Originally appeared at Supercomputing ‘91
This expanded version appeared in Comm. of the ACM, August 1992

The Omega Test: a fast and practical integer

programming algorithm for dependence analysis

William Pugh

Dept. of Computer Science and Institute for Advanced Computer Studies
Univ. of Maryland, College Park, MD 20742
pugh@cs.umd.edu, (301)-405-2705

Abstract

The Omega test is an integer programming algorithm that can determine whether a dependence exists
between two array references, and if so, under what conditions. Conventional wisdom holds that integer
programming techniques are far too expensive to be used for dependence analysis, except as a method of
last resort for situations that cannot be decided by simpler methods. We present evidence that suggests this
wisdom is wrong, and that the Omega test is competitive with approximate algorithms used in practice and
suitable for use in production compilers. Experiments suggest that, for almost all programs, the average
time required by the Omega test to determine the direction vectors for an array pair is less than 500 usecs
on a 12 MIPS workstation.

The Omega test is based on an extension of Fourier-Motzkin variable elimination (a linear programming
method) to integer programming, and has worst-case exponential time complexity. However, we show that for
many situations in which other (polynomial) methods are accurate, the Omega test has low order polynomial
time complexity.

The Omega test can be used to project integer programming problems onto a subset of the variables,
rather than just deciding them. This has many applications, including accurately and efficiently computing
dependence direction and distance vectors.

1 Introduction

A fundamental analysis step in an advanced optimizing compiler (as well as many other software tools) is
data dependence analysis for arrays: deciding if two references to an array can refer to the same element
and if so, under what conditions. This information is used to determine allowable program transformations
and optimizations. For example, we can determine that in the following program, no location of the array
is both read and written. Once we also verify that no location is written more than once, we know that the
writes can be done in any order.

for i = 1 to 100 do
for j = 1 to 100 do
Afi, j+1]1 = A[100,j]

There has been extensive study of methods for deciding array data dependences [AlI83, [BCSH, [AKST,
Ban&8, (Wol89, [LYZK9, [LYI0, [GKTIT, IMHLIT]. Much of this work has focused on approximate methods
that are guaranteed to be fast but only compute exact results in certain (commonly occurring) special cases.
In other situations, approximate methods are conservative: they accurately report all actual dependences,
but may report spurious dependences.

Data dependency problems are equivalent to deciding whether there exists an integer solution to a set of
linear equalities and inequalities, a form of integer programming. The above problem would be formulated
as an integer programming problem shown below. In this example, i,, and j,, refer to the values of the loop
variables at the time the write is performed and 4, and j, refer to the values of the loop variables at the
time the read is performed.

1< iy < ju < 100
1<i, <jr <100
1y = 100
Jw+1=7r

Conventional wisdom holds that integer programming techniques are far too expensive to be used for
dependence analysis, except as a method of last resort for situations that cannot be decided by simpler,
special-case methods. We present evidence that suggests this wisdom is wrong. We describe the Omega test,
which determines whether there is an integer solution to an arbitrary set of linear equalities and inequalities.
We describe experiments that suggest that, for almost all programs, the average time required by the Omega
test to determine the direction vectors for an array pair is less than 500 usecs on a 12 MIPS workstation.
We also found that the time required by the Omega test to analyze a problem is rarely more than twice the
time required to scan the array subscripts and loop bounds. This would indicate that the Omega test is
suitable for use in production compilers.

Conceptually, the Omega test combines new methods for eliminating equality constraints with an exten-
sion of Fourier-Motzkin variable elimination to integer programming. At a more detailed level, the Omega
test also incorporates several implementation details (described in Section 24 that produce substantial
speed improvements in practice.

Integer programming is a NP-Complete problem, and the Omega test has exponential worst-case time
complexity. We show in Section[7] that in many situations in which other (polynomial) methods are accurate,
the Omega test has low-order polynomial worst-case time complexity.

Dependence analysis is often structured as a decision problem: tests simply answer yes or no. Compilers
and other program restructuring tools need to know the data dependence direction vector [Wol82] and data
dependence distance vector [KMC72, [Mur71] that describes the relation between the iterations in which the
conflicting reads/writes occur. The data dependence distance vector describes the differences between the
values of the common loop variables between the first and second access to the same array element. For
example, in the following code fragment, the dependence distance of the flow dependence is (1,2):

for i := 1 to n do
for j := 1 tom do
A(i, j) = A(i-1, j-2)

Sometimes, dependence distance is not constant. In these cases, the dependence direction vector describes
the possible combinations of signs of dependence distances.

