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Memory Hierarchy Management

• Cache-conscious (CC) approach:
– Blocked iterative algorithms and arrays (usually)

• Code and data structures have parameters that depend on careful 
blocking for memory hierarchy

– Used in dense linear algebra libraries: BLAS, LAPACK
• Lots of algorithmic data reuse: O(N3) operations on O(N2) data

• Cache-oblivious (CO) approach:
– Recursive algorithms and data structures (usually)

• Not aware of memory hierarchy: approximate blocking
• I/O optimal: Hong and Kung, Frigo and Leiserson

– Used in FFT implementations: FFTW 
• Little algorithmic data reuse: O(N(logN)) computations on O(N) data

Questions
• Does CO approach perform as well as CC approach?

– Intuitively, a “self-adaptive” program that is oblivious of 
some hardware feature should be at a disadvantage.

– Little experimental data in the literature
• CO community believes their approach outperforms CC approach
• But most studies from CO community compare performance with 

unblocked (unoptimized) CC codes

• If not, what can be done to improve the performance 
of CO programs?

One study

• Studied recursive and iterative MMM on Itanium-2
• Recursive performs better
• But look at MFlops: 30 MFlops
• Intel MKL: 6GFlops 

Piyush Kumar (LNCS 2625)
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Organization of talk
• CO and CC approaches to blocking

– control structures
– data structures

• Non-standard view of blocking (or why CO may work well)
– reduce bandwidth required from memory

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

Cache-Oblivious Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide all dimensions (AD) 
• 8-way recursive tree down to 1x1 blocks
• Bilardi, et. al. 

– Gray-code order promotes reuse
• We use AD in rest of talk
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C0 = A0*B
C1 = A1*B

C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide largest dimension (LD) 
• Two-way recursive tree down to 1x1 blocks

• Frigo, Leiserson, et. al. 

CO: recursive micro-kernel
• Internal nodes of recursion tree are 

recursive overhead; roughly
– 100 cycles on Itanium-2
– 360 cycles on UltraSPARC IIIi

• Large overhead: for LD, roughly one 
internal node per leaf node

• Solution:
– Micro-kernel: code obtained by 

complete unrolling of recursive tree 
for some fixed size problem 
(RUxRUxRU)

– Cut off recursion when sub-problem 
size becomes equal to micro-kernel 
size, and invoke micro-kernel

– Overhead of internal node is 
amortized over micro-kernel, rather 
than a single multiply-add

– Choice of RU: empirical

recursive micro-kernel

Data Structures

• Match data structure layout to access patterns
• Improve

– Spatial locality
– Streaming

• Morton-Z is more complicated to implement
– Payoff is small or even negative in our experience

• Rest of talk: use RBR format with block size matched to microkernel

Row-major Row-Block-Row Morton-Z
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Cache-conscious algorithms
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CC algorithms: discussion
• Iterative codes

– Nested loops
• Implementation of blocking

– Cache blocking 
• Mini-kernel: in ATLAS, multiply NBxNB blocks
• Choose NB so NB2 + NB + 1 <= CL1

– Register blocking 
• Micro-kernel: in ATLAS, multiply MUx1 block of A with 

1xNU block of B into MUxNU block of C
• Choose MU,NU so that MU + NU +MU*NU <= NR

Organization of talk
• CO and CC approaches to blocking

– control structures
– data structures

• Non-standard view of blocking
– reduce bandwidth required from memory

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

Blocking
• Microscopic view

– Blocking reduces expected latency of memory 
access 

• Macroscopic view
– Memory hierarchy can be ignored if

• memory has enough bandwidth to feed processor
• data can be pre-fetched to hide memory latency

– Blocking reduces bandwidth needed from memory 
• Useful to consider macroscopic view in more 

detail
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Blocking for MMM

• Assume processor can perform 1 FMA every cycle
• Ideal execution time for NxN MMM = N3 cycles
• Square blocks: NB x NB 
• Upper bound for NB:

– working set for block computation must fit in cache
– size of working set depends on schedule: at most 3NB2

– Upper bound on NB: 3NB2 ≤ Cache Capacity
• Lower bound for NB:

– data movement in block computation = 4 NB2

– total data movement  < (N / NB)3 * 4 NB2 = 4 N3 / NB doubles
– required bandwidth from memory = (4 N3 / NB) / (N3 ) = 4 / NB doubles/cycle
– Lower bound on NB: 4/NB < Bandwidth between cache and memory

• Multi-level memory hierarchy: same idea 
– sqrt(capacity(L)/3) > NBL > 4/Bandwidth(L,L+1) (levels L,L+1)

