
DEPENDENCE GRAPHS ANU COMPILER OPTIMIZATION*

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

Dependence graphs can be used as a vehicle for
formulating and implementing compiler optimizations.
This paper defines such graphs and discusses two

kinds of transformations. The first are simple re-

writing transformations that remove dependence arcs.
The second are abstraction transformations that
deal more globally with a dependence graph. These

transformations have been implemented and applied
to several different types of high-speed architec-

tures.

1. Introduction

1.1 Background

This paper presents some compiler transforma–

tions that can be carried out on a dependence
graph which represents a high–level language pro-
gram. Some transformations are variations on well–

known techniques and others are new. The goal of

the transformations is to enhance the performance
of programs; in other words, they are dependence

graph optimization steps. All of the ideas we dis-
cuss are rooted in a working compilerfanalyzer of

FORTRAN programs for various architectures; the sys-

tem is called PARAFRASE. This paper discusses theo-

retical as well as practical ideas. The practical

ideas have been verified on a collection of about

1,000 programs (gathered from many sources) that we
use as a test set.

For a number of years, we have been studying

compilation techniques that exploit four kinds of
architectural features. These are parallel proces-

sing [KuMC72], pipeline processing [KKLw80], multi-
processing [PaKL80], and virtual memory [AbKL79].

*
This work was supported in part by the l?ational
Science Foundation under Grant Nos. US NSF McS76-

81686 and MCS80-01561.

Permission to copy without fee all or part of this material is grant-

ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copy- right and its date appear,
and notice is given that copying is by permission of the Associa-

tion for Computing Machinery. To copy otherwise, or to republ-
ish, requires a fee and/or specific permission.

01981 ACM O-89791-029-X/8 1/0100-0207 $00.75

Our software system consists of some 50 modules

that can be used to transform an internal program

representation; after each module it is possible to
regenerate a source program. Thus , the modules can
be interconnected in various ways to achieve desir-
able results (in fact, it is sometimes necessary to
empirically determine the best ordering). Exploi-
tation of each of the four architectural features
requires a different module ordering, but good re-

sults for each kind of architecture can be obtained
from the same set of modules.

We feel that our results have greatly bene-

fited from using dependence graphs. These benefits
include the ease of implementing, maintaining, and

modifying the software. But dependence graphs are

also a good vehicle for developing new algorithms
for optimization.

Our work has been done in terms of FORTRAN
programs, but we believe that the ideas can be ex-

tended to many other languages. In this spirit,

the paper begins with the assumption that a good
dependence graph has somehow been obtained from a
program, and we discuss graph transformations.
Basically, only two ideas are pursued; first, we
give a collection of ways to remove dependence arcs,
and second, we give ways of abstracting the graphs

that lead to optimization. The paper contains a
number of definitions and theoretical results as

well as some discussionof the practical implemen-
tation and use of the ideas.

1.2 Dependence

Aay algorithm that is formalized and expressed

in a language (programming or natural) contains
some kind of dependence between the atomic
operands and between the steps of the algorithm.
Prograrmrrers generally pay little attention to the
dependence in a “pure” algorithm or to any “arti-

ficial” dependence that they may introduce when
expressing the algorithm in some language. Never–
theless, if a program is to be run on a machine

with any kind of simultaneously operating sub–
systems, the dependence may be very important. In
many cases, reducing the number of dependence

leads to direct reductions in a program’s running

time.

Roughly speaking, there are four times at

which dependence can be reduced: when a language

is selected for implementing a program, when an

207

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1981 ACM 0-89791-029-X…$5.00

algorithm is expressed as a program in that lang-
uage, when the program is compiled, and when it is

executed. Most languages have an expliticly stated

dependence between consecutive statements in the
control flow graph (e.g., PASCAL, ALGOL, FORTBAN,

SNOBOL, etc.). A few languages [AcDe79], [ArGP78]

are defined so that some types of dependence are

disallowed and others are greatly reduced, however,
making the programmer responsible for reducing de–
pendences imposes a difficult task on the program–

mer. High-speed computer systems with multiple

functional units or pipelines commonly employ a

lookahead control unit that breaks dependence at
execution time. Studies have shown that the aver-

age speedup due to lookahead hardware is about a

factor of 2 [Kuck78]. We believe that compilers

are most well suited to solving the problem of

breaking program dependence.

In fact, much work has been done on this prob–
lem in the past. The renaming of variables and

code motion are traditional optimization techniques

which result in an improved dependence graph
[AhU173], [Grie71]. Transformations explicitly

aimed at lookahead control units are also well
known [A1C072].

In this paper, we assume that a dependence

graph exists and that it is sharp (i.e., arcs are
included only when necessary). We will show in

Section 3 that a number of graph transformations

exist to remove arcs from a sharp dependence graph.
In Section 4, we discuss node transformations that

abstract the graph in useful ways. This results

in a directed acyclic graph that is amenable to

rather straightforward code generation.

2. Source Language and Dependence Graphs

2.1 Source Language

The transformations described in this paper

will operate on programs written in a language con-
sisting of three types of statements: assignment,
&oh loops, and UJ/’L(& loops. The last two are well-

known compound statements. In this paper, ~Oh

loops are restricted in such a way that the initial

value and the increment of the index variable is
always one, and the loop limit is always a constant
or a variable. These are not serious restrictions,
since any more general ~Oh loop can be automati-
cally translated into this form [BCKT79].

Only two types of variables are allowed,

scalars and arrays of arbitrary dimension. In this
paper, variable element will stand for either a

scalar variable or an array variable element.

Assignment statements are of the form

<variable> = <expression>.

The expression can be any valid Boolean or arith-

metic expression, or something of the form

id <Boolean-expression> J%Zn <expressionl>.

&e <expression>.