Determining dependence direction vectors may require an exponential number calls to a dependence
testing algorithm that only returns yes/no. To be competitive, a dependence analysis method must be able
to short-cut this enumeration process (e.g., see [BC86, [GKT91]). In Section d, we show how the Omega test
can be modified to project integer programming problems onto a subset of the variables, rather than just
deciding them. With this in hand, we can efficiently produce a set of constraints that precisely and concisely
describes all possible dependency distance vectors. This information can be used directly in deciding the
validity of program transformations, or standard direction and distance vectors can be quickly computed
from it. These techniques are described in Section [B.11

2 The Omega test

The Omega test determines whether there is an integer solution to an arbitrary set of linear equalities and
inequalities, referred to as a problem. The input to the Omega test is a set of linear equalities (3, ;,, @i%; =

c) and inequalities (},_,-, aiz; > c¢). To simplify our presentation (and our algorithms), we define z¢p = 1
and use Y ;o @i%; = 0 and Y .., a;x; > 0 as our standard representations, and we use V' to denote the
set of indices of the variables being manipulated (i.e., V = {i |0 <i < n}).

2.1 Normalizing (and tightening) constraints

Throughout this paper, we assume that any constraint we are manipulating has been normalized. A nor-
malized constraint in one in which all the coefficients are integers and the greatest common divisor of the
coefficients (not including ag) is 1.

If the initial constraints involve rational coefficients, they can be scaled to obtain integer coefficients.
(the algorithms described here do not produce any non-integer coefficients).

To normalize a constraint, we compute the greatest common divisor g of the coefficients a1, ...,a,. We
then divide all the coefficients by g. If the constraint is an equality constraint and g does not evenly divide ay,
the constraint is unsatisfiable. If the constraint is an inequality constraint, we take the floor when dividing
ap by g (i-e., we replace ag with |ag/g]).

Taking floors in the constant term tightens the inequalities. If a problem P has rational but not integer
solutions, tightening P may produce a problem without rational solutions, thus making it easier to determine
that P has no integer solutions.

2.2 Equality constraints

Given a problem involving equality and inequality constraints, we first eliminate all the equality constraints,
producing a new problem of inequality constraints that has integer solutions if and only if the original
problem had integer solutions. Of course, in the process we might decide that the problem has no integer
solutions regardless of the inequality constraints.

The Generalized GCD test [Banerjee88] can be used to eliminate integer equality constraints. However,
we found the following approach better suited toward our needs, since it is somewhat simpler and more
appropriate for situations in which additional equalities may be added later.

To eliminate the equality),y a;z; = 0, we first check if there exists a j # 0 such that |a;| = 1. If so,
we eliminate the constraint by solving for z; and substitute the result into all other constraints.

Otherwise, let k be the index of the variable with the coefficient that has the smallest absolute value
(k # 0) and let m = |ag| + 1. We define mod as follows:

a mod b= a—bla/b+1/2]
We create a new variable o and produce the constraint:

mo = Z(ai mod m)x;

eV
Note that ay, mod m = —sign(ag). We then solve this constraint for zj

xp = —sign(ax)mo + Z sign(ag)(a; mod m)x;
ieV—{k}

and substitute the result in all constraints. In the original constraint, this substitution produces:

—|ax|mo + Z az+|ak|azmodm)) ; =0
eV —{k}

Since |ag| = m — 1, this is equal to

—lag|mo + Z almodm)) + m(airﬁo\dm))xi =0
eV — {k}

substitution resulting constraints
Original problem Tr+ 12y + 31z =17

3z +5y+ 14z =7
1<x<40

—50 <y <50
r=-80c—4y—z—1| —To0—-2y+32=3

—240 —Ty+ 112 =10

1< -8 —4y—2—-1<40
—50 <y <50

y=o0+37 —30—-21+2=1
—3lo0 — 217+ 112 =10
1<-1-120-127—2<40
-90<o+37 <50
z=30+27+1 204+ 17=-1

1< -2—-150— 147 <40
-90<o+37 <50

T=—-20-—1 1 <12+ 130 <40
—50 < -3 — 50 < 50
after normalization 0<o<2

Figure 1: Example of elimination of equality constraints

Since all terms are now divisible by m, normalizing the constraint produces:

1 —
—lag|o + Z ((las/m + §J + (a; mod m))z; =0
ieV_{k}

In the original constraint, the absolute value of the coefficient of ¢ is the same as the absolute value
of the original coefficient of x;. For all other variables, the absolute value of coefficients are reduced to at
most 2/3’rds of their previous value. Therefore, repeated applications of this rule will eventually force a unit
coeflicient to appear and allow us to eliminate the constraint.

