Cache Models

and

Program Transformations

Keshav Pingali

University of Texas at Austin

Goal of lecture

» Develop abstractions of real caches for
understanding program performance

 Study the cache performance of matrix-
vector multiplication (MVM)
— simple but important computational science

kernel

» Understand MVM program transformations

for improving performance

Matrix-vector product

* Code:
fori=1,N
forj=1,N

y(i) = () + AGJ)**()

« Total number of references = 4N2

— This assumes that all elements of
A.x,y are stored in memory
— Smart compilers nowadays can
register-allocate y(i) in the inner
loop
— You can get this effect manually
fori=1,N
temp = y(i)
forj=1,N
temp = temp + A(i.j)*x(j)
y(i) = temp
— To keep things simple, we will not
do this but our approach applies
to this optimized code as well

Cache abstractions

¢ Real caches are very complex

e Science is all about tractable and useful
abstractions (models) of complex phenomena
— models are usually approximations

e Can we come up with cache abstractions that
are both tractable and useful?

* Focus:
— two-level memory model: cache + memory

Stack distance

time

Address stream from processor

* r,,r,:two memory references
— ryoccurs earlier than r,

» stackDistance(r,,r,): number of distinct cache lines
referenced between r, and r,

» Stack distance was defined by defined by Mattson et al
(IBM Systems Journal paper)
— arguably the most important paper in locality

Modeling approach

¢ First approximation:

— ignore conflict misses
— only cold and capacity misses

¢ Most problems have some notion of “problem size”

— (eg) in MVM, the size of the matrix (N) is a natural measure of
problem size

* Question: how does the miss ratio change as we

increase the problem size?

¢ Even this is hard, but we can often estimate miss ratios

at two extremes

— large cache model: problem size is small compared to cache
capacity

— small cache model: problem size is large compared to cache
capacity

— we will define these more precisely in the next slide.

Large and small cache models

» Large cache model
— no capacity misses
— only cold misses
* Small cache model
— cold misses: first reference to a line
— capacity misses: possible for succeeding references to a line
« letr, and r, be two successive references to a line

« assume r, will be a capacity miss if stackDistance(r,,r,) is some
function of problem size

« argument: as we increase problem size, the second reference will
become a miss sooner or later
» For many problems, we can compute
— miss ratios for small and large cache models

— problem size transition point from large cache model to small
cache model

MVM study

* We will study five scenarios

— Scenario |

« i,j loop order, line size = 1 number
— Scenario Il

« j,i loop order, line size = 1 number
— Scenario Il

« i,j loop order, line size = b numbers
— Scenario IV

« j,iloop order, line size = b numbers
— Scenario V

« blocked code, line size = b numbers

Scenario |

« Code: .
fori=1,N —
forj= LN T

y(0) = y(i) + AdL)*x()
* Inner loop is known as DDOT in NA ‘
literature if working on doubles:
— Double-precision DOT product l

» Cache line size
— 1 number
¢ Large cache model: y A
— Misses:
* A:N?misses
« x: N misses
* y:N misses
« Total = N+2N
* Miss ratio = (N+2N)/4N?
~0.25+0.5/N

Scenario | (contd.)

Address Stream:‘ y(1) ALY x(1) y(1) Hy(1) AlL2) X2) y(1)‘...ly(1) ALN) X(N) y(l)‘ ¥2) A1) x(1) ¥(2)

* Small cache model:

— A: N2 misses —

— x: N+ N(N-1) misses (reuse T Tx
distance=0O(N))
y: N misses (reuse distance=0(1)) ‘
— Total = 2N2+N i
Miss ratio = (2N2+N)/4N2 l
~0.5+0.25/N
» Transition from large cache model to y A

small cache model

— As problem size increases, when do

capacity misses begin to occur?

— Subtle issue: depends on replacement
policy (see next slide)

Scenario | (contd.)

Address Stream:‘ y(1) A(1,1) x(1) y(1) Hy(l) A(1.2) x(2) y(1)L v.jy(l) A(LN) x(N) y(l)‘ ¥(2) A(2,1) x(1) y(2)

* Question: as problem size increases, when do capacity .
misses begin to occur? —

« Depends on replacement policy: T 1x
— Optimal replacement:
« do the best job you can, knowing everything about the ‘
computation
only x needs to be cache-resident
elements of A can be “streamed in" and tossed out of cache after

S0 we need room for (N+2) numbers l
Transition: N+2>C & N ~C
— LRU replacement
« by the time we get to end of a row of A, first few elements of x
are “cold” but we do not want them to be replaced
« Transition: (2N+2)>C & N~CJ2
. Note:
— optimal replacement requires perfect knowledge about future
— most real caches use LRU or something close to it
— some architectures support “streaming”
+ in hardware
«in software: hints to tell processor not to cache certain references

Miss ratio graph

1.0
miss 075
ratio
0.50 DDOT,b=1)
0.25
. N

large cache model small cache model

¢ Jump from large cache model to small cache
model will be more gradual in reality because of
conflict misses

Scenario |l

« Code:
forj=1,N S
fori=1,N (T x

y(0) = y(i) + AGi.j)*x() |

¢ Inner loop is known as i

AXPY in NA literature l

y=a-x+y

¢ Miss ratio picture exactly y A

the same as Scenario |

— roles of xand y are
interchanged

Scenario Il

* Code:
fori=1,N
forj=1,N
y(0) = y(i) + AGi.j)*x()
« Cache line size \
— b numbers i
¢ Large cache model: l
— Misses:
« A: N2/b misses y A
* x: N/b misses
« y: N/b misses
« Total = (N2+2N)/b
« Miss ratio = (N2+2N)/4bN2
~0.25/b + 0.5/bN

—

(Crrix

Scenario Il (contd.)