The value of this last construct will be <expres-

sion > if <Boolean–expression> is true, and
1

<expression > otherwise.
2

It is certainly theoretically possible to
automatically translate FORTRAN– or ALGOL-like
programs into equivalent go -to-less programs.
This has been discussed in [BoJa66],

[AsMa75] . However, the programs resulting from
the transformations described in these papers
could be too complex for practical purposes. A
more practical approach to the automatic improve-

ment of program structures has been taken in

[Bake78] . The resulting programs in this last

case, however, could include go to statements.

The assumption we make in this paper is that
if the source program is written in a FORTRAN- or

ALGOL-like language, some sort of preprocessor
will attempt to translate it into the above lan–

guage but without going to the extreme of pro-
ducing unduly complex programs. The translator
may then act only on segments of the program pro-
duced by the preprocessor, leaving the rest of the
program as it is. This is similar to the approach
taken in the PARAFRASE system. Our experience
indicates that in most programs a large percentage

of the code can be translated into well–structured,

go to-less code.

2.2 Dependence Graphs

The main tool we will use in the translation
process is the dependence graph. This is a di–
graph whose nodes represent program components,
and whose arcs are one of five different types. A

dependence graph can be built at different levels
of abstraction; we will discuss this later in the
section. For now, we will assume that a graph
node represents one of the three types of program

components: assignment statements, 40Z100P
headers, and Wh&2 loop headers. We will assign
labels to all the program components. These labels
will be of the form Ai for assignment statements,

Fi for ~o)t loop headers, and (Ui for w/ti& loop

headers. An example of a program and its depend–
ence graph is given in Fig. 2 (a) .

A graph arc represents one of the five pos-
sible relations between the program components.
We now proceed to define these five relations,
starting with the loop dependence relation.

Definition A program component C (either an

assignment statement or a loop header) is said to
be loop dependent on a loop header L(either a ~Oh

loop header or a dd?fl loop header) if C is embed-

ded in the loop statement whose header is L, or if
C=L. In the text we will denote this dependence

as L 6L C, and in the dependence graph it will be

represented by arcs of the form shown in Fig. l(a).
■

In Fig. 2, the reader can find examples of the
loop dependence relation. We now proceed to dis–
cuss the next three types of relations.

Definition Assume a component C and n different
loop headers Ll, Ln, such that

(1) Li &L C
i=l, . ..jn

(2) Li (SL Li+l isl,n–l

208

(3) C is not loop dependent on any other loop
header.1

An instance C(kl, kn) of a component C is de-

fined as the component C when for 1 ~ i sn the

loop whose header is Li is executing–its ki-th

iteration. Notice that when Li is a ~o,h loop

header, ki will be the value of its index variable.

This is because we have restricted the initial

value and the increment in ~ok loops to one. When
all L

1’ ““”
Ln are fjofi loop headers, (kl, kn)

is called an index set. ■

Component instances have two sets of variable
elements associated with them: a set of inputs and

a set of outpute. The set of inputs are those vari-
able elements fetched byjthe component instance,

and the set of outputs are those variable elements

modified by it. When the component is a W~L loop
header, the set of outputs is empty, and the set of
inputs is given by the Boolean expression in the

header. When the component is a 40X loop header,
say F, the instance F(..., 1) (i.e., F at the first
iteration of the loop of which it is a header) has

the index variable as output, and the loop limit as
input if it is a variable. The instances F(..., k),
k > 1, also have the index variable as input. For an

assignment statement the set of inputs is deter-
mined by the expression, and the set of outputs by

the variable on the left-hand side. Notice that the

set of outputs of a program component has always
only one element.

Definition Consider two, not necessarily dis-
tinct components Cr and Cs and one instance of each,

Cr(z) and c~~), such that cr(~) is executed before

Cs(~) in the proper serial execution of the program.

We say that

(a) Cs (~) is output dependent on Cr (~), denoted

Cr(~) 6° Cs(~) iff they have the same output

variable element.

(b) Cs(~) is antidependent on Cr(~), denoted

Cr(~) 6A Cs(~), iff the output variable ele-

ment of Cs(~) is an input variable element

of Cr(z) .

(c) Cs(~) is flow dependent on Cr(;), denoted

Cr(~) 6 Cs(~) iff the output variable element

of Cr(;) is an input variable element of

Cs(~), and there is no other instance Ct(~)

executed after Cr(~) but before Cs(~) such

that Cr(~) 6° Ct(~). (Intuitively, the

val~e computed by Cr(i) is actually used by
Cs(j).)

A program component Cr is said to be output, anti,

lNotice that if C ia a loop header, then C = L
n“

or flow dependent on component C iff there exiet
s

7
I and ~ such that Cr(~) is, respectively, output,

anti, or flow dependent on Cs(~). The arcs repre-

senting the previous three relations are given in

Figs. l(b)-(d). ■

The presence of array variables poscsparticu–
lar problems in the computation of the previous

three relations. For example, assume two assign–

ment statements A and A2 such that an array vari-
1

able V appears on the left-hand side of Al and on

the right-hand side of A2. To determine whether

Al 6 A2, we need to determine whether for some

instances Al(y) and A2(~), with Al(y) executed

before A2(~), the element of V modified by A1(~)

is the same as the element of V fetched by A2(~).

If the subscript of V is a constant in both state-
ments, this is a trivial task. The other extreme

is when it is not possible to make such a determi-

nation at compile time because the subscript of V
is a function of the program input. In this case,
we have to be conservative and assume that the
flow dependence relation holds in order to guar-
antee the correctness of our transformations. An

intermediate case is when the subscript of V in

Al(z) is a (possibly multidimensional) function

~(~), and A2(~) a function ~(~). U. Banerjee

[Bane76], [Bane79]has developed eff~cient algo-

rithms to determ~ne whether f(~) = g(~) for some ~
and ~ when both f and ~ are polynomials (which is

often the case). We do not know of any efficient

~lgori_thm to make such a determination when any of
f or g is a more general nonlinear function. In
such cases, we are again conservative and assume

that the flow dependence relation holds.

