
1

Cache Models
and

Program Transformations

Keshav Pingali
University of Texas at Austin

Goal of lecture

• Develop abstractions of real caches for
understanding program performance

• Study the cache performance of matrix-
vector multiplication (MVM)
– simple but important computational science

kernel
• Understand MVM program transformations

for improving performance

Matrix-vector product
• Code:

for i = 1,N
for j = 1,N

y(i) = y(i) + A(i,j)*x(j)
• Total number of references = 4N2

– This assumes that all elements of
A,x,y are stored in memory

– Smart compilers nowadays can
register-allocate y(i) in the inner
loop

– You can get this effect manually
for i = 1,N

temp = y(i)
for j = 1,N

temp = temp + A(i,j)*x(j)
y(i) = temp

– To keep things simple, we will not
do this but our approach applies
to this optimized code as well

y

x

A

i

j

Cache abstractions

• Real caches are very complex
• Science is all about tractable and useful

abstractions (models) of complex phenomena
– models are usually approximations

• Can we come up with cache abstractions that
are both tractable and useful?

• Focus:
– two-level memory model: cache + memory

2

Stack distance

• r1 , r2 : two memory references
– r1 occurs earlier than r2

• stackDistance(r1,r2): number of distinct cache lines
referenced between r1 and r2

• Stack distance was defined by defined by Mattson et al
(IBM Systems Journal paper)
– arguably the most important paper in locality

r1 r2

time

Address stream from processor

Modeling approach
• First approximation:

– ignore conflict misses
– only cold and capacity misses

• Most problems have some notion of “problem size”
– (eg) in MVM, the size of the matrix (N) is a natural measure of

problem size
• Question: how does the miss ratio change as we

increase the problem size?
• Even this is hard, but we can often estimate miss ratios

at two extremes
– large cache model: problem size is small compared to cache

capacity
– small cache model: problem size is large compared to cache

capacity
– we will define these more precisely in the next slide.

Large and small cache models
• Large cache model

– no capacity misses
– only cold misses

• Small cache model
– cold misses: first reference to a line
– capacity misses: possible for succeeding references to a line

• let r1 and r2 be two successive references to a line
• assume r2 will be a capacity miss if stackDistance(r1,r2) is some

function of problem size
• argument: as we increase problem size, the second reference will

become a miss sooner or later
• For many problems, we can compute

– miss ratios for small and large cache models
– problem size transition point from large cache model to small

cache model

MVM study
• We will study five scenarios

– Scenario I
• i,j loop order, line size = 1 number

– Scenario II
• j,i loop order, line size = 1 number

– Scenario III
• i,j loop order, line size = b numbers

– Scenario IV
• j,i loop order, line size = b numbers

– Scenario V
• blocked code, line size = b numbers

3

Scenario I

• Code:
for i = 1,N

for j = 1,N
y(i) = y(i) + A(i,j)*x(j)

• Inner loop is known as DDOT in NA
literature if working on doubles:

– Double-precision DOT product
• Cache line size

– 1 number
• Large cache model:

– Misses:
• A: N2 misses
• x: N misses
• y: N misses
• Total = N2+2N
• Miss ratio = (N2+2N)/4N2

~ 0.25 + 0.5/N

y

x

A

i

j

y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1)….. y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

Scenario I (contd.)

• Small cache model:
– A: N2 misses
– x: N + N(N-1) misses (reuse

distance=O(N))
– y: N misses (reuse distance=O(1))
– Total = 2N2+N
– Miss ratio = (2N2+N)/4N2

~ 0.5 + 0.25/N
• Transition from large cache model to

small cache model
– As problem size increases, when do

capacity misses begin to occur?
– Subtle issue: depends on replacement

policy (see next slide)

y

x

A

i

j

Address stream:

y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1)….. y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

Scenario I (contd.)

• Question: as problem size increases, when do capacity
misses begin to occur?