Address Stream:‘ y(1) A(1,1) x(1) y(1) Hy(l) A(1.2) x(2) y(1)L v.jy(l) A(LN) x(N) y(l)‘ ¥(2) A(2,1) x(1) y(2)

« Small cache model:
— A:N?b misses
— x: N/b + N(N-1)/b misses (reuse distance=O(N))

— y: N/b misses (reuse distance=0(1)) D:I:B X

— Total = (2N2+N)/b
— Miss ratio = (2N2+N)/4bN2 |
~ 0.5/b + 0.25/bN i
« Transition from large cache model to small cache
model
— As problem size increases, when do capacity misses
begin to occur? y A
— LRU: roughly when (2N+2b) = C
« N-CR2

— Optimal: roughly when (N+2b) ~C 2> N~ C
* So miss ratio picture for Scenario Il is similar to that of
Scenario | but the y-axis is scaled down by b
* Typical value of b = 4 (SGI Octane)

Miss ratio graph

1.0

miss 0.75
ratio
0.50 0.50 (DDOT, b=1)

0.25

~— T~ 0.125(DDOTb=4)
N

large cache model small cache model

¢ Jump from large cache model to small cache
model will be more gradual in reality because of
conflict misses

Scenario IV

Miss ratios

Miss ratio
Code: 0.25(1+1/b) DAXPY
forj=1N
fori=1,N .
() = () + AGI)() —
Large cache model: X
— Same as Scenario Il D:I:I:l
Small cache model: ‘
— Misses:
o AN i 0.75/b
« x Nb
« y: N/ib+ N(N-1)b = N2/b l
« Total: N¥(1+1/b) + N/b
« Miss ratio = 0.25(1+1/b) + 0.25/bN -
Transition from large cache to small cache y A 0.50/b bDOT
model
— LRU: Nb +N +b=C = N~ Cl(b+1)
— optimal: N+2b~C=2N~C 0.25/b
Transition happens much sooner than in)
Scenario Ill (with LRU replacement)
N
Cl(b+1) C2
Intuition: perform blocked MVM so that data for
each blocked MVM fits in cache
— One estimate for B: all data for block MVM must fit « Code: blocked code
in cache i=1N,B
> B2+28B-C . N,B f
soeme) — i, min(bi+8-1,N))
— Actually we can do better than this X min(bj+B-1,N) X
Code: blocked code LT Y()=y()+A(,)*x() ——
for bi = 1,N,B ‘ ‘
forbj=1N,B 4 Better code: interchange the two outermost loops and
for i = bi,min(bi+B-1,N) i B fuse bi and i loops i
for j = bj,min(bj+B-1,N) l for bj = 1,N,B
Y=y (i)+AG)*x() l fori=1,N l
Choose block size B so Tor_ @.min(l?i+B_—1.N)
— you have large cache model while executing block y B> YO)=y()+A(1i)**() y A

— Bis as large as possible (to reduce loop overhead)
— for our example, this means B~c/2 for row-major
order of storage and LRU replacement
Since entire MVM computation is a sequence of
block MVMs, this means miss ratio will be
0.25/b independent of N!

This has the same memory behavior as doubly-
blocked loop but less loop overhead.

Miss ratios

Miss ratio

0.25(1+1/b)

DAXPY

0.75/b &
0.50/b ~ ppOT

0.25/b K\‘L Blocked

Key transformations

» Loop permutation

fori=1,N forj=1,N
forj=1,N > fori=1,N
S S
e Strip-mining
fori=1,N > for bi=1,N,B
S for i = bi, min(bi+B-1,N)

S
 Loop tiling = strip-mine and interchange

fori=1,N 2> for bi=1,N,B
forj=1,N forj=1,N
Clb+1) cr2 N S forSi = bj,min(bj+B-1,N)
Notes Matrix multiplication

 Strip-mining does not change the order in which
loop body instances are executed
— so itis always legal

* Loop permutation and tiling do change the order
in which loop body instances are executed
— so they are not always legal

e For MVM and MMM, they are legal, so there are
many variations of these kernels that can be
generated by using these transformations

— different versions have different memory behavior as
we have seen

* We have studied MVM in detail.

* In dense linear algebra, matrix-matrix
multiplication is more important.

» Everything we have learnt about MVM
carries over to MMM fortunately, but there
are more variations to consider since there
are three matrices and three loops.

