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Memory Consistency Models

Outline

• Review of multi-threaded program execution on 
uniprocessor

• Need for memory consistency models
• Sequential consistency model
• Relaxed memory models 

– weak consistency model
– release consistency model

• Conclusions

Multi-threaded programs on 
uniprocessor

MEMORY

P

• Processor executes all threads of 
program

– unspecified scheduling policy
• Operations in each thread are 

executed in order
• Atomic operations: lock/unlock etc. for 

synchronization between threads
• Result is as if instructions from 

different threads were interleaved in 
some order

• Non-determinacy: program may 
produce different outputs depending 
on scheduling of threads (eg)

Thread 1      Thread 2
…..             ……
x := 1;         print(x);
x := 2;

Multi-threaded programs on 
multiprocessor

MEMORY

P

• Each processor executes one 
thread
– let’s keep it simple

• Operations in each thread are 
executed in order

• One processor at a time can 
access global memory to 
perform load/store/atomic 
operations
– no caching of global data

• You can show that running 
multi-threaded program on 
multiple processors does not 
change possible output(s) of 
program from uniprocessor
case

P P
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More realistic architecture
• Two key assumptions so far:

1. processors do not cache global data
• improving execution efficiency:

– allow processors to cache global data
» leads to cache coherence problem, which can be solved 

using coherent caches as explained before

2. instructions within each thread are executed in order
• improving execution efficiency:

– allow processors to execute instructions out of order subject to
data/control dependences
» surprisingly, this can change the semantics of the 

program
» preventing this requires attention to memory consistency 

model of processor

Recall: uniprocessor execution

• Processors reorder operations to improve 
performance

• Constraint on reordering: must respect 
dependences
– data dependences must be respected: in 

particular, loads/stores to a given memory 
address must be executed in program order

– control dependences must be respected
• Reorderings can be performed either by 

compiler or processor

Permitted memory-op reorderings

• Stores to different memory locations can be performed out of 
program order

store v1, data                                store b1, flag
store b1, flag             store v1, data

• Loads from different memory locations can be performed out of 
program order

load flag, r1                                   load data,r2
load data, r2              load flag, r1

• Load and store to different memory locations can be performed out 
of program order

Example of hardware reordering

Memory systemProcessor

Store buffer

Load bypassing

• Store buffer holds store operations that need to be sent to memory
• Loads are higher priority operations than stores since their results are
needed to keep processor busy, so they bypass the store buffer

• Load address is checked against addresses in store buffer, so store
buffer satisfies load if there is an address match

• Result: load can bypass stores to other addresses
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Problem in multiprocessor context

• Canonical model
– operations from given processor are executed in 

program order 
– memory operations from different processors appear 

to be interleaved in some order at the memory
• Question:

– If a processor is allowed to reorder independent 
operations in its own instruction stream, will the 
execution always produce the same results as the 
canonical model?

– Answer: no. Let us look at some examples. 

Example (I) 

Code:
Initially A = Flag = 0

P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Idea: 
– P1 writes data into A and sets Flag to tell P2 that data 

value can be read from A. 
– P2 waits till Flag is set and then reads data from A.

Execution Sequence for (I)
Code:
Initially A = Flag = 0
P1 P2
A = 23; while (Flag != 1) {;} 
Flag = 1; ... = A; 

Possible execution sequence on each processor:
P1 P2 
Write A 23 Read Flag      //get 0 
Write Flag 1                                 ……

Read Flag      //get 1 
Read A          //what do you get?

Problem: If the two writes on processor P1 can be reordered, it is 
possible for processor P2 to read 0 from variable A. 
Can happen on most modern processors.

Example II
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                     If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2  //get 0 Read Flag1  //what do you get?
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Execution sequence for (II)
Code: (like Dekker’s algorithm)
Initially Flag1 = Flag2 = 0
P1 P2
Flag1 = 1; Flag2 = 1;
If (Flag2 == 0)                          If (Flag1 == 0) 

critical section critical section

Possible execution sequence on each processor:
P1 P2 
Write Flag1, 1 Write Flag2, 1 
Read Flag2 //get 0 Read Flag1, ?? 

Most people would say that P2 will read 1 as the value of Flag1.
Since P1 reads 0 as the value of Flag2, P1’s read of Flag2 must happen before P2 
writes to Flag2. Intuitively, we would expect P1’s write of Flag to happen before P2’s 
read of Flag1.

