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Coherent caches

Adapted from a lecture by Ian Watson, University of Machester
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Bus-based Shared Memory 
Organization

Basic picture is simple :-
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Organization

• Bus is usually simple physical connection 
(wires)

• Bus bandwidth limits no. of CPUs
• Could be multiple memory elements
• For now, assume that each CPU has only a 

single level of cache
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Problem of Memory Coherence

• Assume just single level caches and main 
memory

• Processor writes to location in its cache
• Other caches may hold shared copies - these 

will be out of date
• Updating main memory alone is not enough
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Example

CPU
Cache

CPU
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Cache

Shared Bus

Shared
Memory

X:  24

Processor 1 reads X: obtains 24 from memory and caches it
Processor 2 reads X: obtains 24 from memory and caches it
Processor 1 writes 32 to X: its locally cached copy is updated
Processor 3 reads X: what value should it get?  

Memory and processor 2 think it is 24
Processor 1 thinks it is 32

Notice that having write-through caches is not good enough
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6

Bus Snooping

• Scheme where every CPU knows who has a copy 
of its cached data is far too complex.

• So each CPU (cache system) ‘snoops’ (i.e. 
watches continually) for write activity concerned 
with data addresses which it has cached.

• This assumes a bus structure which is ‘global’, i.e 
all communication can be seen by all.

• More scalable solution: ‘directory based’
coherence schemes
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Snooping Protocols

• Write Invalidate
– CPU wanting to write to an address, grabs a bus 

cycle and sends a ‘write invalidate’ message
– All snooping caches invalidate their copy of 

appropriate cache line
– CPU writes to its cached copy (assume for now 

that it also writes through to memory)
– Any shared read in other CPUs will now miss 

in cache and re-fetch new data.
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Snooping Protocols

• Write Update
– CPU wanting to write grabs bus cycle and 

broadcasts new data as it updates its own copy
– All snooping caches update their copy

• Note that in both schemes, problem of 
simultaneous writes is taken care of by bus 
arbitration - only one CPU can use the bus 
at any one time.
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Update or Invalidate?

• Update looks the simplest, most obvious 
and fastest, but:-
– Invalidate scheme is usually implemented with 

write-back caches and in that case:
• Multiple writes to same word (no intervening read) 

need only one invalidate message but would require 
an update for each

• Writes to same block in (usual) multi-word cache 
block require only one invalidate but would require 
multiple updates.
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Update or Invalidate?

• Due to both spatial and temporal locality, 
previous cases occur often.

• Bus bandwidth is a precious commodity in 
shared memory multi-processors

• Experience has shown that invalidate 
protocols use significantly less bandwidth.

• Will consider implementation details only 
of invalidate.
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Implementation Issues

• In both schemes, knowing if a cached value is not 
shared (copy in another cache) can avoid sending 
any messages.

• Invalidate description assumed that a cache value 
update was written through to memory. If we used 
a ‘copy back’ scheme other processors could re-
fetch old value on a cache miss.

• We need a protocol to handle all this.
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MESI Protocol (1)

• A practical multiprocessor invalidate protocol 
which attempts to minimize bus usage.

• Allows usage of a ‘write back’ scheme - i.e. main 
memory not updated until ‘dirty’ cache line is 
displaced

• Extension of usual cache tags, i.e. invalid tag and 
‘dirty’ tag in normal write back cache.
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MESI Protocol (2)

Any cache line can be in one of 4 states (2 bits)
• Modified - cache line has been modified, is 

different from main memory - is the only cached 
copy. (multiprocessor ‘dirty’)

• Exclusive - cache line is the same as main 
memory and is the only cached copy

• Shared - Same as main memory but copies may 
exist in other caches.

• Invalid - Line data is not valid (as in simple 
cache)
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MESI Protocol (3)

• Cache line changes state as a function of 
memory access events.