An application of these methods is shown in Figure [Tl

2.3 Inequality constraints

The following process is used once all equality constraints have been eliminated. We first check to see
if any two inequality constraints directly contradict one another (e.g., the constraints 3z + 5y > 2 and
3z + 5y < 0). If we find a contradiction, we report that the problem has no solutions. We can deal
with equality constraints more efficiently than inequality constraints. Therefore, if we find a pair of tight
inequalities (such as 6 < 3z + 2y and 3z 4 2y < 6), we replace them with the appropriate equality constraint
and revert to our methods for dealing with equality constraints. While checking for contradictory pairs
of constraints, we also eliminate constraints that are made redundant by a single other constraint (e.g.,
x 4 2y > 0 is made redundant by x + 2y > 5).

If the problem involves at most one variable and has passed the above tests, we report that it has
integer solutions. Otherwise, we reduce the problem to one or more integer programming problems in fewer
dimensions and repeat the above process, eventually getting to problems in one dimension.

2.3.1 Detecting real solutions using Fourier-Motzkin variable elimination

Fourier-Motzkin variable elimination [DET73] eliminates a variable from a linear programming problem. In-
tuitively, Fourier-Motzkin variable elimination finds the n — 1 dimensional shadow cast by an n dimensional
object.

Figure 2: A visual depiction
of Fourier-Motzkin variable elimi-
nation. (a) A dodecahedron and
its shadow. (b) The constraints
that specify a dodecahedron and its
shadow. (c) Finding the shadow of
the intersection of two constraints.
(d) Finding the shadow of the inter-
section of two more constraints. (e)
Constraints resulting from the com-
bination of all pairs of upper and
lower bounds on z (most are redun-
dant).

Consider the dodecahedron in Figure Ph. We want to calculate the shadow of the dodecahedron when
it is projected along the z dimension onto the zy plane (as shown). This dodecahedron and its shadow can
each be specified by a set of 12 constraints (Figure Bb).

Consider two constraints on z: a lower bound § < bz and an upper bound az < « (where a and b are
positive integers). We can combine these constraints to get aff < abz < ba. The constraint a8 < ba is the
shadow of the intersection of these two constraints (shown visually in Figure 2c). By combining the shadow
of the intersection of each pair of upper and lower bounds on z (Figures 2d and k), we obtain a set of
constraints that defines the shadow of the original object.

Since the shadow obtained this way describes real solutions, we refer to it as the real shadow of a set
of constraints. If there are no integer points in the real shadow of a set of constraints, we know that there
are no integer solutions to the set of constraints.

Note that the set of constraints we obtained includes many redundant constraints. Performing Fourier-
Motzkin variable elimination can square the number of constraints and produce many redundant constraints.
However, few loop nests have dodecahedrons for iteration spaces, and in practice the number of constraints
does not grow substantially. Attempting to determine which constraints are redundant so as to remove them
from consideration is usually not cost-effective.

2.3.2 Detecting integer solutions using Fourier-Motzkin variable elimination

There may be integer grid points in the shadow of an object, even if the object itself contains no integer
points (consider the shadow of a very thin object). Ideally, we would like to calculate the integer shadow
of an object: a shadow such that for every integer point in the shadow, there is at least one corresponding
integer point in the object above it, and vis-versa. Unfortunately, we can’t always do this. The integer
shadow of a convex region may not even be a convex region. However, we have developed new methods that
work well in practice. Our approach can be (informally) visualized as finding the shadow of a translucent
object: thicker parts of the object cast a darker shadow. If we define dark shadows appropriately, we can
guarantee that for every integer point in the dark shadow, there is an integer point in the object above it.
As an example, we reconsider our previous example of the dodecahedron, although we squish the dodeca-
hedron to illustrate the difficulty of finding integer shadows. The squished dodecahedron is shown in Figure

Figure 3: Checking for integer points in the dark
shadow. (a) The shadow cast by a translucent,
flattened dodecahedron. (b) View of the integer
points inside a flattened dodecahedron and inside
its shadow. (c¢) Overhead view of Figure 3b, show-
ing that there are integer points within the flat-
tened dodecahedron above every point within the
dark shadow, but that there is not necessarily an
integer point in the flattened dodecahedron above
every integer point in the entire shadow (the real
shadow).

[Z3Th, and the integer points in the dodecahedron and its shadow are shown in Figures [Z3Ib and 23 Ik.
There are integer points in the real shadow that have no integer point in the object above them. However,
for every integer point in the dark shadow, there is an integer point in the object above it.

The shadow is clearly dark below any part of the object that is at least one unit thick. However, since
the coefficients of the constraints are integers, we can determine a looser definition of dark that will still
guarantee that any integer point in the dark shadow has an integer point above it.