Another problem is caused by the fact that

some instructions may be executed conditionally;
in this case, as before, we have to be conservative

and assume the dependence when in doubt.

The fifth relation between components is that

of input dependence.

Definition A component Cl ie said to be ~

dependent on another component C2, denoted C2 61 Cl,

iff the same variable name appears as input to both

Cl and C2. Notice that the 6
I

relation is sym–

metric. Input dependence is represented by arcs

like the one shown in Fig. l(e). ■

For some of the transformations described
later, we will need more information than that pro-

vided by the dependence graph as described. This

additional information will be conveyed by the
internal flow graph which describes the internal

etructure of each component. The internal flow

graph of a Wh&2 header will be the syntax tree of
the Boolean expression in the header. For an

assignment statement, the internal flow graph will

be a tree with the left-hand side variable as root
and the syntax tree of expression as the only sub–
tree connected to it. For the arcs in the internal

209

flow graph, we will use the same type of arc used

to represent flow dependence (Fig. l(b)) since the
concepts represented in both cases are the same.
In uJ/L&? headers and assignment statements, this

arc points towards the root.

Example The W&& header

uJh.i&? (A(I) ~ C) v (B < 1)

has the following internal flow graph,

The assignment statement

ci-~~B~h~fiA+l

(?IA(?c
has the following internal flow graph

The internal flow graph of a dote header of the
form

~CJk <index-variable> = 1 ZO <limiL>

is as follows

22!s’
1 <limit>

A

<index variable>

where the I operator performs all functions of the

~Oh header, like assigning one to the index vari-
able the first time it is executed, and adding one

to the index variable and comparing the result with
the limit on subsequent executions.

The nodes in the internal flow graph repre–

senting variables or constants are called atoms.
Because of this, a dependence graph including the

internal flow graph is said to be represented at
the atomic level. In such a graph, the data depen–

dence arcs (anti, output and flow) will emanate and
arrive at the atoms that cause these dependence.

In Fig. 3, we show part of the dependence graph at
the atomic level for the program in Fig. 2(a).

Later in the paper we are going to treat some
compound statements as a single unit. For this
purpose, we will name a compound statement with the
label of the statement header. This means that
such a label will have two functions; however, in
the text the specific meaning of the label will al-
ways be clear from the context. In the graphic
representation, a node representing a whole compound
statement will be represented by two concentric

circles; such nodes will be called compound nodes.

The concepts of instance, dependence, sets of in-
pute, and seta of outputs can be very easily ex-

tended to deal with compound statements. In this

paper, however, we will rely on the intuition of

the reader and will not define such concepts.

A final comment. Since dependence graphs may

become quite complex when all arcs are drawn, we

will represent only those arcs of interest in the
examples discussed in the rest of the paper.

3. Arc Transformations

In this section, we present some source pro-
gram transformations that will modify the depen-
dence graph by either removing arcs or breaking
cycles. Theee transformations are renaming, ex-

pansion, node splitting, and forward substitution.

3.1 Renaming

Sometimes scalar or structured variables are

used for different purposee at different points in

a program. This is done sometimes to increase the

readability of the program and often to decrease

memory requirements. This approach is adequate

for sequential programming. However, the use of
the same memory location for different purposes
could impose unnecessary aequentiality constraints
on parallel programs. The renaming transformation
will assign different names to different usea of
the same variable, and as a consequence some out-
put dependence arcs and some antidependence arcs

will be removed from the dependence graph of the
program.

Example 3.1 The program shown in Fig. Z(a) uses
the variable A in three statements inside the ~o&
loop; this introduces a large number of arcs in the

dependence graph (Fig. 2(b)). The variable A can

be replaced by two variables, A
(1)

and A(2), as

shown in Fig. 2(b). This eliminates several Out-

put dependence and antidependence arcs. ❑

We now present an algorithm for renaming
scalar variables. A powerful algorithm for re-
naming structured variables is an open problem.

Renaming Algorithm for Scalar Variables

Assuminx a program, P, and a scalar variable.

say A,

[1]

[2]

[3]

-,
in P.

Build G, the dependence graph of P at the

atomic level.

Consider G’, the subgraph of G consisting
of the intercomponent flow dependence area
only (i.e., we drop all other arcs in–

eluding the flow dependence arcs in the
internal flow graph). Find the connected
components of G’ where A appears. Assume
there are k such components C

1’ C2’ . ..’
Ck .

(1)
Introduce k different variable names A ,

A(2) A(k)
,..., , none of them used in P.

For ~ ~ i ~.k,

in Ci by A(l) .

replace the occurrences of A

❑

210

Example 3.2 Part of the dependence graph G’ for

the program in Fig. 2 (a) is shown in Fig. 4. Since

there are two connected components involving A, we

introduce two new variables, A
(1)

and A(2) to

obtain the program in Fig. 2(b). ■

The concept of scalar renaming has been known

for a number of years [AhU173].

3.2 Expansion

Expansion is a transformation that is not as
well known as renaming (though it is implemented in

the compilers for both the Burroughs BSP and the
CRAY-1), but is of prime importance in compiling

for parallel machines. The object of expansion is
to take a variable that was used inside a ~OZ loop

and to change it into a higher dimensional array

(or other suitable data aggregate). Like renaming,

this process reduces the number of arcs in the de-

pendence graph. In this case, this is achieved by
giving each iteration of the {OE loop its own set
of locations.

Example 3.3 The dependence graph in Fig. 2(b)
includes many output dependence and antidependence

arcs because of the scalar va~iables A
(1)

, A(2),

and Y. If these variables are expanded into arrays

by the algorithm described below, we obtain the
program in Fig. 2(c) whose dependence graph is much

simpler. w

We now describe an algorithm for the expansion
of scalar variables. To this end, we will need

three definitions.