• Event may be either
– Due to local processor activity (i.e. cache 

access)
– Due to bus activity - as a result of snooping

• Cache line has its own state affected only if 
address matches
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MESI Protocol (4)

• Operation can be described informally by 
looking at action in local processor
– Read Hit
– Read Miss
– Write Hit
– Write Miss

• More formally by state transition diagram
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MESI Local Read Hit

• Line must be in one of MES
• This must be correct local value (if M it 

must have been modified locally)
• Simply return value
• No state change
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MESI Local Read Miss (1)

• No other copy in caches
– Processor makes bus request to memory
– Value read to local cache, marked E

• One cache has E copy
– Processor makes bus request to memory
– Snooping cache puts copy value on the bus
– Memory access is abandoned
– Local processor caches value
– Both lines set to S
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MESI Local Read Miss (2)

• Several caches have S copy
– Processor makes bus request to memory
– One cache puts copy value on the bus 

(arbitrated)
– Memory access is abandoned
– Local processor caches value
– Local copy set to S
– Other copies remain S
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MESI Local Read Miss (3)

• One cache has M copy
– Processor makes bus request to memory
– Snooping cache puts copy value on the bus
– Memory access is abandoned
– Local processor caches value
– Local copy tagged S
– Source (M) value copied back to memory
– Source value M -> S
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MESI Local Write Hit (1)

Line must be one of MES
• M

– line is exclusive and already ‘dirty’
– Update local cache value
– no state change

• E
– Update local cache value
– State E -> M
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MESI Local Write Hit (2)

• S
– Processor broadcasts an invalidate on bus
– Snooping processors with S copy change S->I
– Local cache value is updated
– Local state change S->M
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MESI Local Write Miss (1)

Detailed action depends on copies in other 
processors

• No other copies
– Value read from memory to local cache (?)
– Value updated
– Local copy state set to M
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MESI Local Write Miss (2)

• Other copies, either one in state E or more 
in state S
– Value read from memory to local cache - bus 

transaction marked RWITM (read with intent to 
modify)

– Snooping processors see this and set their copy 
state to I

– Local copy updated & state set to M
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MESI Local Write Miss (3)

Another copy in state M
• Processor issues bus transaction marked 

RWITM
• Snooping processor sees this

– Blocks RWITM request
– Takes control of bus
– Writes back its copy to memory
– Sets its copy state to I



7

25

MESI Local Write Miss (4)

Another copy in state M (continued)
• Original local processor re-issues RWITM 

request
• Is now simple no-copy case

– Value read from memory to local cache
– Local copy value updated
– Local copy state set to M
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Putting it all together

• All of this information can be described 
compactly  using a state transition diagram

• Diagram shows what happens to a cache 
line in a processor as a result of
– memory accesses made by that processor (read 

hit/miss, write hit/miss)
– memory accesses made by other processors that 

result in bus transactions observed by this 
snoopy cache (Mem read, RWITM,Invalidate)
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MESI – locally initiated accesses
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= bus transaction
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MESI – remotely initiated accesses
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MESI notes

• There are minor variations (particularly to 
do with write miss)

• Normal ‘write back’ when cache line is 
evicted is done if line state is M

• Multi-level caches
– If caches are inclusive, only the lowest level 

cache needs to snoop on the bus
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Directory Schemes

• Snoopy schemes do not scale because they rely on 
broadcast

• Directory-based schemes allow scaling.
– avoid broadcasts by keeping track of all PEs caching a  

memory block, and then using point-to-point messages to 
maintain coherence

– they allow the flexibility to use any scalable point-to-point 
network 
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Basic Scheme (Censier & Feautrier)

• Assume "k" processors.  
• With each cache-block in memory: 

k  presence-bits, and 1 dirty-bit
• With each cache-block in cache:   

1valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

– Read from main memory by PE-i:
• If dirty-bit is OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit is ON   then { recall line from dirty PE (cache state to 

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply 
recalled data to PE-i; }

– Write to main memory:
• If dirty-bit OFF then { send invalidations to all PEs caching that block; 

turn dirty-bit ON; turn P[i] ON; ... }
• ... 32

Key Issues

• Scaling of memory and directory bandwidth
– Can not have main memory or directory memory centralized
– Need a distributed memory and directory structure

• Directory memory requirements do not scale well
– Number of presence bits grows with number of PEs
– Many ways to get around this problem

• limited pointer schemes of many flavors

• Industry standard
– SCI: Scalable Coherent Interface