To determine the dark shadow, consider the case in which there is an integer solution to a8 < ba, but
there is no integer solution to af < abz < ba (i.e., there is no multiple of ab between af and ba). Note that
a and b are positive integers. In this case, let ¢ = [3/b]. Then

abi<af <ba<ab(i+1)

Since ab(i + 1) — ba > b, aff — abi > a and ab(i + 1) — abi = ab, ba — aff < ab—a —b. If ba —aff >
ab—a—b+1=(a—1)(b—1), we know that there must be an integer solution to z. Therefore, the dark
shadow of @ > az and bz > is:

ba—af > (a—1)(b—1)

Note that if @ = 1 or b = 1, the dark shadow and the real shadow are identical. If the dark and real
shadow resulting from each combination of an upper and lower bound are identical, the projection is called
an exact projection. This will happen, for example, if all of the coefficients of z in lower bounds on z are
1, or if all of the coefficients of z in upper bounds on z are 1. For the problems that arise in dependence
analysis, we can almost always find an exact projection.

We now have a method for checking for the existence of integer solutions to a set of constraints:

1. We first decide which variable to eliminate. We choose this variable so as to perform an exact projection
if possible, and to minimize the number of constraints resulting from the combination of upper and
lower bounds. If we are forced to perform non-exact reductions, we choose a variable with coefficients
as close to zero as possible.

2. Calculate the real and dark shadows of the set of constraints along that dimension.

3. If the real and dark shadows are identical, there are integer solutions to the original set of constraints
iff there are integer solutions to the shadow.

4. Otherwise:

(a) If there are no integer solutions to the real shadow, we know there are no integer solutions to the
original set of constraints.

(b) If there are integer solutions to the dark shadow, we know there are integer solutions to the original
constraints.

(¢) Otherwise, we know if an integer solution exists, it must be closely nestled between an upper
bound and a lower bound. Therefore we consider a set of planes that are parallel to a lower
bound and close to a lower bound. Any integer solution closely nestled between an upper bound
and a lower bound must lie on one of these planes.

Computationally, we analyze the problem as follows:

We know that if there exists an integer solution to the original set of constraints, there must exist
a pair of constraints a > az and bz > [on z such that

ab—a—b>ba—aB>0Aba > abz > af
ab—a—b+al > abz > af
We check this by determining the largest coefficient a of z in any upper bound on z, and, for each
lower bound bz > 3 on z, testing if there are integer solutions to the original problem combined
with bz = 8+ for each ¢ such that (ab —a —b)/a > > 0.
While these steps are expensive and complicated, they rarely, if ever, need to be used in practice.

-® - ° - ° '
0 0.5 1 1.5 2 2.5

Figure 4: Finding the real and dark shadow of an Omega test nightmare

2.3.3 An Omega test nightmare

To demonstrate (and show the limitations of) the techniques used, we illustrate the steps performed by the
Omega test on an example designed to force the Omega test to work very hard for a small problem. Consider
the inequalities P:

27< 1lx+13y <45
-10< Tr—-9y <4

There are no exact projections we can perform, and we would decide to eliminate x since the coefficients
of x are (slightly) smaller. Figure dl shows the constraints in the original problem, and the unnormalized
constraints in the real and dark shadows. Since the real shadow has integer solutions but the dark shadow
does not, we check if there are any integer solutions close to a lower bound. We do this by checking if the
intersection of the original set of constraints and any one of the following constraints contains an integer
point (this is shown graphically in Figure H). Since there are no such solutions, we know that no integer
solutions exist.

Tr=9y—10+j 0<j<|T==T| =5
Nz =27-13y+j 0<j< [0l g

The steps performed in this example appear complicated and expensive. However, this example was
designed to be expensive to resolve. We do not expect situations this difficult to arise frequently in practice.
Also, although many steps are performed in this process, our implementation of the Omega test takes only
4.5 milliseconds on a 12 MIPS workstation to perform them all.

Worse nightmares are possible: on problems with only 2 variables and 3 constraints, the Omega test can
take time proportional to the absolute value of the coefficients. While this is a frightening possibility, we do
not expect these situations to arise frequently in practice.

A decision on better methods for dealing with Omega test nightmares will have to wait until more
experience is gained about the type of nightmares that occur in practice.

2.5

- N~

2

1.5

05 [

L . L . L
0 0.5 1 1.5 2 2.5

Figure 5: Checking Figure H] for solutions tightly nestled between an upper and lower bound

2.4 Implementation Details

In implementing the Omega test we used several algorithmic ideas and tricks that substantially improved
our running time. We report some of those ideas here.

Equalities and inequalities are represented as vectors of coefficients. The Omega test is crafted so that
the algorithms only need to deal with integers; no rational number representation scheme needs to be used.