Definition A component or compound statement C
is said to be directly @l loop dependent on a @fi

loop header F, denoted F ;L C, iff

(1) F- dL C, and

(2) there is no other {OZ loop header F’ such

that F 6L F’ tiL C. ■

Definition A sequence of ~ofi loop headers Fo,

F1 , .,,, Finis said to form a-iff Fi ;L Fi+l

O<i<m-1. ■— —

In other words, a sequence of ~oh loop headers

forms a chain when their respective loops are nested
in the order indicated in the sequence, and there

is no other ~ofi loop in the nesting.

Definition Given a component or compound state-
.

L C, and ament C, a ~OX loop header F such that F 6
scalar variable V, we say that C forwards V to the

next iteration of F iff

(1)

(2)

(3)

(4)

V is an output variable of C;

there is no statement ~, with F 6L ‘D, which

appears after C in the text of the 100p such

that V is an output variable of D;

there is no wh,dh? loop header OJsuch that

F dL W 6L C; and

in the execution of the body of F, V could
be fetched before it is modified. m

Intuitively, C forwards V to the next itera–

tion of a {ofi loop F if the only value given to V

by C at any iteration of F is still the value of V

when the next iteration of F starts, and that value

could be used in that iteration.

Scalar Expansion Algorithm

Consider an output variable, V, of a ~ok loop
FO with dependence graph G. In the algorithm, we

will assume that V(I1, 12, ..,, Im) and V(I1, 12,

. . . . I ,0, O),m~O, represent the same

memorymlocation (if m = O we have V and V(O,

o).)

[1] For all components C inG, execute step [2].
Then go to step [5] .

[21 Let Fo, Fl, Fm form a chain of {oh loop

headers, such that

Fm;L C.

‘et 10’ 11’
. . . . I be the index variables

m
of these headers.

If V is an input variable of C, execute

step [3].

If V is an output variable of C, execute

step [4].

[3] Let n~mbe the largest number such that

there exist a component ~ with Ln 6L o, and

V is an output variable of ~.

Replace all occurrences of V on the right-
hand side of C by

(1) V(IO-l, In-l-l, In) if there is a

component V forwarding V to the next
iteration of Ln such that O 6 C.

(2) V(IO-l , .,., In_l-l, In-l) otherwise.

[4] Replace the occurrence of V on the left-hand
side of C by

(1) V(IO-l, Ire-l-l, Im) if C forwards

V to the next iteration of Lm.

(2) V(IO-l, Im_l-l, Ire-l) otherwise.

[5] For all loops ({ok or titik? loops) Lm inside

Lo execute step [6]. Then go to step [7].

[6] Let Fo, Fl, Fm_l ~rma chain of {Oh

loop headers with Fm_l 6L L If V is an
m’

output variable of Lm, insert the assignment
statement

V(IO-l, Im_2-1, a) = V(IO–l,

I m_l-l, 6)

immediately after the end statement of L .
m

211

Here .8

and

a

[71

[

O if Lm is a uJh.& loop
.

max(uLm, O) if Lm is a ~oh loop with

upper limit ul.
m

‘[

I If Lm forwards V to the next
m-1

iteration of Fm_l

I -1 otherwise
m-1

Immediately after the Lnd {Oh of ~o, insert

the statement V = V(ULO) where ugO is the

upper limit of F m
o“

As was the case for renaming, a good expansion
algorithm for array variables is an open problem.

3.3 Node Splitting

The node splitting transformation attempts to
break cycles in the dependence graph by reposition-
ing antidependence arcs. This is achieved through

the introduction of new assignment statements.

Example 3.4 The dependence graph in Fig. 2(c)
includes a cycle which can be broken if the arc

representing .A4 6A A5 is repositioned. To do this,

we split A4 into two assignment statements AL and

A; as shown in Fig. 2(d). ■

Node Splitting Algorithm

Consider a dependence graph G at the component
level with the loop dependence arcs removed, and a
cycle C in G.

[1] If the cycle C disappears when G is repre-
sented at the atomic level, then C includes
an antidependence arc, say A, and the algo-
rithm can proceed to step [2]. If C does
not disappear, stop.

[2] If the arc A emanates from an atom a in

component C, then introduce a new assignment

statement of the form T + a, and replace all
occurrences of u in C by T, where T is a

variable not appearing anywhere in the origi-
nal program.

[3] Apply the expansion transformation to T. w

Example 3.5 Part of the dependence graph at

the atomic level for the program in Fig. 2(c) is
shown in Fig. 5. Notice that the cycle in the graph
of Fig. 2(c) disappears in Fig. 5. To remove the

cycle, we introduce the statement T = X(1+1) and

replace A4 by A ‘2)(1) = T +X(1-1). After T is ex-

panded, we will obtain the program in Fig. 2(d). ❑

The expansion and node splitting transformations,
as discussed above, change the source program by
introducing arrays and assignment statements. The
goals of these two transformations can also be
achieved by architectural means. Consider, for ex-
ample, the DO ALL instruction of the Burroughs FM?
multiprocessor [LuBa80]. Variables in the body of

DO ALL are defined as local when they belong to

neither the set of inputs nor the set of outputs of
the DO ALL. A copy of all the local variables is

created in the local memory of each processor be-
fore a DO ALL starts execution. This has the same
effect as expansion. Also, all variables in the

set of inputs of the DO ALL are fetched before the

DO ALL starta execution. This produces the same
effect as node splitting.

3.4 Forward Substitution

The forward substitution transformation elimi-

nates flow dependence arcs from component level
dependence graphs by substituting the right–hand
side expression of an assignment statement, , into

the right-hand sides of other assignment statements.
The main use of this transformation is that it
could be applied before tree-height reduction
[Kuck78], enhancing the result of this last trans-

formation.

Example 3.6 Consider the program segment in
Fig. 6(a). Assume that only the variable F is

used outside the segment. After applying forward

substitution, we obtain the program segment in

Fig. 7(a). The atomic dependence graph, if we

assume that expressions are evaluated from left to
right, ia shown in Fig. 7(b). However, if we do
not assume any evaluation order and apply tree-
height reduction, we obtain the dependence graph in
Fig. 7(c), which is much better than the graph in
Fig. 6(b) from the parallel processing point of

view. m

Assume a set of consecutive assignment state–

ments A A1’ 2’ ““”’
An in a program P. To forward

substitute a given Ai whose left-hand side is a

scalar variable, S, we proceed as follows.