• Depends on replacement policy:
– Optimal replacement:

• do the best job you can, knowing everything about the
computation

• only x needs to be cache-resident
• elements of A can be “streamed in” and tossed out of cache after

use
• So we need room for (N+2) numbers
• Transition: N+2 > C N ~C

– LRU replacement
• by the time we get to end of a row of A, first few elements of x

are “cold” but we do not want them to be replaced
• Transition: (2N+2) > C N ~ C/2

• Note:
– optimal replacement requires perfect knowledge about future
– most real caches use LRU or something close to it
– some architectures support “streaming”

• in hardware
• in software: hints to tell processor not to cache certain references

y

x

A

i

j

Address stream:

Miss ratio graph

• Jump from large cache model to small cache
model will be more gradual in reality because of
conflict misses

1.0

0.75

0.25

0.50

C/2

miss
ratio

N

large cache model small cache model

DDOT,b=1)

4

Scenario II
• Code:

for j = 1,N
for i = 1,N

y(i) = y(i) + A(i,j)*x(j)

• Inner loop is known as
AXPY in NA literature

• Miss ratio picture exactly
the same as Scenario I
– roles of x and y are

interchanged

y

x

A

i

j

Scenario III
• Code:

for i = 1,N
for j = 1,N

y(i) = y(i) + A(i,j)*x(j)
• Cache line size

– b numbers
• Large cache model:

– Misses:
• A: N2/b misses
• x: N/b misses
• y: N/b misses
• Total = (N2+2N)/b
• Miss ratio = (N2+2N)/4bN2

~ 0.25/b + 0.5/bN

y

x

A

i

j

y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1)….. y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

Scenario III (contd.)

• Small cache model:
– A: N2/b misses
– x: N/b + N(N-1)/b misses (reuse distance=O(N))
– y: N/b misses (reuse distance=O(1))
– Total = (2N2+N)/b
– Miss ratio = (2N2+N)/4bN2

~ 0.5/b + 0.25/bN
• Transition from large cache model to small cache

model
– As problem size increases, when do capacity misses

begin to occur?
– LRU: roughly when (2N+2b) = C

• N ~ C/2
– Optimal: roughly when (N+2b) ~ C N ~ C

• So miss ratio picture for Scenario III is similar to that of
Scenario I but the y-axis is scaled down by b

• Typical value of b = 4 (SGI Octane)

y

x

A

i

j

Address stream:

Miss ratio graph

• Jump from large cache model to small cache
model will be more gradual in reality because of
conflict misses

1.0

0.75

0.25

0.50

C/2

miss
ratio

N

large cache model small cache model

0.125 (DDOT,b=4)

0.50 (DDOT, b=1)

5

Scenario IV
• Code:

for j = 1,N
for i = 1,N

y(i) = y(i) + A(i,j)*x(j)
• Large cache model:

– Same as Scenario III
• Small cache model:

– Misses:
• A: N2

• x: N/b
• y: N/b + N(N-1)/b = N2/b
• Total: N2(1+1/b) + N/b
• Miss ratio = 0.25(1+1/b) + 0.25/bN

• Transition from large cache to small cache
model

– LRU: Nb + N +b = C N ~ C/(b+1)
– optimal: N + 2b ~ C N ~ C

• Transition happens much sooner than in
Scenario III (with LRU replacement)

y

x

A

i

j

Miss ratios

0.75/b

0.50/b

0.25/b

0.25(1+1/b)

C/(b+1) C/2

DAXPY

DDOT

Miss ratio

N

Scenario V
• Intuition: perform blocked MVM so that data for

each blocked MVM fits in cache
– One estimate for B: all data for block MVM must fit

in cache
B2 + 2B ~ C
B ~sqrt(C)

– Actually we can do better than this
• Code: blocked code

for bi = 1,N,B
for bj = 1,N,B

for i = bi,min(bi+B-1,N)
for j = bj,min(bj+B-1,N)

y(i)=y(i)+A(i,j)*x(j)
• Choose block size B so

– you have large cache model while executing block
– B is as large as possible (to reduce loop overhead)
– for our example, this means B~c/2 for row-major

order of storage and LRU replacement
• Since entire MVM computation is a sequence of

block MVMs, this means miss ratio will be
0.25/b independent of N!

y

x

i

j

B

B

Scenario V (contd.)
• Code: blocked code

for bi = 1,N,B
for bj = 1,N,B

for i = bi,min(bi+B-1,N)
for j = bj,min(bj+B-1,N)

y(i)=y(i)+A(i,j)*x(j)

Better code: interchange the two outermost loops and
fuse bi and i loops

for bj = 1,N,B
for i = 1,N
for j = bi,min(bi+B-1,N)

y(i)=y(i)+A(I,j)*x(j)