Once we have eliminated all the equality constraints from a problem, we check for any variables that
have no lower bounds or have no upper bounds. We refer to such variables as unbounded variables. Per-
forming Fourier-Motzkin elimination on an unbounded variable simply deletes all the constraints involving
it. We delete all constraints involving unbounded variables and then check if that has produced additional
unbounded variables. We repeat this process until no unbounded variables remain.

Next, we normalize all the constraints and assign hash keys and constraint keys to them. We only do
this to constraints that have been modified since the last time they were normalized. The constraint key
of a constraint is a unique tag based on the coefficients of the variables in the constraint; two constraints
have equal constraint keys if and only if they differ only in their constant term. Constraint keys are both
negative and positive, and the key of a constraint e; is the negation of the key of a constraint e, if and only
if the coefficients of the variables in e; are the negation of the coefficients of the variables in e;. We refer
to this as opposing keys and opposing constraints. Constraint keys are assigned to constraints in constant
expected time by recording in a hash table constraint keys previously assigned. We compute a hash key
based on the coefficients of the constraint as an index into the hash table (hash keys are not guaranteed to
be unique). Our method for computing hash keys is designed so that opposing constraints have opposing
hash keys, which makes it easy to assign them opposing constraint keys. As constraints are normalized, we
enter them into a table based on their constraint key. This allows us to check for redundant, contradictory
or tight constraint pairs in constant time per constraint.

In the process of normalizing constraints, we check to see if any constraints involve more than one variable.

After normalization, if we found no multi-variable constraints, we know the system must have solutions, and
we return immediately.

Next, we examine the variables to decide which variable to eliminate. If we can perform an exact
projection, we perform the elimination in place (adding and deleting constraints from the current problem).
Otherwise, we copy the constraints with zero coefficients for the eliminated variable into two new problem
data structures (for the real shadow and for the dark) and then add the constraints produced by Fourier-
Motzkin elimination. Since the constraints generated for the real and dark shadow differ only in their constant
terms, we can share much of the work in adding these constraints.

3 Nonlinear subscripts

Integer programming dependence analysis methods allow us to properly handle symbolic constants [LT88|
HP9(] and some types of min and max functions in loop bounds [WT92] and conditional assignments [LCI0].

For example, even if we had no information about the value of n, we would like to be able to decide that
there are no flow dependences in the following program:

for i = 1 to n do
ali+n] = ali]

As previous authors have suggested, we can handle loop-invariant symbolic constants by adding them as
additional variables to the integer programming problem. For example, the above problem would generate
the following integer programming program (involving the variables 4,4’ and n):

1<i,i’ <n
t+n=1

We also can accommodate integer division and integer remainder operations, something that does not
appear to have been previously recognized. Assume an expression e appears in a program that can be
expressed as e = a div m where m is a positive integer. To handle this, we define a new variable o, add the
inequality constraints 0 < a — mo < m — 1 and use o as the value of e. Similarly, if e = a mod m we would
add the same inequality constraint but use e — mo as the value of e.

4 Projection of Integer Programming Problems

As described in Section 2 the Omega test simply decides if there is a solution to an integer programming
problem. In this section, we describe how to adapt the Omega test to allow it to be used for symbolic
projection. When used this way, the Omega test is given as input an integer programming program P and
a designation of a set of protected variables V C V. The Omega test projects P into one or more problems
involving only variables in V that describe all the possible values of the variables in V such that there
is an integer solution to P with those values. For example, projecting the integer programming problem
{0 <a <5; b<a<5b} onto a produces the problem {2 < a < 5}.

Actually, results of the projection process can be a little more complicated than just described. The
results may not be in terms of the variables in V. Instead, the results are given in terms of a set %
of not more than |V| variables (possibly including new varlables), along with methods for calculating the
appropriate values for the values of V from the values of V’. For example, if asked to project the integer
programming problem {a = 10b 4 25¢; a > 13} onto a, the Omega test will produce {c > 3; a = 50}.

The projection process may produce multiple problems. For example, projecting the problem {5b < a <
6b} onto a produces:

{20 < a}
{0<0; a=60}
{1<0; a=60—-1}
{2<0; a=60—2}
{3<0; a=60—3}

10

4.1 Changes to the Omega test

Three of the changes required are simple, the other is not as simple. The quick changes are:

e If the current problem P involves only protected variables, check if there are integer solutions of P and
if so, report P as one projection.

e When performing an inexact Fourier-Motzkin elimination, project the dark shadow and the intersection
of the original constraints with all of the equality checks near the lower bounds. In other words, we
must project all of the subproblems where we would look for an integer solution, not stopping when an
integer solution is first verified. This could be expensive if projecting a system involves many inexact
projections. We do not believe this will occur in practice for the problems arising from dependency
analysis.

e We never perform Fourier-Motzkin variable elimination on a protected variable. This could require us
to perform a inexact projections in a situation where we could have performed an exact projection if
we were not protecting certain variables.