Scalar Forward Substitution Algorithm

[1] Apply renaming to all scalars on the right-
hand side of Ai.

[2] For allAj, j > i, such that

(1) Ai 6 Aj

(2) there is no Ak, i < k < j such that

Ai 6A Ak (since scalar variables have

been renamed, this antidependence is
always caused by an array variable),
replace the expression on the right-
hand side of Ai by all occurrences of
Sin A..

3

[3] Apply dead code elimination [Grie71]. ❑

4. Dependence Graph Abstraction

Graph abstraction is a process by which a set
of nodes and their internal arcs are merged into a

single compound node. Any arcs incident to (or

from) the set are made incident to (or from) the
compound node. Graph abstraction has been used in

many areas of computer science. In particular, it

has been used to organize optimization in several
ways. For example, an interval is a graph

212

abstraction [Cock70] used in data flow analysis.

Graph abstraction has also been used to control the

scope of optimization as in the SIMPL optimizer of

[ZeBa74], which optimizes structured blocks from
the inside out. We use graph abstraction in yet a

different way. Graph abstraction can be used to

isolate sets of statements that can be translated
into high quality machine code only when taken as

an ensemble. Two examples of this type of graph

abstraction will be presented.

4.1 LooP Distribution

LooP distribution abstracts dependence graphs

by finding and merging each strongly connected com-
ponent in the body of a loop along with the loop

header node into a compound node. (A strongly

connected component (SCC) is a maximal set of nodes

such that there is a path,between any pair of nodes
in the set.) Similarly, each loop body node not in

any SCC, an independent node (IN), is merged with
the loop header node into another compound node.
Fig. 8 shows how the node merging in loop distribu-

tion is performed.

The following algorithm describes loop distri-

bution. The most time-consuming step in the algo–

rithm is step 1, finding the SCCS. However, it

takes only o(n log n) time on a loop containing n

statements if a depth-first algorithm such as
Tarjan’s algorithm is used [AhHU74]. This compares

favorably with the fast data flow analysis algo–
rithms such as [GrWe76].

Loop Distribution Algorithm

Consider a {oh loop F. whose body consists of

the statements (simple or compound) S1, Sn.

To distribute Fo, we proceed as follows.

[1] Compute the dependence graph G for ~. and

‘1’ ““”’ ‘n”

[2] Delete F. and create a Jo/c loop header node

Foj for each SCC, and each IN in the depen-

dence graph. Make each statement in an SCC

or IN loop dependent on the loop header as–

sociated with the SCC or IN, and flow depen-
dent if the statement refers to the loop in-
dex (i.e., a {ok loop is created for each
SCC and each IN).

[3] Build a new dependence graph by creating a
compound node for each ~ok loop. ■

The loop distribution algorithm can implement
several optimization, depending on how the depen-

dence graph is computed in step 1. We will give
two specific examples.

4.1.1 Loop Distribution for Vector Processors

The first optimization uses loop distribution

to generate vector operations from multistatement
loops . This is achieved by constructing a depen–

dence graph consisting of flow, anti, and output
dependence arcs for the multistatement loop and
performing the 100P distribution algorithm. The
dependence graph output from loop distribution in

this case is called a p artial order graph, and each

node in this graph is called a m-block. (The term

m-block stems from the fact that loop distribution

partitions the nodes in the graph into equivalence

classes.)

Two types of n-blocks are derived. m-blocks
whose bodies are INs represent vector operations>

the goal of the optimization. m-blocks, whose
bodies are SCCS, are called recurrences. (As a

rule of thumb, there is approximately one recur-
rence per loop in scientific source programs.) Al-

though recurrences, nonvector operations, are not
the most efficient operations on vector and array

processors, we have found that relatively few re-
currences are intractable. Most recurrences are

SCCS connected by only flow dependence, primarily
because loop distribution is applied after several

optimization which remove anti and output depen-
dence arcs (Section 3). These recurrences are most
often linear recurrences, such as the row sum of a

matrix, which can be speeded up [Kuck78] but are
still slower than vector operations on vector

processors. ([BcKT79] is a recent description of
results in this area.) Loop distribution applied
to a linear recurrence in effect abstracts the SCC

to a single node representing a call to a linear
recurrence solver. Other types of SCC that occur

frequently are: Boolean recurrences which can be

substantially speeded up [BaGK80], and simple non–

linear recurrences [Park77].

The partial order graph constructed in step 3

of the Loop Distribution Algorithm is a directed
acyclic graph. It can be used to schedule the

vector operations and recurrences on a parallel

processor. The longest chain in the partial order

graph defines the minimum execution time for the
original source program loop. The maximum width

or anti-chain in the graph defines an upper bound
on the number of processors that can be used in
parallel computation.

Example 4.1 Loop distribution for vector

processors produces the program in Fig. 2(e) when

applied to the program in Fig. 2(d). All state-

ments become vector operations except for state-

ments A4 and A5 which constitute a linear recur-

rence. In the transformed,program, the statements

are topologically sorted by the partial order
graph. ■

4.1.2 Loop Distribution for Memory Management

A second application of loop distribution is

in memory management; we call this name
clustering [AbKL79].

Example 4.2 [AbKL79] Consider the program in

Fig. 9(a). If each array referenced in this pro-

gram is on a distinct page, or distinct sets of
pages, then the F1 loop requires 9 data pages to

execute efficiently (with a minimum of page faults).

After this type of loop distribution is applied,
the transformed program (Fig. 9(b)) requires only

5 data pages to execute efficiently. Loop distri-
bution has improved the program’s data locality. ❑

The input to loop distribution for memory
management is a dependence graph constructed for
flow, anti, output, and input dependence. Loop

213

distribution in this case does not use SCC but name

clusters defined next. Therefore, in the algorithm

above SCC should be replaced by name cluster.

