
1

CS 395T:
Topics in Multicore Programming

University of Texas, Austin
Fall 2009

Administration

• Instructors: 
– Keshav Pingali (CS,ICES)

• 4.126A ACES
• Email: pingali@cs.utexas.edu

• TA: 
– Aditya Rawal

• Email: 83.aditya.rawal@gmail.com

Prerequisites

• Course in computer architecture
– (e.g.) book by Hennessy and Patterson

• Course in compilers
– (e.g.) book by Allen and Kennedy

• Self-motivation
– willingness to learn on your own to fill in gaps 

in your knowledge 

Why study parallel programming?
• Fundamental ongoing change in computer industry
• Until recently: Moore’s law(s)

1. Number of transistors on chip double every 1.5 
years

• Transistors used to build complex, superscalar 
processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
• Speed goes up by factor of 10 roughly every 5 years

Many programs ran faster if you just waited a while.
• Fundamental change

– Micro-architectural innovations for exploiting ILP 
are reaching limits

– Clock speeds are not increasing any more because 
of power problems
Programs will not run any faster if you wait.

• Let us understand why.

Gordon Moore



2

(1) Micro-architectural approaches 
to improving processor performance

• Add functional units
– Superscalar is known territory
– Diminishing returns for adding 

more functional blocks
– Alternatives like VLIW have 

been considered and rejected 
by the market

• Wider data paths
– Increasing bandwidth between 

functional units in a 
core makes a difference
• Such as comprehensive 64-bit 

design, but then where to?

i4004

i80286
i80386

i8080

i8086

R3000
R2000

R10000
Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005
Year

Tr
an

si
st

or
s

(from Paul Teisch, AMD)

(1) Micro-architectural approaches 
(contd.)

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased 

branch mis-prediction penalty and cache miss penalty
– Deeper pipelines => higher clock frequency => more power
– Industry converging on middle ground…9 to 11 stages

• Successful RISC CPUs are in the same range

• More cache
– More cache buys performance until working set of program 

fits in cache
– Exploiting caches requires help from programmer/compiler 

as we will see

(2) Processor clock speeds 

• Old picture: 
– Processor clock 

frequency doubled every 
1.5 years

• New picture: 
– Power problems limit 

further increases in clock 
frequency (see next 
couple of slides)

0.1

1

10

100

1000

1970 1980 1990 2000
Year

C
lo

ck
 R

at
e 

(M
H

z)

Increase in clock rate



3

Frequency

St
at

ic
 C

ur
re

nt

Embedded Embedded 
PartsParts

Very High LeakageVery High Leakage
and Powerand Power Fast, High Fast, High 

PowerPower

Fast, Low Fast, Low 
PowerPower

1.0 1.5

15

0

Static current rises non-linearly as processors approach max frequency 



4

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2 )

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick 
Gelsinger, Intel®

Recap

• Old picture:
– Moore’s law(s):

1. Number of transistors doubled every 1.5 years
– Use these to implement micro-architectural innovations for ILP

2. Processor clock frequency doubled every 1.5 years
Many programs ran faster if you just waited a while. 

• New picture:
– Moore’s law

1. Number of transistors still double every 1.5 years
– But micro-architectural innovations for ILP are flat-lining

– Processor clock frequencies are not increasing very much
Programs will not run faster if you wait a while.

• Questions: 
– Hardware: What do we do with all those extra transistors?
– Software: How do we keep speeding up program execution?

