CS 395T:
Topics in Multicore Programming

University of Texas, Austin
Fall 2009

Administration

e Instructors:
— Keshav Pingali (CS,ICES)
* 4.126A ACES
» Email: pingali@cs.utexas.edu
e TA:

— Aditya Rawal
« Email: 83.aditya.rawal@gmail.com

Prerequisites

 Course in computer architecture

— (e.g.) book by Hennessy and Patterson
» Course in compilers

— (e.g.) book by Allen and Kennedy
* Self-motivation

— willingness to learn on your own to fill in gaps
in your knowledge

Why study parallel programming?

Fundamental ongoing change in computer industry

Until recently: Moore’s law(s)

1. Number of transistors on chip double every 1.5
years

« Transistors used to build complex, superscalar
processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
* Speed goes up by factor of 10 roughly every 5 years
=> Many programs ran faster if you just waited a while.
Fundamental change
- Micro-architectural innovations for exploiting ILP
are reaching limits
— Clock speeds are not increasing any more because
of power problems
=> Programs will not run any faster if you wait.
Let us understand why.

(1) Micro-architectural approaches
to Improving processor performance

e Add functional units 100,000,000
— Superscalar is known territory
- Diminishing returns for adding 10,000,000

more functional blocks

- Alternatives like VLIW have
been considered and rejected
by the market

* Wider data paths

— Increasing bandwidth between 10,000
functional units in a
core makes a difference 000

Such as comprehensive 64-bit 1970 1975 1980 1985 1990 1995 2000 2005
design, but then where to? Year

1,000,000

Transistors

100,000

(from Paul Teisch, AMD)

(1) Micro-architectural approaches

(contd.)

e Deeper pipeline
— Deeper pipeline buys frequency at expense of increased
branch mis-prediction penalty and cache miss penalty
— Deeper pipelines => higher clock frequency => more power
— Industry converging on middle ground...9 to 11 stages
¢ Successful RISC CPUs are in the same range
e More cache

— More cache buys performance until working set of program
fits in cache

— Exploiting caches requires help from programmer/compiler
as we will see

(2) Processor clock speeds

Increase in clock rate

1000

e Old picture:
— Processor clock
frequency doubled every 0
1.5 years

* New picture:

— Power problems limit <
further increases in clock o1

frequency (see next
couple of slides)

Clock Rate (MHz)
5
o

Sources of Power Consumption

Dynamic C dV/dt (charging of capacitative load)

A Static Powsr Model for Architects - J, Adam Butts and Gus| Sohi

Sources of Power Consumption

Dynamic lsnort-cireuit (BOth devices conducting)
Vee
Vee} Vee |
-
[- o
time O time

<

Sources of Power Consumption

Static lakage (SUbthreshold, junction leakage)

A SEathc Power Mol far Archaeins « J. Adaes Bums and Guni S A Staie Powsr Model for Archaects - J Adam Buns and Gurl Sond
| December 2000 Dwcembar 2000
Technology Scaling
Dimensions reduced to increase performance and density 15
V¢ decreases each generation... \ RPN TS0 R O SO S0 - 20 O -4 | A
3 ; c
= Limit dynamic power s . 8 1 1
m Limit electric fields % 5
...requiring lower V; g . g S0 U véry_Hng L"éak:ia'g'e'
m Gate overdrive = Ve = Vy i) "M = i S T N SREEWEE i [
14 - 1]
Leakage increases exponentially w bre] Em;)etzded
= el tr e S [N I B S Parts -
B Py = Vec lgak = €XP (=V5) o0 07 05 ok 0% oteon
Channel length {pm)
0
1.0 Frequency 15

& Ststic Prwes Mided for Architects - 1, Adsm Buss snd Guri Sshi
Dacamber 2000

Static current rises non-linearly as processors approach max frequency

&
=
3]

B
>

=2
7]
c
o)

[a]

]
=
<)

o

Nuclear ep
Reactor

Hot Plate =

Pentium®

Source: Patrick
Gelsinger, Intel®
1990 2000 2010
Year

Recap

e Old picture:
— Moore’s law(s):
1. Number of transistors doubled every 1.5 years
— Use these to implement micro-architectural innovations for ILP
2. Processor clock frequency doubled every 1.5 years
=>» Many programs ran faster if you just waited a while.
* New picture:
- Moore’s law
1. Number of transistors still double every 1.5 years
— But micro-architectural innovations for ILP are flat-lining
— Processor clock frequencies are not increasing very much
=>» Programs will not run faster if you wait a while.
e Questions:
— Hardware: What do we do with all those extra transistors?
— Software: How do we keep speeding up program execution?