Definition The set of variables referenced in a

set of statements is called a name set (NS) and

is a function of some statement set (SS). We can

also compute the set of statements referencing any

variable in a name set.

Let SSO be any statement in a given loop. Call

its name set NS
o’

and find the statement set of NS m
o’

call it SS
1’

Loop distribution iterates this se-

quence until a stable statement set is found; this
set is called a name cluster. ■

One might assume that in an average loop, the
logical flow of the loop would connect all its

statements into one name cluster; however, we have
found that by using loop distribution the data page

requirements of programs can be reduced by a factor
of 6 [AbKL79].

Loop distribution for memory management can be

compared with global register assignment (GRA)
algorithms. Sophisticated GRA algorithms such as

[Beat74] generate roughly the SS of each variable

referenced in the loop. (“ROughly” here implies
that if at some point in the loop the variable is
dead, then a new SS is started.) A register is
allocated for each SS. Computing SSs requires a

connected component computation. GRA algorithms in

this class can reallocate a register several times
within a loop, but clustering does not reallocate

page frames because of the relatively higher cost

of page swapping.

4.2 Loop Fusion

As a graph abstraction, loop fusion is used
selectively to merge two compound ~ofi loop nodes.

Thus, it is nearly the inverse of loop distribution.
But where loop distribution is applied globally to

a loop, loop fusion is applied selectively.

LooP Fusion Algorithm

Consider two {ok loops FO, and F1 with the
following characteristics:

(1)

(2)

[1] Let

Both FO and F1 have the same loop limit.

F. and F1 are consecutive in the source

program with Fo aPPearing before F1“
(If they are not consecutive, then try
to make them consecutive by moving the
statements separating FO and F1 before

FO or after F1 whenever possible,)

.s s
0.1’ ““”’ O.n

be the statements in tEe

body of Fo, and S1 ~, S1 m the state-

ments in the body of F1. Temporarily create

a ~Oh loop containing SO ~, SO ~, .S1 ~,

. . . . s ~ ~ (renaming the index variable occur-

rences if necessary), and compute its depen-

dence graph G.

[2] If G contains any arc fromsl i to so j

for some 1 < i < n, 1 < j < m, then fusion

is not poss~ble~ Othe—wis=, replace the
loops F. and F1 by a single loop containing

the body of both loops ■

In the past, loop fusion has been applied glo-

bally to reduce the overhead of loop control
[A1C072], [Love77]. We will show that by applying

loop fusion selectively with different criteria,
different optimization can be realized.

Loop Fusion for Virtual Memory Management

Above we saw that loop distribution applied
to the proper dependence graph can reduce the data

memory requirements of a source program. LooP

fusion can be subsequently used to reduce unneces–
sary swapping. The criteria used to select pairs

of loops for fusion in this case is that the NS

(Name Set is defined above) of one loop is con-
tained in the NS of the other. The following ex-

ample illustrates loop fusion for virtual memory
management.

Example 4.3 If the program in Fig. 9(b) is in-
put to the loop fusion algorithm, the program will

be transformed

the NS of each

!K?.Q.P

‘1

F2

F3

as shown in Fig. 10. In this case,

of the loops before loop fusion is:

Name Set (NS)

{A,B,c,G,H}

{D,E,F,x}

{D,E,F}

The NS for F3 is contained in the NS for F2, all

conditions for fusion are satisfied, so ~ and
2

F3 are fused. Page swapping has been reduced

because once a page of D, E, and F are loaded, all
operations using these pages are performed. H

Loop Fusion for Vector Register Processors

Processors having vector registers such as the

CRAY-1 present novel requirements for code genera–

tors. We will present a sequence of transformations
which performs very well in this environment.
@his sequence is contained in a vectorizer for pipe-

lined machines described in [KKLW80].)

“ LooP distribution for vector processors first
isolates the recurrences from the vector
operations.

“ Loop fusion is applied to increase the NS of
each loop until it is as large as the number
of vector registers available.

o Loop blocking [AbKL79] transforms single ~Ofi

loops into doubly nested loops. The inner
loop is set to the size of the vector regis-
ters. The outer loop increments in steps of
the register size through the original loop

range.

“ Loop interchanging [Kuck80] attempts to avoid

214

recurrences on the inner loop and to reduce

memory register traffic by interchanging

loops when possible.

. Register assignment assigns vector registers
globally.. It also generates loads and stores

at the entry and exit of each register alloca-

tion block.

We present this optimization sequence at this junc-

ture because of the role played by loop fusion in
particular. The initial loop distribution generates

vector operations that are much larger than the
register size. Loop blocking remedies that. How-

ever, without loop fusion the outer loop overhead

would have to be paid for each vector operation.

At the same time, fusing all of the outer loops to-

gether may over-allocate the available vec~or regis-

ters. Therefore, the loop fusion criterion used in

this case is whether the NS of the fused loop will
be larger than the number of available vector regis-

ters. Once fused loops with NS approximately as
large as the available registers are created, regis-

ter assignment need not be as complex. (We might

label it a global few-to-few assignment strategy,

using Day’s terminology [DayW70]. The only other
published method to optimize vector register as-

signment is found in [DUKU78], which describes a

global assignment based on usage counts with no re-

allocation of vector registers.

5. Conclusion

The techniques of this paper have been imple-

mented and used in compiling to improve the per-
formance of ordinary programs for several architec-

tures. The transformations of Section 3 remove de-
pendence arcs and hence increase independence be-

tween nodes, while those of Section 4 abstract from
a graph parts which are convenient for code genera-

tion. By removing cycles, they yield a DAG that

also is convenient for scheduling.

