer Network Con- 

ference on Instructional Computing Applications, 
Indiana University-East, Richmond, Ind. Sponsor: 

7 7 2  

Indiana University Computing Network.  Chm: 
Tom Osgood, IU-EAST, 2325 Chester Boulevard, 
Richmond, IN 47374. 

12-17 March  1978 
Symposium on Computer Simulation of Bulk 

Matter from Molecular Perspective, Anaheim, 
Calif.; par t  of 1978 Annual  Spring Meeting of 
American Chemical Society. Sponsor: ACS Div. 
Computers in Chemistry. Contact: Peter Lykes, 
Illinois Institute of Technology, Chicago, IL 
60616; 312 567-3430. 

28-30 March 1978 
3rd Symposium on Programming, Paris, 

France.  Sponsor: Centre National  de la Recherche 
Sciantifique (CNRS) and Universit6 Pierre et 
Marie  Curie. Contact S6cretariat du Colloque, 
Institut de Programmation,  4, Place Jussieu, 
75230 Paris Cedex 05, France.  

29-31 March 1978 
Conference on Information Sciences and 

Systems, Johns  Hopkins University, Baltimore, 
Md. Contact: 1978 CISS, Depar tment  of Electri- 
cal Engineering, Johns Hopkins University, Balti- 
more, MD 21218. 

3-7 April 1978 
Fifth International Symposium on Comput- 

ing in Literary and Linguistic Research, Univer- 
sity of Aston, Birmingham, England. Sponsor: 
Association for  Li terary and Linguistic Comput- 
ing. Contact: The Secretary (CLLR), Modern 
Languages Dept., University of Aston, Birming- 
ham B4 7ET, England. 

4-8 April  1978 
Second International Conference on Combi- 

natoriaI Mathematics, Barbizon-Plaza Hotel, New 
York City. Sponsor: New York Academy of Sci- 
ences. Contact: Conference Dept., New York 
Academy of Sciences, 2 East 63 St., New York, 
NY 10021; 212 838-0230. 

15-19 May 1978 
16th Annual Convention of the Association 

for Educational Data Systems, Atlanta,  Ga.  
Sponsor: AEDS.  Contact: James E. Eisele, Office 
of Computing Activities, University of Georgia,  
Athens, G A  30602. 

22-25 May 1978 
Sixth International C O D A T A  Conference, 

Taormina,  Italy. Sponsor: International Council 
of Scientific Unions Comm. on Da ta  for  Science 
and Technology. Contact: CODATA Secretariat, 
51, Boulevard de Montmorency,  75016 Paris, 
France.  

24-26 May 1978 
• 1978 S I A M  National Meeting, University of 
Wisconsin, Madison, Wis. Sponsor: SIAM in co- 
operation with ACM SIGSAM. Contact: H.B. 
Hair ,  SIAM, 33 South 17 St., Philadelphia, PA 
19103; 215 564-2929. 

26 May 1978 
• Computer Algebra Symposium, University of 
Wisconsin, Madison, Wis.; par t  of the 1978 SIAM 
National  Meeting. Sponsor: SIAM in cooperat ion 
with A C M  SIGSAM. Syrup. chin: George E. 

C o m m u n i c a t i o n s  
o f  
t h e  A C M  

Collins, Computer  Sciences Dept,, University of 
Wisconsin, 1210 W. Dayton Street, Madison WI 
53706. 

12-16 June 1978 
7th Triennial IFAC World Congress. Spon- 

sor: IFAC. Contact: IFAC 78 Secretariat,  PUB 
192, 00101 Helsinki 10, Finland. 

19-22 June 1978 
Annual Conference of the American Society 

for Engineering Education (Computers in Edu- 
cation Division Program),  University of British 
Columbia, Vancouver,  B.C., Canada.  Sponsor: 
ASEE Computers in Education Division. Contact: 
ASEE, Suite 400, One DuPont  Circle, Washing- 
ton, DC 20036. 

22-23 June 1978 
• International Conference on the Perform- 
ance of Computer Installations, Gardone Riviera, 
Lake Garda,  Italy. Sponsor: Sperry Univac,  Italy, 
with cooperation of ACM SIGMETRICS,  
ECOMA, AICA, ACM Italian Chapter.  Contact: 
Conference Secretariat, CILEA, Via Raffaello 
Sanzio 4, 20090 Segrate, Milan, Italy. 

2-4 August 1978 
• International Conference on Databases: Im- 
proving Usability and Responsiveness, Technion, 
Haifa,  Israel. Sponsor: Technion in cooperat ion 
with ACM. Prog. chm: Ben Shneiderman, Dept.  
of Information Systems Management,  University 
of Maryland,  College Park, MD 20742. 

13-18 August  1978 
Symposium on Modeling and Simulation 

Methodology, Weizmann Institute of Science, Re- 
hovot, Israel. Contact: H.J.  Highland, State Uni- 
versity Technical College Farmingdale,  N.Y., or 
B.P. Zeigler, Dept.  of Applied Mathematics,  
Weizmann Institute of Science, Rehovot, Israel. 

30 October-1 November 1978 
1978 S I A M  Fall Meeting, Hyat t  Regency 

Hotel, Knoxville, Tenn. Sponsor: SIAM. Contact: 
H.B. Hair ,  SIAM, 33 South 17th St., Philadelphia, 
PA 19103; 215 564-2929. 

PREVIOUS LISTINGS 

17-19 October 1977 
• A C M  77 Annual Conference, Olympic Ho-  
tel. Seattle, Wash. Gen. chin: James  S. Ketchel. 
Box 16156, Seattle, WA 98116; 206 935-6776. 

17-21 October 1977 
Systems 77, Computer Systems and Their 

Application, Munich, Federal Republic of Ger-  
many. Contact:  Miinehener Messe- und Ausstel- 
lungsgesellschaft mbh, Kongresszentrum, Kong- 
ressbiiro Systems 77, Postfach 12 10 09, D-8000 
Mfinchen 12, Federal  Republic of Germany.  

18-19 October 1977 
M S F C / V A H  Data Management Symposium, 

Sheraton Motor  Inn, Huntsville, Ala. Sponsors: 
NASA Marshall  Space Flight Center, University 
of Alabama in Huntsville. Contact: General  Chair-  

(Calendar continued on p. 781) 

O c t o b e r  1 9 7 7  
V o l u m e  2 0  
N u m b e r  10  