However, this is true only if reads and writes on the same processor to different 
locations are not reordered by the compiler or the hardware.
Unfortunately, this is very common on most processors (store-buffers with load-
bypassing).

Lessons
• Uniprocessors can reorder instructions subject only to 

control and data dependence constraints
• These constraints are not sufficient in shared-memory 

context
– simple parallel programs may produce counter-

intuitive results
• Question: what constraints must we put on uniprocessor

instruction reordering so that
– shared-memory programming is intuitive
– but we do not lose uniprocessor performance?

• Many answers to this question
– answer is called memory consistency model

supported by the processor

Consistency models
- Consistency models are not about memory operations 

from  different processors.
- Consistency models are not about dependent memory 

operations in a single processor’s instruction stream 
(these are respected even by processors that reorder 
instructions).

- Consistency models are all about ordering constraints on 
independent memory operations in a single processor’s
instruction stream that have some high-level 
dependence (such as flags guarding data) that should be 
respected to obtain intuitively reasonable results.

Simplest Memory Consistency 
Model

• Sequential consistency (SC) [Lamport]
– our canonical model: processor is not allowed to 

reorder reads and writes to global memory

MEMORY

P1 P3P2 Pn
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Sequential Consistency
• SC constrains all memory operations:

• Write → Read
• Write → Write 
• Read → Read, Write

- Simple model for reasoning about parallel programs
- You can verify that the examples considered earlier work 

correctly under sequential consistency.
- However, this simplicity comes at the cost of uniprocessor

performance.
- Question: how do we reconcile sequential consistency model 

with the demands of performance?

Relaxed consistency model:
Weak consistency

- Programmer specifies regions within which global memory operations can be reordered
- Processor has fence instruction:

- all data operations before fence in program order must complete before fence is 
executed

- all data operations after fence in program order must wait for fence to complete
- fences are performed in program order

- Implementation of fence: 
- processor has counter that is incremented when data op is issued, and decremented 

when data op is completed
- Example: PowerPC has SYNC instruction
- Language constructs:

- OpenMP: flush
- All synchronization operations like lock and unlock act like a fence

Weak ordering picture

fence

fence

fence

program
execution

Memory operations within these
regions can be reordered

Example (I) revisited
Code:
Initially A = Flag = 0

P1 P2
A = 23;
flush; while (Flag != 1) {;} 
Flag = 1; flush;

... = A; 

Execution: 
– P1 writes data into A
– Flush waits till write to A is completed
– P1 then writes data to Flag
– Therefore, if P2 sees Flag = 1, it is guaranteed that it will read 

the correct value of A even if memory operations in P1 before 
flush and memory operations after flush are reordered by the 
hardware or compiler.

– Question: does P2 need a flush between the two statements?
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Another relaxed model: 
release consistency

- Further relaxation of weak consistency
- Synchronization accesses are divided into 

- Acquires: operations like lock
- Release: operations like unlock

- Semantics of acquire:
- Acquire must complete before all following memory accesses

- Semantics of release: 
- all memory operations before release are complete

- However,
- acquire does not wait for accesses preceding it
- accesses after release in program order do not have to wait for release

- operations which follow release and which need to wait must be protected by an 
acquire

Example

L/S

ACQ

L/S

REL

L/S

Which operations can be overlapped?

Implementations on Current 
Processors Comments

• In the literature, there are a large number of other 
consistency models
– processor consistency
– total store order (TSO)
– ….

• It is important to remember that these are concerned 
with reordering of independent memory operations within
a processor.

• Easy to come up with shared-memory programs that 
behave differently for each consistency model.

• Emerging consensus that weak/release consistency is 
adequate.
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Summary

• Two problems: memory consistency and memory coherence
• Memory consistency model

– what instructions is compiler or hardware allowed to reorder?
– nothing really to do with memory operations from different 

processors/threads
– sequential consistency: perform global memory operations in 

program order
– relaxed consistency models: all of them rely on some notion of a

fence operation that demarcates regions within which reordering 
is permissible

• Memory coherence
– Preserve the illusion that there is a single logical memory 

location corresponding to each program variable even though 
there may be lots of physical memory locations where the 
variable is stored