MMM

DO | = 1, N//row-major storage B
DOJ=1,N K
_ A
DOK=1,N
C(J)=CLI) +AIKBKI) Fra|® |c

1JK version of matrix multiplication

e Three loops: I,J,K
¢ You can show that all six permutations of these three
loops compute the same values.

¢ As in MVM, the cache behavior of the six versions is
different

MMM

DO | = 1, N//row-major storage

DOJ=1,N LB
DOK=1,N A l
C(1,J) = C(1,J) + A(I,LK)*B(K,J) .
—K— C
1JK version of matrix multiplication

« Kloop innermost
— A: good spatial locality
— C: good temporal locality
* |loop innermost
- B: good temporal locality
J loop innermost
— B,C: good spatial locality
- A: good temporal locality
So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK,
followed by JKI/KJI

MMM miss ratios (simulated)

L1 Cache Miss Ratio for Intel Pentium 111
- MMM with N =1...1300
— 16KB 32B/Block 4-way 8-byte elements

|

Observations

¢ Miss ratios depend on which loop is in innermost
position
— so there are three distinct miss ratio graphs

» Large cache behavior can be seen very clearly
and all six version perform similarly in that
region

* Big spikes are due to conflict misses for
particular matrix sizes

— notice that versions with J loop innermost have few
conflict misses (why?)

|JK version

DO I = 1, N//row-major storage \ B
DOJ=1,N f
— A
DOK=1,N
C(1,J) = C(1,J) + A(1,LK)*B(K,J) k| " |c

e Large cache scenario:
— Matrices are small enough to fit into cache
— Only cold misses, no capacity misses
— Miss ratio:
« Data size = 3 N2
« Each miss brings in b floating-point numbers
+ Miss ratio = 3 N2/b*4N3 = 0.75/bN (eg) 0.019 (b = 4,N=10)

IJK version (large cache)

DO | = 1, N/[row-major storage
DOJ=1,N
DOK=1,N
C(1,9)=C(1,J) + A(LK*'B(KJ) x| °

f—x —

¢ Large cache scenario:
— Matrices are small enough to fit into cache
— Only cold misses, no capacity misses

— Miss ratio:
 Data size = 3 N2
« Each miss brings in b floating-point numbers
* Miss ratio = 3 N2/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

IJK version (small cache)

DOI=1,N !
DOJ=1,N K
_ A
DOK=1,N
CI) =CLI) +ALKBKI) el | ° ¢

» Small cache scenario:
— Matrices are large compared to cache
« stack distance is not O(1) => miss
— Cold and capacity misses
— Miss ratio:
* C: N2/b misses (good temporal locality)
« A: N23/b misses (good spatial locality)
« B: N3misses (poor temporal and spatial locality)
« Miss ratio - 0.25 (b+1)/b = 0.3125 (for b = 4)

Miss ratios for other versions

DO | =1, N//row-major storage
DOJ=1,N
DOK=1,N A

f—x —

C(1,3) = C(1,3) + A(L,K)*B(K,J)

K-

1JK version of matrix multiplication

K loop innermost
— A: good spatial locality

— C: good temporal locality 0.25(b+1)/b
I loop innermost
— B: good temporal locality (N?/b + N3 +N3)/4N3 > 0.5

« Jloop innermost
— B,C: good spatial locality (N3/b + N3b + N?/b)/4AN3 > 0.5/b
— A: good temporal locality

* So we would expect IKJ/KIJ versions to perform best, followed by 1JK/JIK,

followed by JKI/KJI

MMM experiments Transition out of large cache

L1 Cache Miss Ratio for Intel Pentium 111 an we predict this?

- MMM with N =1...1300

— 16KB 32B/Block 4-way 8-byte elements DO | = 1, N//rOW-majOr Storage ‘ B
[T DOJ=1,N K
o DOK=1,N A
ca C(1,J) = C(1,J) + A(I,LK)*B(K,J) kol | ° c
o
(=]
o ¢ Find the data element(s) that are reused with the largest
L stack distance
= ¢ Determine the condition on N for that to be less than C
e J— « For our problem:
- T — N2+ N + b < C (with optimal replacement)
o — N2+ 2N < C (with LRU replacement)

WEADAEASSRANIANNEE] — In either case, we get N ~ sqrt(C)
— For our cache, we get N ~ 45 which agrees quite well with data

Blocked code Notes

» So far, we have considered a two-level memory
hierarchy

* Real machines have multiple level memory hierarchies
« In principle, we need to block for all levels of the memory

hierarchy
« In practice, matrix multiplication with really large matrices
is very rare
for bi = 1,N,B .) . . L.
for bj = 1,N,B As in blocked MVM, we actually need to — MMM shows up mainly in blocked matrix factorizations

for bk = 1,H,B stripmine only two loops — therefore, it is enough to block for registers, and L1/L2 cache

for i = bi, min(bi+B-1,N) levels

for j = bj, min(bj+B-1,1) » How do we organize such a code?
for k = bk, min(bk+B-1,N)

g = Y1)+ ACH, Pexcf) — We will study the code produced by ATLAS.
— ATLAS also introduces us to self-optimizing programs.