This has the same memory behavior as doubly-
blocked loop but less loop overhead.

y

x

A

i

j

6

Miss ratios

0.75/b

0.50/b

0.25/b

0.25(1+1/b)

C/(b+1) C/2

Blocked

DAXPY

DDOT

NN
N

Miss ratio Key transformations
• Loop permutation

for i = 1,N for j = 1,N
for j = 1,N for i = 1,N

S S

• Strip-mining
for i = 1,N for bi = 1,N,B

S for i = bi, min(bi+B-1,N)
S

• Loop tiling = strip-mine and interchange
for i = 1,N for bi = 1,N,B

for j = 1,N for j = 1,N
S for i = bj,min(bj+B-1,N)

S

Notes
• Strip-mining does not change the order in which

loop body instances are executed
– so it is always legal

• Loop permutation and tiling do change the order
in which loop body instances are executed
– so they are not always legal

• For MVM and MMM, they are legal, so there are
many variations of these kernels that can be
generated by using these transformations
– different versions have different memory behavior as

we have seen

Matrix multiplication

• We have studied MVM in detail.
• In dense linear algebra, matrix-matrix

multiplication is more important.
• Everything we have learnt about MVM

carries over to MMM fortunately, but there
are more variations to consider since there
are three matrices and three loops.

7

MMM

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Three loops: I,J,K
• You can show that all six permutations of these three

loops compute the same values.
• As in MVM, the cache behavior of the six versions is

different

C

B
A

K

K

IJK version of matrix multiplication

MMM
DO I = 1, N//row-major storage

DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• K loop innermost
– A: good spatial locality
– C: good temporal locality

• I loop innermost
– B: good temporal locality

• J loop innermost
– B,C: good spatial locality
– A: good temporal locality

• So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

C

B
A

K

K

IJK version of matrix multiplication

MMM miss ratios (simulated)
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Observations

• Miss ratios depend on which loop is in innermost
position
– so there are three distinct miss ratio graphs

• Large cache behavior can be seen very clearly
and all six version perform similarly in that
region

• Big spikes are due to conflict misses for
particular matrix sizes
– notice that versions with J loop innermost have few

conflict misses (why?)

8

IJK version

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
– Matrices are small enough to fit into cache
– Only cold misses, no capacity misses
– Miss ratio:

• Data size = 3 N2

• Each miss brings in b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN (eg) 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
– Matrices are small enough to fit into cache
– Only cold misses, no capacity misses
– Miss ratio:

• Data size = 3 N2

• Each miss brings in b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)
DO I = 1, N

DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario:
– Matrices are large compared to cache

• stack distance is not O(1) => miss
– Cold and capacity misses
– Miss ratio:

• C: N2/b misses (good temporal locality)
• A: N3 /b misses (good spatial locality)
• B: N3 misses (poor temporal and spatial locality)
• Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

Miss ratios for other versions
DO I = 1, N//row-major storage

DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• K loop innermost
– A: good spatial locality
– C: good temporal locality 0.25(b+1)/b

• I loop innermost
– B: good temporal locality (N2/b + N3 +N3)/4N3 0.5

• J loop innermost
– B,C: good spatial locality (N3/b + N3/b + N2/b)/4N3 0.5/b
– A: good temporal locality

• So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

C

B
A

K

K

IJK version of matrix multiplication

9

MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Can we predict this?
Transition out of large cache

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Find the data element(s) that are reused with the largest
stack distance

• Determine the condition on N for that to be less than C
• For our problem:

– N2 + N + b < C (with optimal replacement)
– N2 + 2N < C (with LRU replacement)
– In either case, we get N ~ sqrt(C)
– For our cache, we get N ~ 45 which agrees quite well with data

C

B
A

K

K

Blocked code

As in blocked MVM, we actually need to
stripmine only two loops

Notes
• So far, we have considered a two-level memory

hierarchy
• Real machines have multiple level memory hierarchies
• In principle, we need to block for all levels of the memory

hierarchy
• In practice, matrix multiplication with really large matrices

is very rare
– MMM shows up mainly in blocked matrix factorizations
– therefore, it is enough to block for registers, and L1/L2 cache

levels
• How do we organize such a code?

– We will study the code produced by ATLAS.
– ATLAS also introduces us to self-optimizing programs.

