
1

A Comparison of
Cache-conscious and Cache-oblivious

Programs

Keshav Pingali, University of Texas, Austin

Joint work with
Kamen Yotov, Goldman Sachs
Tom Roeder, Cornell University

John Gunnels, IBM T.J. Watson Research Center
Fred Gustavson, IBM T.J.Watson Research Center

Memory Hierarchy Management

• Cache-conscious (CC) approach:
– Blocked iterative algorithms and arrays (usually)

• Code and data structures have parameters that depend on careful
blocking for memory hierarchy

– Used in dense linear algebra libraries: BLAS, LAPACK
• Lots of algorithmic data reuse: O(N3) operations on O(N2) data

• Cache-oblivious (CO) approach:
– Recursive algorithms and data structures (usually)

• Not aware of memory hierarchy: approximate blocking
• I/O optimal: Hong and Kung, Frigo and Leiserson

– Used in FFT implementations: FFTW
• Little algorithmic data reuse: O(N(logN)) computations on O(N) data

Questions
• Does CO approach perform as well as CC approach?

– Intuitively, a “self-adaptive” program that is oblivious of
some hardware feature should be at a disadvantage.

– Little experimental data in the literature
• CO community believes their approach outperforms CC approach
• But most studies from CO community compare performance with

unblocked (unoptimized) CC codes

• If not, what can be done to improve the performance
of CO programs?

One study

• Studied recursive and iterative MMM on Itanium-2
• Recursive performs better
• But look at MFlops: 30 MFlops
• Intel MKL: 6GFlops

Piyush Kumar (LNCS 2625)

2

Organization of talk
• CO and CC approaches to blocking

– control structures
– data structures

• Non-standard view of blocking (or why CO may work well)
– reduce bandwidth required from memory

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

Cache-Oblivious Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide all dimensions (AD)
• 8-way recursive tree down to 1x1 blocks
• Bilardi, et. al.

– Gray-code order promotes reuse
• We use AD in rest of talk

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

A0

A1

C0

C1

B

C0 = A0*B
C1 = A1*B

C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide largest dimension (LD)
• Two-way recursive tree down to 1x1 blocks

• Frigo, Leiserson, et. al.

CO: recursive micro-kernel
• Internal nodes of recursion tree are

recursive overhead; roughly
– 100 cycles on Itanium-2
– 360 cycles on UltraSPARC IIIi

• Large overhead: for LD, roughly one
internal node per leaf node

• Solution:
– Micro-kernel: code obtained by

complete unrolling of recursive tree
for some fixed size problem
(RUxRUxRU)

– Cut off recursion when sub-problem
size becomes equal to micro-kernel
size, and invoke micro-kernel

– Overhead of internal node is
amortized over micro-kernel, rather
than a single multiply-add

– Choice of RU: empirical

recursive micro-kernel

Data Structures

• Match data structure layout to access patterns
• Improve

– Spatial locality
– Streaming

• Morton-Z is more complicated to implement
– Payoff is small or even negative in our experience

• Rest of talk: use RBR format with block size matched to microkernel

Row-major Row-Block-Row Morton-Z

3

Cache-conscious algorithms

N
B

M
U

K

B

N

A C

NB

K

Cache blocking Register blocking

CC algorithms: discussion
• Iterative codes

– Nested loops
• Implementation of blocking

– Cache blocking
• Mini-kernel: in ATLAS, multiply NBxNB blocks
• Choose NB so NB2 + NB + 1 <= CL1

– Register blocking
• Micro-kernel: in ATLAS, multiply MUx1 block of A with

1xNU block of B into MUxNU block of C
• Choose MU,NU so that MU + NU +MU*NU <= NR

Organization of talk
• CO and CC approaches to blocking

– control structures
– data structures

• Non-standard view of blocking
– reduce bandwidth required from memory

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

Blocking
• Microscopic view

– Blocking reduces expected latency of memory
access

• Macroscopic view
– Memory hierarchy can be ignored if

• memory has enough bandwidth to feed processor
• data can be pre-fetched to hide memory latency

– Blocking reduces bandwidth needed from memory
• Useful to consider macroscopic view in more

detail

4

Blocking for MMM

• Assume processor can perform 1 FMA every cycle
• Ideal execution time for NxN MMM = N3 cycles
• Square blocks: NB x NB
• Upper bound for NB:

– working set for block computation must fit in cache
– size of working set depends on schedule: at most 3NB2

– Upper bound on NB: 3NB2 ≤ Cache Capacity
• Lower bound for NB:

– data movement in block computation = 4 NB2

– total data movement < (N / NB)3 * 4 NB2 = 4 N3 / NB doubles
– required bandwidth from memory = (4 N3 / NB) / (N3) = 4 / NB doubles/cycle
– Lower bound on NB: 4/NB < Bandwidth between cache and memory

• Multi-level memory hierarchy: same idea
– sqrt(capacity(L)/3) > NBL > 4/Bandwidth(L,L+1) (levels L,L+1)