One hardware solution: go multicore

• Use semi-conductor tech 
improvements to build 
multiple cores without 
increasing clock frequency
– does not require micro-

architectural 
breakthroughs

– non-linear scaling of 
power density with 
frequency will not be a 
problem

• Predictions:
– from now on. number of 

cores will double every 
1.5 years (from Saman Amarasinghe, MIT)

Design choices

• Homogenous multicore processors
– large number of identical cores

• Heterogenous multicore processors
– cores have different functionalities

• It is likely that future processors will be 
heterogenous multicores
– migrate important functionality into special-purpose 

hardware (eg. codecs)
– much more power efficient than executing program in 

general-purpose core
– trade-off: programmability



5

Problem: multicore software

• More aggregate performance for: 
– Multi-tasking 
– Transactional apps: many instances of same 

app 
– Multi-threaded apps (our focus)

• Problem
– Most apps are not multithreaded
– Writing multithreaded code increases 

software costs dramatically 
• factor of 3 for Unreal game engine (Tim 

Sweeney, EPIC games)
• The great multicore software quest: Can we 

write programs so that performance 
doubles when the number of cores doubles?

• Very hard problem for many reasons (see 
later)

– Amdahl’s law
– Locality 
– Overheads of parallel execution
– Load balancing
– ………

“We are the cusp of a transition to 
multicore, multithreaded 
architectures, and we still have not 
demonstrated the ease of 
programming the move will 
require… I have talked with a few 
people at Microsoft Research who 
say this is also at or near the top of 
their list [of critical CS research 
problems].” Justin Rattner, CTO 
Intel

Parallel Programming

• Community has worked on parallel 
programming for more than 30 years

– programming models
– machine models
– programming languages
– ….

• However, parallel programming is still a 
research problem 

– matrix computations, stencil computations, 
FFTs etc. are well-understood

– few insights for other applications 
• each new application is a “new phenomenon”

• Thesis: we need a science of parallel 
programming

– analysis: framework for thinking about 
parallelism in application

– synthesis: produce an efficient parallel 
implementation of application “The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly 
unrelated phenomena Unifying abstractions

Specialized models
that exploit structure

Course objective

• Create a science of parallel programming
– Structure:

• understand the patterns of parallelism and locality in 
applications

– Analysis: 
• abstractions for reasoning about parallelism and locality in 

applications
• programming models based on these abstractions
• tools for quantitative estimates of parallelism and locality

– Synthesis:
• exploiting structure to produce efficient implementations



6

Approach
• Niklaus Wirth’s aphorism:

– Algorithms + Data structures = Programs
• Algorithms:

– a description of the computation, expressed in terms of abstract data types 
(ADTs) like sets, matrices, and graphs

• Data structures:
– concrete implementations of ADTs

• (eg) matrices can be represented using arrays, space-filling curves, etc.
• (eg) graphs can be represented using adjacency matrices, adjacency lists, etc.

• Strategy:
– study parallelism and locality in algorithms, independent of concrete data 

structures
• What structure can we exploit for efficient implementation?

– study concrete parallel data structures required to support parallelism in 
algorithms

• What structure can we exploit for efficient implementation?

iterative
algorithms

topology

operator

ordering

morph: modifies structure of graph

local computation: only updates values on nodes/edges

reader: does not modify graph in any way

general graph
grid
tree

unordered

ordered

Example: structure in algorithms

We will elaborate on this structure in a couple of weeks.

Course content
• Structure of parallelism and locality in important 

algorithms
– computational science algorithms
– graph algorithms

• Algorithm abstractions
– dependence graphs
– halographs

• Multicore architectures
– interconnection networks, caches and cache coherence, memory 

consistency models, locks and lock-free synchronization
• Parallel data structures

– linearizability
– array and graph partitioning
– lock-free data structures and transactional memory

• Optimistic parallel execution of programs
• Scheduling and load-balancing

Course content (contd.)
• Locality 

– spatial and temporal locality
– cache blocking
– cache-oblivious algorithms

• Static program analysis techniques 
– array dependence analysis
– points-to and shape analysis

• Performance models
– PRAM, BPRAM, logP

• Special topics
– self-optimizing software and machine learning techniques for 

optimization
– GPUs and GPU programming
– parallel programming languages/libraries: Cilk, PGAS languages, 

OpenMP, TBBs, map-reduce, MPI



7

Course work

• Small number of programming assignments
• Paper presentations
• Substantial final project
• Participation in class discussions 


