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CS 395T:
Topics in Multicore Programming

University of Texas, Austin
Fall 2009

Administration

• Instructors: 
– Keshav Pingali (CS,ICES)

• 4.126A ACES
• Email: pingali@cs.utexas.edu

• TA: 
– Aditya Rawal

• Email: 83.aditya.rawal@gmail.com

Prerequisites

• Course in computer architecture
– (e.g.) book by Hennessy and Patterson

• Course in compilers
– (e.g.) book by Allen and Kennedy

• Self-motivation
– willingness to learn on your own to fill in gaps 

in your knowledge 

Why study parallel programming?
• Fundamental ongoing change in computer industry
• Until recently: Moore’s law(s)

1. Number of transistors on chip double every 1.5 
years

• Transistors used to build complex, superscalar 
processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
• Speed goes up by factor of 10 roughly every 5 years

Many programs ran faster if you just waited a while.
• Fundamental change

– Micro-architectural innovations for exploiting ILP 
are reaching limits

– Clock speeds are not increasing any more because 
of power problems
Programs will not run any faster if you wait.

• Let us understand why.

Gordon Moore
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(1) Micro-architectural approaches 
to improving processor performance

• Add functional units
– Superscalar is known territory
– Diminishing returns for adding 

more functional blocks
– Alternatives like VLIW have 

been considered and rejected 
by the market

• Wider data paths
– Increasing bandwidth between 

functional units in a 
core makes a difference
• Such as comprehensive 64-bit 

design, but then where to?
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(1) Micro-architectural approaches 
(contd.)

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased 

branch mis-prediction penalty and cache miss penalty
– Deeper pipelines => higher clock frequency => more power
– Industry converging on middle ground…9 to 11 stages

• Successful RISC CPUs are in the same range

• More cache
– More cache buys performance until working set of program 

fits in cache
– Exploiting caches requires help from programmer/compiler 

as we will see

(2) Processor clock speeds 

• Old picture: 
– Processor clock 

frequency doubled every 
1.5 years

• New picture: 
– Power problems limit 

further increases in clock 
frequency (see next 
couple of slides)
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Recap

• Old picture:
– Moore’s law(s):

1. Number of transistors doubled every 1.5 years
– Use these to implement micro-architectural innovations for ILP

2. Processor clock frequency doubled every 1.5 years
Many programs ran faster if you just waited a while. 

• New picture:
– Moore’s law

1. Number of transistors still double every 1.5 years
– But micro-architectural innovations for ILP are flat-lining

– Processor clock frequencies are not increasing very much
Programs will not run faster if you wait a while.

• Questions: 
– Hardware: What do we do with all those extra transistors?
– Software: How do we keep speeding up program execution?

One hardware solution: go multicore

• Use semi-conductor tech 
improvements to build 
multiple cores without 
increasing clock frequency
– does not require micro-

architectural 
breakthroughs

– non-linear scaling of 
power density with 
frequency will not be a 
problem

• Predictions:
– from now on. number of 

cores will double every 
1.5 years (from Saman Amarasinghe, MIT)

Design choices

• Homogenous multicore processors
– large number of identical cores

• Heterogenous multicore processors
– cores have different functionalities

• It is likely that future processors will be 
heterogenous multicores
– migrate important functionality into special-purpose 

hardware (eg. codecs)
– much more power efficient than executing program in 

general-purpose core
– trade-off: programmability
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Problem: multicore software

• More aggregate performance for: 
– Multi-tasking 
– Transactional apps: many instances of same 

app 
– Multi-threaded apps (our focus)

• Problem
– Most apps are not multithreaded
– Writing multithreaded code increases 

software costs dramatically 
• factor of 3 for Unreal game engine (Tim 

Sweeney, EPIC games)
• The great multicore software quest: Can we 

write programs so that performance 
doubles when the number of cores doubles?

• Very hard problem for many reasons (see 
later)

– Amdahl’s law
– Locality 
– Overheads of parallel execution
– Load balancing
– ………

“We are the cusp of a transition to 
multicore, multithreaded 
architectures, and we still have not 
demonstrated the ease of 
programming the move will 
require… I have talked with a few 
people at Microsoft Research who 
say this is also at or near the top of 
their list [of critical CS research 
problems].” Justin Rattner, CTO 
Intel

Parallel Programming

• Community has worked on parallel 
programming for more than 30 years

– programming models
– machine models
– programming languages
– ….

• However, parallel programming is still a 
research problem 

– matrix computations, stencil computations, 
FFTs etc. are well-understood

– few insights for other applications 
• each new application is a “new phenomenon”

• Thesis: we need a science of parallel 
programming

– analysis: framework for thinking about 
parallelism in application

– synthesis: produce an efficient parallel 
implementation of application “The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly 
unrelated phenomena Unifying abstractions

Specialized models
that exploit structure

Course objective

• Create a science of parallel programming
– Structure:

• understand the patterns of parallelism and locality in 
applications

– Analysis: 
• abstractions for reasoning about parallelism and locality in 

applications
• programming models based on these abstractions
• tools for quantitative estimates of parallelism and locality

– Synthesis:
• exploiting structure to produce efficient implementations
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Approach
• Niklaus Wirth’s aphorism:

– Algorithms + Data structures = Programs
• Algorithms:

– a description of the computation, expressed in terms of abstract data types 
(ADTs) like sets, matrices, and graphs

• Data structures:
– concrete implementations of ADTs

• (eg) matrices can be represented using arrays, space-filling curves, etc.
• (eg) graphs can be represented using adjacency matrices, adjacency lists, etc.

• Strategy:
– study parallelism and locality in algorithms, independent of concrete data 

structures
• What structure can we exploit for efficient implementation?

– study concrete parallel data structures required to support parallelism in 
algorithms

• What structure can we exploit for efficient implementation?

iterative
algorithms

topology

operator

ordering

morph: modifies structure of graph

local computation: only updates values on nodes/edges

reader: does not modify graph in any way

general graph
grid
tree

unordered

ordered

Example: structure in algorithms

We will elaborate on this structure in a couple of weeks.

Course content
• Structure of parallelism and locality in important 

algorithms
– computational science algorithms
– graph algorithms

• Algorithm abstractions
– dependence graphs
– halographs

• Multicore architectures
– interconnection networks, caches and cache coherence, memory 

consistency models, locks and lock-free synchronization
• Parallel data structures

– linearizability
– array and graph partitioning
– lock-free data structures and transactional memory

• Optimistic parallel execution of programs
• Scheduling and load-balancing

Course content (contd.)
• Locality 

– spatial and temporal locality
– cache blocking
– cache-oblivious algorithms

• Static program analysis techniques 
– array dependence analysis
– points-to and shape analysis

• Performance models
– PRAM, BPRAM, logP

• Special topics
– self-optimizing software and machine learning techniques for 

optimization
– GPUs and GPU programming
– parallel programming languages/libraries: Cilk, PGAS languages, 

OpenMP, TBBs, map-reduce, MPI
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Course work

• Small number of programming assignments
• Paper presentations
• Substantial final project
• Participation in class discussions 