It is important to realize that the resulting

graph usually consists of many nodes that can be
compiled directly into the machine languages of cur-
rent high-performance machines. Array operations

arise from independent nodes after loop distribu-

tion. The recurrences arising from strongly con-
nected component cycles are often linear. Many ms-

chines have reduction instructions and some (e.g.,
BSP) have a more general linear recurrence solving
instructions or functions. The remaining parts of

a dependence graph must be executed using scalar in–
structions. Application of these ideaa to machines

that can execute manv scalar operations at once is

discussed in

[AbKL79] W.

[AcDe79] W.

[PaKL80j. “

References

Abu-Sufah, D. Kuck, and D, Lawrie,

“Automatic Program Transformations for
Virtual Memory Computers,” Proc. of the

1979 Nat’l. Computer Conf., pp. 969–
974, June 1979.

B. Ackerman and J. B, Dennis, “Val--A
Value–Oriented Algorithmic Language:
Preliminary Reference Manual,” Lab. for
Computer Science (TR-218), MIT, Cam-

bridge, MA, June 1979.

AhHU74j A.

AhU173] A.

[AlCo72] F.

V. Aho, J. E. Hopcroft, and J. D.

Unman, The Design and Analysia of

Computer Algorithms, Addison-Wesley,

MA, 1974.

V. Aho and J. D. Unman, The Theory of

Parsin g, Translation, and Compiling,

vol. 2: Compiling, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

E. Allen and J. Cocke, “A Catalogue of

Optimizing Transformations,” in Design
and Optimization of Compilers (R.
Rustin, Ed.), Prentice-Hall, Inc.,

NJ, pp. 1-30, 1972.

ArGP78] Arvind, K. P. Gostelow, and W. Plouffe,

AsMa75] E.

[BaGK80] U.

[Bake77] B.

[Bane76] U.

“An Asynchronous Programming Language

and Computing Machine,” University of
California at Irvine, CA, Dept. of

Information and Computer Science Rpt.

l14a, Dec. 1978.

Ascroft and Z. Manna, “Translating
Program Schemes to While-Schemas,”

SIAM J. on Computing, Vol. 4, No. 2,
pp. 125-146, June 1975.

Banerjee, D. Gajski, and D. J. Kuck,

“Array Machine Control Units for Loops
Containing IFs,” Proc. of the 1980

Int’1. Conf. on Parallel Processing,
Harbor Springs, MI, pp. 28-36, Aug.

1980.

S. Baker, “An Algorithm for Structur-
ing Flow Graphs,” J. of the ACM, Vol.

24, No. 1, pp. 98-120, Jan. 1977.

Banerjee, “Data Dependence in Ordinary

Programs,” M.S. thesis, Univ. of Ill.

at Urbana-Champaign, Dept. of Comput.

Sci. Rpt. No. 76-837, Nov. 1976.

[Bane79] U. Banerjee, “Speedup of Ordinary Pro–
grams,” Ph.D. thesis, Univ. of Ill. at

Urb.–Champ. , Dept. of Comput. Sci. Rpt.

No. 79-989, Oct. 1979.

[BCKT79] U. Banerjee, S. C. Chen, D. J. Kuck, and

R. A. Towle, “Time and Parallel Proces-

sor Bounds for Fortran-Like Loops,”
IEEE Trans. on Computers, Vol. c-28,

No. 9, pp. 660-670, Sept. 1979.

[Beat74] J. C. Beatty, “Register Assignment Algo-

rithm for Generation of Highly Opti-

mized Object Code, ” IBM J. of Res. and
~. , Vol. 18, No. 1, pp. 20-39, Jan.

1974.

[BoJa66] C, Bohm and G. Jacopini, “Flow Diagrams,
Turing Machines and Languages with

Only Two Formation Rules,” Comm. of
the ACM, Vol. 9, No. 5, pp. 366-371,
May 1966.

[Cock70] J. Cocke, “Global Subexpression Elimina-

tion,” SIGPLAN Notices, Vol. 5, No. 7,

PP. 20-24, 1970.

215

[DayW70] W.

[DuKu78] D.

[Grie71] D.

[GrWe76] S.

[KKLW80] D.

[Kuck78] D.

[Kuck80] D.

[KuMC72] D.

[Love77] D.

[LuBa80] S.

[PaKL80] D.

[Park77] D.

[ZeBa74] M.

H. E. Day, “Compiler Assignment of

Data Items to Registers,” IBM syst~.

J_. , Vol. 9, No. 4, pp. 281–317, 19700

D. Dunlop and J. C. Knight, “Register
Allocation in the SL/1 Compiler,” ~.
of the 1978 LASL Workshop on Vector &

parallel processors, LA-7491-C, Los
AlamOs, NM, pp. 205-211, Sept. 1978.

Gries, Compiler Construction for Digi–

tal Computers, Wiley & Sons, NY, 1971.

L. Graham and M. Wegman, “A Fast and

Usually Linear Algorithm for Global
Flow Analysis,” J. of the ACM, Vol. 23,

No. 1, pp. 172-202, 1976.

J. Kuck, R. H. Kuhn, B. Leasure, and
M. Wolfe, “Analysis and Transformation
of Programs for Parallel Computation,”

to appear in Proc. of the Fourth Int’1.
Computer Software & Applications Conf.,
Oct. 1980.

J. Kuck, The Structure of Computers

and computations, Vol. I, John Wiley &
Sons, Inc. , NY, 1978.

J. Kuck, Class Notes for C.S. 433,

Univ. of Ill. at Urb.-Champ. , Dept. of
Comput. Sci. , 1979.

J. Kuck, Y. Muraoka, and S. C. Chen,

“On the Number of Operations Simulta–

neously Executable in FORTRAN-Like

Programs and Their Resulting Speed–Up,”

IEEE Trans. on Computers, Vol. C-21,
No. 12, pp. 1293-1310, Dec. 1972.

B. Loveman, “Program Improvement by

Source-to-Source Transformation,” ~.
of the ACM, Vol. 20, No. 1, pp. 121-

145, Jan. 1977.