The not so simple change involves equalities. Given an equality constraint) .y, a;z; = 0, let g be the ged
of the coefficients of the non-protected variables. (we assume (as always) that the constraint is normalized).

e If g = 0, the constraint involves only protected variables. We use our standard methods to eliminate
the constraint. This will result in the elimination of a protected variable. All substitutions performed
in this process are recorded in a substitution log. These substitutions involve only protected variables.

e If g = 1, we use our standard techniques (Section[Z2)) to find a substitution involving only unprotected
variables that simplifies or eliminates the constraint.

e If g > 1, we create a new protected variable o, add the constraint:
go = (a; mod g);
9%

Eliminating this new constraint will transform the original constraint so that the gcd of the non-
protected variables is 1 (after normalization).

When we report a projection, any substitutions involving protected variables are translated back into
equality constraints.

4.2 Projection with wildcards

As a modification of the approach described above, we could refuse to perform inexact reductions while
performing projection. The advantage of this is that we only report one projected problem as our result.
The disadvantage is that the projected problem has additional variables (that should be treated as wildcards)

In the applications we have found for projection, we have found projection with wildcards to be more
useful than producing multiple results.

5 Using projection

This projection technique can be used for several purposes. We describe some that have occurred to us.

5.1 Dependence direction and distance vectors

One problem with some dependence analysis methods is that they are only “yes/no” decision methods.
In compilers and other program structuring tools, we need to know the data dependence direction vector
[Wol82] and data dependence distance vector [KMCT72| [Mur71] describing the relation between the iterations
in which the conflicting reads/writes occur. One way to determine dependence direction vectors is to make

11

3% calls to a decision procedure (where L is the number of loops surrounding both references). In order to
be competitive, a dependence analysis method must be able to short-cut this enumeration (for example, see
[BC86, [GKTI1]).

In our method, we take the integer programming problem for determining if any dependence exists
between two references, and introduce a new variable for the dependence distance in each shared loop
(along with the appropriate equality constraints to define the value of the variable). We then project the
problem onto the dependence distance variables. The projected system may be a better way to describe
dependence conditions than dependence directions and distances; it accurately describes more information
than is typically contained in dependence direction vectors (such as when a dependence distance is always
greater than 5).

Alternatively, we can use the projected set of constraints to determine efficiently the dependence direction
and distance vectors. We scan the dependences, and infer as much information as possible from constraints
involving a single dependence distance variable. We next unprotect any dependence distance variable that
is uncoupled or who’s sign is completely determined. If coupled variables were unprotected, we project the
problem onto the protected variables and repeat this process. Otherwise, we choose one protected variable
and generate the subproblems for two or three possible signs for the variable (negative, zero or positive),
and recursively explore those.

For example, the dependence distances for the following array pair

for j = 0 to 20 do
for i = max(-j,-10) to 0 do
for k = max(-j,-10)-i to -1 do
for 1 = 0 to 5 do
a(l,i,j) = ...
. = a(l,k,i+j)

simplify to:

0<Aj<10
Ai+Aj <10
Ai+2A5 < 10

3Aj + 2Ai + Ak < 20
2Aj 4 2Ai + Ak < 10
1<Aj+Ai+k

1< Aj+Ai

Al=0

We first unprotect Al, and then consider sign(Aj) = 0 and sign(Aj) = 1. Considering sign(Aj) = 0 gives:
1< Ai <10;1< Ak + Ai; Ak +2Ai < 10

We would then unprotect Ai (since we know sign(Ai) = 1) and project the problem, obtaining —8 <
Ak < 8, which gives a direction vector of (=, <, *,=).
Returning to consideration of sign(Aj) = 1 produces:

-8 <A L8
—8<AE<S8
—8 < 2Ak+ A
-9 < Ak + Ad
Ak +2Ai <8
Ak — Ai <17

Recursively analyzing the possibilities for the sign of Ai produces direction vectors of (<, >, *,=), (<,=
,*,=) and (<, <,*,=). This example is the most difficult example seen in our testing, requiring 2492 usecs
to analyze.

12

5.2 Run-time checks and Compile-time assertions

By projecting a problem onto the variables corresponding to symbolic constants that cannot be determined
at compile-time, we can produce a predicate that will allow us to determine at run-time if a particular
dependence or dependence direction exists (as described by [KK91]). Alternatively, at compile time we
could ask the user if the predicate is true.