One hardware solution: go multicore

Use semi-conductor tech

improvements to build

multiple cores without

increasing clock frequency

— does not require micro-
architectural
breakthroughs

— non-linear scaling of
power density with
frequency will not be a
problem

Predictions:

- from now on. number of
cores will double every
1.5 years

#of
cores

(from Saman Amarasinghe, MIT)

Design choices

e Homogenous multicore processors
— large number of identical cores

« Heterogenous multicore processors
— cores have different functionalities

e Itis likely that future processors will be
heterogenous multicores

— migrate important functionality into special-purpose
hardware (eg. codecs)

— much more power efficient than executing program in
general-purpose core

— trade-off: programmability

Problem: multicore software

More aggregate performance for:
— Multi-tasking
— Transactional apps: many instances of same

“We are the cusp of a transition to
multicore, multithreaded
architectures, and we still have not
demonstrated the ease of
programming the move will
require... | have talked with a few
people at Microsoft Research who
say this is also at or near the top of

app
— Multi-threaded apps (our focus)
Problem
— Most apps are not multithreaded
- Writing multithreaded code increases
software costs dramatically

« factor of 3 for Unreal game engine (Tim
Sweeney, EPIC games%

The great multicore software quest: Can we

write programs so that performance their list [of critical CS research
doubles when the number of cores doubles? problems].” Justin Rattner, CTO
I\/ery) hard problem for many reasons (see Intel

ater)

- Amdahl’s law

— Locality

— Overheads of parallel execution
— Load balancing

Parallel Programming

Community has worked on parallel
programming for more than 30 years
- programming models
- machine models
— programming languages
However, parallel programming is still a
research problem
— matrix computations, stencil computations,
FFTs etc. are well-understood
— few insights for other applications
« each new application is a “new phenomenon™
Thesis: we need a science of parallel
programming
— analysis: framework for thinking about
parallelism in application
— synthesis: produce an efficient parallel
implementation of application

“The Alchemist” Cornelius Bega (1663)

unrelated phenomena

Analogy: science of electro-magnetism

Seemingly . . Specialized models
Unifying abstractions that exploit structure

Course objective

e Create a science of parallel programming
— Structure:
« understand the patterns of parallelism and locality in
applications
— Analysis:
« abstractions for reasoning about parallelism and locality in
applications
< programming models based on these abstractions
« tools for quantitative estimates of parallelism and locality
— Synthesis:
« exploiting structure to produce efficient implementations

Approach

Niklaus Wirth’s aphorism:
— Algorithms + Data structures = Programs
Algorithms:
— adescription of the computation, expressed in terms of abstract data types
(ADTS) like sets, matrices, and graphs
Data structures:
— concrete implementations of ADTs
« (eg) matrices can be represented using arrays, space-filling curves, etc.
« (eg) graphs can be represented using adjacency matrices, adjacency lists, etc.
Strategy:
— study parallelism and locality in algorithms, independent of concrete data
structures
« What structure can we exploit for efficient implementation?
— study concrete parallel data structures required to support parallelism in
algorithms
« What structure can we exploit for efficient implementation?

Example: structure in algorithms

general graph
lopology< grid

tree

morph: modifies structure of graph

iterative

operator local computation: only updates values on nodes/edges
algorithms

reader: does not modify graph in any way

unordered
ordering <
ordered

We will elaborate on this structure in a couple of weeks.

Course content

Structure of parallelism and locality in important
algorithms

— computational science algorithms

— graph algorithms
Algorithm abstractions

— dependence graphs

— halographs

Multicore architectures

- interconnection networks, caches and cache coherence, memory
consistency models, locks and lock-free synchronization

Parallel data structures

— linearizability

— array and graph partitioning

— lock-free data structures and transactional memory
Optimistic parallel execution of programs
Scheduling and load-balancing

Course content (contd.)

Locality

— spatial and temporal locality

— cache blocking

— cache-oblivious algorithms

Static program analysis techniques

— array dependence analysis

— points-to and shape analysis

Performance models

— PRAM, BPRAM, logP

Special topics

— self-optimizing software and machine learning techniques for
optimization

— GPUs and GPU programming

— parallel programming languages/libraries: Cilk, PGAS languages,
OpenMP, TBBs, map-reduce, MPI

Course work

Small number of programming assignments
Paper presentations

Substantial final project

Participation in class discussions