CPU Cache Memory

Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L3 and Memory
– Constraints

• 8 / NBL3 ≤ 0.5
• 3 * NBL3

2 ≤ 524288 (4MB)
– Therefore Memory has enough bandwidth for 16 ≤ NBL3 ≤ 418

• NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory
• NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory
• NBL3 > 418 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(L2,L3) ≤ 4

16 ≤ NBL3 ≤ 418
0.02 ≤ B(L3,Memory) ≤ 0.5

2 FMAs/cycle

Lessons
• Reducing bandwidth requirements

– Block size does not have to be exact
– Enough for block size to lie within an interval that depends 

on hardware parameters
– If upper bound on NB is more than twice lower bound, 

divide and conquer will automatically generate a block size 
in this range
approximate blocking CO-style is OK

• Reducing latency
– Accurate block sizes are better
– If block size is chosen approximately, may need to 

compensate with prefetching

Organization of talk
• Non-standard view of blocking

– reduce bandwidth required from memory
• CO and CC approaches to blocking

– control structures
– data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work
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UltraSPARC IIIi
• Peak performance: 2 GFlops (1 GHZ, 2 FPUs)
• Memory hierarchy:

– Registers: 32
– L1 data cache: 64KB, 4-way
– L2 data cache: 1MB, 4-way

• Compilers
– C: SUN C 5.5 

Naïve algorithms
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement

• Recursive: 
– down to 1 x 1 x 1
– 360 cycles overhead for each MA

= 6 MFlops
• Iterative: 

– triply nested loop
– little overhead

• Both give roughly the same 
performance

• Vendor BLAS and ATLAS: 
– 1750 MFlops

Miss ratios

• Misses/FMA for iterative code is roughly 2
• Misses/FMA for recursive code is 0.002
• Practical manifestation of theoretical I/O 

optimality results for recursive code 
• However, two competing factors affect 

performance:
• cache misses
• overhead

• 6 MFlops is a long way from 1750 MFlops! 

Recursive micro-kernel
• Recursion down to RU(=8)

– Unfold completely below 
RU to get a basic block

• Micro-Kernel
– Scheduling and register 

allocation using heuristics 
for large basic blocks in 
BRILA compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA
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Lessons
• Bottom-line on UltraSPARC:

– Peak: 2 GFlops
– ATLAS: 1.75 GFlops
– Best CO strategy: 700 MFlops

• Similar results on other machines:
– Best CO performance on Itanium: roughly 2/3 of 

peak
• Conclusion:

– Recursive micro-kernels are not a good idea

Recursion + Iterative micro-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to MU x 
NU x KU (4x4x120)

• Micro-Kernel
– Completely unroll MU x 

NU nested loop
– Construct a preliminary 

schedule
– Perform Graph Coloring 

register allocation
– Schedule using BRILA 

compiler

Iterative micro-kernel
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Cache blocking Register blocking

Lessons
• Two hardware constraints on size of micro-kernels:

– I-cache limits amount of unrolling
– Number of registers

• Iterative micro-kernel: three degrees of freedom 
(MU,NU,KU)
– Choose MU and NU to optimize register usage
– Choose KU unrolling to fit into I-cache

• Recursive micro-kernel: one degree of freedom (RU)
– But even if you choose rectangular tiles, all three degrees 

of freedom are tied to both hardware constraints
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Recursion + mini-kernel
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to NB
• Mini-Kernel

– NB x NB x NB triply 
nested loop (NB=120)

– Tiling for L1 cache
– Body of mini-kernel is 

iterative micro-kernel

Recursion + mini-kernel + pre-fetching

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Using mini-kernel from 
ATLAS Unleashed gives 
big performance boost over
BRILA mini-kernel.

• Reason: pre-fetching

Vendor BLAS
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Not much difference
from previous case. 

• Vendor BLAS is at same
level.

Lessons
• Vendor BLAS gets highest performance
• Pre-fetching boosts performance by roughly 

40% 
• Iterative code: pre-fetching is well-understood
• Recursive code: not well-understood
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Summary
• Iterative approach has been proven to work well in practice

– Vendor BLAS, ATLAS, etc.
– But requires a lot of work to produce code and tune parameters

• Implementing a high-performance CO code is not easy
– Careful attention to micro-kernel and mini-kernel is needed

• Using fully recursive approach with highly optimized recursive 
micro-kernel, we never got more than 2/3 of peak.

• Issues with CO approach
– Recursive Micro-Kernels yield less performance than iterative ones 

using same scheduling techniques
– Pre-fetching is needed to compete with best code: not well-understood 

in the context of CO codes

Ongoing Work
• Explain performance of all results shown
• Complete ongoing Matrix Transpose study
• Proteus system and BRILA compiler
• I/O optimality:

– Interesting theoretical results for simple model of 
computation

– What additional aspects of hardware/program 
need to be modeled for it to be useful in practice?

Miss ratios