5.3 Summarizing Array References

In interprocedural analysis, we need to characterize the portions of an array that may be affected by a
procedure call [Tri85, BK&9] [HKI0, [LTT9T]. We can use the Omega test to obtain an accurate summary of
the locations of an array that might be affected by a single assignment statement. We do this by setting
up an integer programming problem involving variables for each array index and all loop variables and
symbolic constants, and adding appropriate constraints for the loop bounds, subscript expressions, and so
on. Projecting this problem onto the variables for the array indices and the symbolic constants gives an
accurate summary of the locations of the array affected by the assignment statement. The summary is not
limited to convex polyhedron. The projected problem will have solutions only for those locations that can
actually be changed. Details such as strides are accurately represented.

The Omega test can easily be used to determine when two regions intersect. With more work, the Omega
test can be used to check if one region is a subset of another. It is unclear how to use the Omega test to merge
affected regions; however, the Omega test could be used to convert exact affected regions into approximate
affect regions (such as described by [BK89, [HK90]) and then those regions could be merged.

5.4 Determining Loop Bounds

The Omega test can be used to determine appropriate loop bounds when interchanging non-rectangular
loops. This use of integer programming and projection to perform this is described by [AI91].

6 Performance

We have implemented the Omega test in Wolfe’s tiny tool [Wol91]. We handle min and max expressions
in loop bounds and symbolic constants, and compute exact sets of direction vectors (as opposed to the
compressed direction vectors normally generated by tiny). We applied this tool to the programs 1, 3, 4,
5 and 7 of the NASA NAS benchmark suite and to all the tiny source files distributed with tiny, (which
include Cholesky decomposition, LU decomposition, several versions of wavefront algorithms, and several
more contrived examples), as well as several of our own test programs. Programs 2 and 6 of the NAS
benchmark make extensive use of index arrays. Since we do not provide special treatment for index arrays,
we decided that it would be misleading to include them. The analysis of array pairs that have different
constant subscripts (e.g., a(4) and a(5)) are not included in the figures reported here; those cases are
detected while scanning the subscripts (thus both avoiding the analysis time and the time required to scan
the loop bounds). Standard optimizations such as induction variable recognition and forward substitution
were performed by hand. We did not compute input dependences (an input dependence is a dependence
between two reads of the same location of an array) or dependences between array pairs that did not share
at least one common loop.

We timed the Omega test on a Decstation 3100, a 12 MIPS workstation based on a MIPS R2000 CPU.
Shown below are our results on the time per array pair required to analyze programs in the NASA NAS
benchmark:

Program average time 95%-tile time
#1: MXM 275 psecs 316 psecs
#3: CHOLSKY 504 usecs 1024 psecs
#4:BTRIX 250 psecs 367 psecs
#5:GMTRY 191 psecs 534 psecs
#7:VPENTA 129 usecs 204 psecs

13

2000

1000

analysis »
time
(MSeCS)
250
100

)

copy time (usec)
Figure 6: Omega Test Performance

14

A —
XX
A
A O A A ._..,..._.-..-...<>' |
% . <> o .,.,..._,_A- Q
rr simple
rogular o
convex A
complex M i
| l l l
50 75 100 .

The third program of the NAS benchmark (CHOLSKY) is substantially more complicated that almost
all real-world FORTRAN code, involving loops nested four deep, triplely subscripted arrays and groups of 3
coupled loop indices. We feel confident that it represents a good “worst-case example” for analyzing dusty
deck FORTRAN code (excluding treatment of index arrays).

Our results on individual array pairs from all programs tested are shown in Figure 8. Each point is the
timing result for a single array pair. To present the results in a somewhat machine independent fashion, the
results are plotted on a log/log graph of analysis time vs. copying time (the time required just to copy the
problem). All times were randomly perturbed by +1/2usec to spread out overlapping points. The diagonal
lines are drawn at analysis time = 8 X copying time, 4 X copying time and 2 X copying time.

The analysis time is the total time required to analyze the array pair, calculate the appropriate direc-
tion vectors and add the dependences to dependence graph, excluding the time required to scan the array
subscripts and loop bounds and build the constraints that describe the dependence between the array pairs.

Across a range of test programs, we found the following break-down for how time was spent by the
Omega test: about 1/2 the time was spent dealing with inequality constraints, about 1/4 of the time was
spent on dealing with equality constraints, and 1/4 of the time was spent examining projected constraints
to construct direction vectors. None of our test cases required inexact Fourier-Motzkin variable elimination.