F. Lundetrom and G. H. Barnes, “A Con-

trollable MIMD Architecture,” Proc. of

the 1980 Int’1. Conf. on Parallel
processing, pp. 19–27, Aug. 1980.

A. Padua, D. J. Kuck, and D. H. Lawrie,
“High-Speed Multiprocessors and Com-
pilation Techniques,” Special Issue on
Parallel Processing, IEEE Trans. on
Computers, Vol. c–29, No. 9, pp. 763-

776, Sept. 1980.

S. Parker, Jr., “Nonlinear Recurrences
and Parallel Computation,” in High speed
Computer and Algorithm Organization,

pp. 317–320, Academic Press, Inc., 1977.

V. Zelkowitz and W. G. Bail, “Optimiza-
tion of Structured Programs,” Software

%Ctice and Experience, Vol. 4, No. 1,
pp. 51-57, 1974.

Fig. 1. Five types of dependence graph arcs

(a)

(b)

(c)

(d)

(e)

Fig,

F1 :

Al:

A2 :

A3 ,

‘4:

A5 :

A6 :

F1 :

Al:

A2 :

A3 :

A4 :

A5 :

‘6:

F1 :

Al:

A2 :

A3 :

‘4:
A5 :

‘6:

F1 :

Al:

‘2:

A3 :

A;:

A;:

A5 :

‘6:

216

loop dependence .———
-3

flow dependence >

output dependence
A >

antidependence A
,, >

input dependence T >

2. Successive application of four transforms
to a program

60LI=l,toN
,,

A=A+l 3 2
/

Y=A+2

@

‘.
A F-h.-

Z(I) = Y +V(I) /’ \

A = X(1+1) + X(1-1) A A
.

X(I) = W(I) + 1

W(I+l) = X(I) + 1
Original program

cnd JOJL 2 (a)

(joJLI=l,toN

A(l) = A(2) + ~

Y=A(1)+2
Z(I) = Y+V(I)

A(2) = X(1+1) + X(1-1)

X(I) = W(I) + 1

W(I+l) = X(I) + 1
After renaming

atd ~Oh 2(b)

~okI=ltoN

A(l) (l_Q = A ‘2) (1-1)+1

Y(I-1) = A(l) (I-1)+2

Z(I) = Y(I-1) + V(I)
A(2)

(I) = X(1+1)+X(1-1)

X(I) = W(I) + 1

W(I+l) = X(I) + 1
After expansion

fjoxI=l-toN

A(l) (I-l) = A ‘2)(1-1)+1

Y(I-1) = A(l) (I-l)t2

Z(I) = Y(I-1) + V(I)

T(I-1) = X(1+1)
A(2)

(I) = T(I-l)+X(I-1)

X(I) = W(I) + 1 ~

W(I+l) = X(I) + 1
After node split–
ting

end fjOk 2(d)

F~1: @JLI=l ZON

A; : T(I-1) = X(1+1)

A5 : X(I) = W(I) + 1

A6 : W(I+l) = X(I) + 1 ao1.1

0F
1.2

end {OZ
/=~3: ~oh I=lfON

@’

F
A(2) (I) = T(I-l)+X(I-1)A;” :

1.3

end ljofi

F14: fjoh 1=1 XON
)

Al” : A(l) (1-1) = A(2) (1-1)+1

8

0
1.4

end ~ox
F~5: ~Ofi 1=1 ZON

A2” : Y(I-1) = A ‘1) (1~1)+2

end 40L
o

1.5

F16: ~OXI=l ZON
.

A3 : Z(I) = Y(I-1) + V(I)

ad 60L doF
1.6

After distribution

2 (e)

Fig. 3. Partial dependence graph at the atomic

level for the program in Fig. 2(a)

Fig. 5. Partial dependence graph at the atomic

level for the program in Fig. 2(c)

Fig.

Al:

A2 :

A3 :

6. Original

A=B+C

D=E+A

F=G+D

(a)

program for Example 3.6

Q

B c

Al +

A

mE A

A2 +

D

6i5G D

A3 +

F

(b)

Fig. 4. Partial dependence graph at the atomic
level for the program in Fig. 2(a)

Fig. 7. Transformed program
twO possible atomic

for Example 3.6 and
dependence graphs

A;: F=B+C+E+G

(a) Y
B c

+

E

+

G

+

(b)

217

Scc

IN

F1 :

Al:

A2 :

A3 :

F2 :

Ah:

dOXI=l,tON

A(I) = B(I) + C(I)

D(I) = E(I)+F(I)+X(I)

G(I) = B(I) + H(I)

wd fjOk

@L~=~&oN

E(J) = D(J) * F(J)

cnd ~ofi

QBF1 —_ Al

\“ A
\3

\

-~

A2

o-
F2

A4

Original program

(a)

before abstraction
(a)

F~1: fjcJtI=lZON

Al” , Q

8

F1 – A
A(I) = B(I) + C(I) “ 1

\

’43 : G(I) = B(I) + H(I)
\

.

e.vtd fjO)L A3

F12: If OX 1=1 XON

replicated loop header

(b)

resulting abstracted graph

(c)

Fig. 8. LOOP distribution as a graph abstraction

A2 , D(I)= E(I)+F(I)+X(I) F

cnd dot o

x

1.2 – AZ

F2 : ~O&J==l~ON

‘4 : E(J) = D(J) * F(J) oF2–_A4

End ~OJL

Transformed program
(b)

Fig. 9. LOOP distribution for memory management

~1: fjO&I=l~CIN
Al:

Q

F1

‘8

Al
A(I) = B(I) + C(I)

A3 : G(I) = B(I) + H(I)
\

\
\

wd fjOk

F2 :
A3

~OfiI=lxON

A2 : D(I) = E(I) + F(I) + X(I)

A4 : E(I) = D(I) * F(I)

end ~O& Q-Q
\

6‘\
A4

Fig. 10. LOOP fusion for virtual memory management

218