CPU Cache Memory

Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L3 and Memory
– Constraints

• 8 / NBL3 ≤ 0.5
• 3 * NBL3

2 ≤ 524288 (4MB)
– Therefore Memory has enough bandwidth for 16 ≤ NBL3 ≤ 418

• NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory
• NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory
• NBL3 > 418 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(L2,L3) ≤ 4

16 ≤ NBL3 ≤ 418
0.02 ≤ B(L3,Memory) ≤ 0.5

2 FMAs/cycle

Lessons
• Reducing bandwidth requirements

– Block size does not have to be exact
– Enough for block size to lie within an interval that depends

on hardware parameters
– If upper bound on NB is more than twice lower bound,

divide and conquer will automatically generate a block size
in this range
approximate blocking CO-style is OK

• Reducing latency
– Accurate block sizes are better
– If block size is chosen approximately, may need to

compensate with prefetching

Organization of talk
• Non-standard view of blocking

– reduce bandwidth required from memory
• CO and CC approaches to blocking

– control structures
– data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

5

UltraSPARC IIIi
• Peak performance: 2 GFlops (1 GHZ, 2 FPUs)
• Memory hierarchy:

– Registers: 32
– L1 data cache: 64KB, 4-way
– L2 data cache: 1MB, 4-way

• Compilers
– C: SUN C 5.5

Naïve algorithms
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement

• Recursive:
– down to 1 x 1 x 1
– 360 cycles overhead for each MA

= 6 MFlops
• Iterative:

– triply nested loop
– little overhead

• Both give roughly the same
performance

• Vendor BLAS and ATLAS:
– 1750 MFlops

Miss ratios

• Misses/FMA for iterative code is roughly 2
• Misses/FMA for recursive code is 0.002
• Practical manifestation of theoretical I/O

optimality results for recursive code
• However, two competing factors affect

performance:
• cache misses
• overhead

• 6 MFlops is a long way from 1750 MFlops!

Recursive micro-kernel
• Recursion down to RU(=8)

– Unfold completely below
RU to get a basic block

• Micro-Kernel
– Scheduling and register

allocation using heuristics
for large basic blocks in
BRILA compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

6

Lessons
• Bottom-line on UltraSPARC:

– Peak: 2 GFlops
– ATLAS: 1.75 GFlops
– Best CO strategy: 700 MFlops

• Similar results on other machines:
– Best CO performance on Itanium: roughly 2/3 of

peak
• Conclusion:

– Recursive micro-kernels are not a good idea

Recursion + Iterative micro-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to MU x
NU x KU (4x4x120)

• Micro-Kernel
– Completely unroll MU x

NU nested loop
– Construct a preliminary

schedule
– Perform Graph Coloring

register allocation
– Schedule using BRILA

compiler

Iterative micro-kernel

N
B

M
U

K

B

N

A C

NB

K

Cache blocking Register blocking

Lessons
• Two hardware constraints on size of micro-kernels:

– I-cache limits amount of unrolling
– Number of registers

• Iterative micro-kernel: three degrees of freedom
(MU,NU,KU)
– Choose MU and NU to optimize register usage
– Choose KU unrolling to fit into I-cache

• Recursive micro-kernel: one degree of freedom (RU)
– But even if you choose rectangular tiles, all three degrees

of freedom are tied to both hardware constraints

7

Recursion + mini-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to NB
• Mini-Kernel

– NB x NB x NB triply
nested loop (NB=120)

– Tiling for L1 cache
– Body of mini-kernel is

iterative micro-kernel

Recursion + mini-kernel + pre-fetching

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Using mini-kernel from
ATLAS Unleashed gives
big performance boost over
BRILA mini-kernel.

• Reason: pre-fetching

Vendor BLAS
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Not much difference
from previous case.

• Vendor BLAS is at same
level.

Lessons
• Vendor BLAS gets highest performance
• Pre-fetching boosts performance by roughly

40%
• Iterative code: pre-fetching is well-understood
• Recursive code: not well-understood

8

Summary
• Iterative approach has been proven to work well in practice

– Vendor BLAS, ATLAS, etc.
– But requires a lot of work to produce code and tune parameters

• Implementing a high-performance CO code is not easy
– Careful attention to micro-kernel and mini-kernel is needed

• Using fully recursive approach with highly optimized recursive
micro-kernel, we never got more than 2/3 of peak.

• Issues with CO approach
– Recursive Micro-Kernels yield less performance than iterative ones

using same scheduling techniques
– Pre-fetching is needed to compete with best code: not well-understood

in the context of CO codes

Ongoing Work
• Explain performance of all results shown
• Complete ongoing Matrix Transpose study
• Proteus system and BRILA compiler
• I/O optimality:

– Interesting theoretical results for simple model of
computation

– What additional aspects of hardware/program
need to be modeled for it to be useful in practice?

Miss ratios