To analyze our results, the set of constraints describing the dependence distances for each array pair were
analyzed to remove any redundant constraints (this is not cost-effective normally). Based on the simplified
constraints, each array pair was classified as follows:

simple Any case that does not involve coupled dependence distances.

regular A case where dependence distances are coupled, but all inequality constraints have unit coefficients
(for example, {Ai > 0; Ai + Aj > 0}).

convex A case where the inequality constraints define a convex region but at least one constraint has a
non-unit coefficient (for example, {0 < Aj < 10;0 < Ai+Aj < 10; Ai+2Aj5 < 10} — the last constraint
makes this non-regular).

complex A case where the inequality constraints define a non-convex region. We only encountered two
such cases, one shown below and another one identical except that the lower bound of the i loop is 2.

for i =1 to 10 do
for j = 0 to 4 do
a(i-j) = a(j)
endfor
endfor

The flow/anti dependence distances for the example above are all the distances that satisfy {—4 <
Aj <4;-7T< ANi— Aj,Ai + Aj <10; Ai < 9} except for {Ai =9; Aj = 0}.

Maydan, Hennessy and Lam [MHL91] use memoization to obtain better performance. Memoization could
be added to the Omega test. However, the cost of computing a hash key and verifying a cache hit would be
about 2-4 times the copying cost for a problem, and therefore adding caching to the Omega test would not
produce significant savings for typical, simple cases and may produce little or no overall speed improvement.

We found that the cost of scanning array subscripts and loop bounds to build a dependence problem was
typically 2-4 times the copying cost for the problem. Thus, for many array pairs the cost of building the
dependence problem was nearly as large or even larger than the time spent analyzing the resulting problem.
We have not spent much effort trying to improve the performance of the code that builds dependence
problems. However, it is difficult to imagine building a dependence problem in much less than twice the time
required to copy the problem. This suggests that for the majority of array pairs, using a dependence analysis
algorithm significantly faster than the Omega test would not lead to significant overall speed improvements.

15

7 Polynomial time bounds

We first describe some general time bounds on parts of the Omega test, and then describe polynomial time
bounds for cases where other polynomial time algorithms are accurate. In this section, we use m to denote
the number of constraints and n to denote the denote the number of variables.

The time taken by the methods in Section[2:2]to eliminate one equality constraint is O(mn log |C|) worst-
case time, where C' is coefficient with the largest absolute value in the constraint. This cost arises from the
fact that we might have to apply the perform log|C| substitutions before we can eliminate the constraint,
and performing a substitution takes O(nm) time.

Eliminating unbound variables takes O(mnp) worst-case time, where p is the number of passes required
to eliminate all the variables that become unbound. At least one variable is eliminated in each pass except
the last.

Normalizing the constraints and checking for directly contradictory or redundant constraints requires
O(mn) expected time (the time bound is only expected, not worst-case, because hashing is used).

Producing the subproblems resulting from Fourier-Motzkin variable elimination takes time proportional
to the size of the subproblems produced.

7.1 Special cases

During normalization, the Omega test checks to see if any variables are involved in constraints with other
variables. If not (and checking for contradictory constraint pairs has not produced a contradiction), we
know the problem has solutions and do not need to perform any additional computation. This applies iff
the “Single Variable Per Constraint” (SVPC) test [MHL9T] can be applied, which was found [MHL9T] to be
applicable in 1/3 of the unique cases found in the Perfect Club Benchmark (a higher percentage if duplicate
cases were considered separately).

The “Acyclic Test” [MHLIT] can be applied in exactly those cases that the Omega test can resolve
just by eliminating unbound variables and performing exact projections that do not increase the number
of constraints, a process that takes O(mn?) worst-case time. They found [MHL91] that this test could be
applied in over 1/4 of the unique cases encountered.

The “Loop Residue” algorithm [Sho81] can be applied in just those cases where each constraint is of the
form z; > x; + ¢, x; > ¢, or ¢ > z;. In a set of constraints with this property, Fourier-Motzkin variable
elimination is exact and preserves this property. On n variables, there can be at most n? + n constraints of
this form after eliminating redundant pairs. Thus, the Omega test will take O(n?) time to resolve a set of
constraints that can be solved by the Loop Residue algorithm. Maydan, Hennessy and Lam [MHL91| found
that the Loop Residue algorithm could be applied in 1/4 of the unique cases encountered in their study of
the Perfect Club benchmark.

Maydan, Hennessy and Lam found that 91% of the cases they encountered could be determined by
constant tests and Banerjee’s Generalized GCD tests. Of the remaining 9% of the cases, they found that
their SVPC, Acyclic or Loop Residue tests could be applied in 86% of the unique cases.

The Delta test [GKT91] works by searching for dependence distances that can be easily determined, and
then propagating that information with the intent of making it possible to easily determine other dependence
distances precisely. In the cases where their algorithm can determine a dependence distance without the use
of MIV tests, the Omega test also will determine it efficiently (and in polynomial time) by a combination
of solving equality constraints, tightening inequality constraints and converting tight inequality constraints
into equality constraints. Since the Omega test treats the dependence analysis problem as a single integer
programming problem, it automatically achieves the propagation effects of the Delta test. Therefore, any
dependence analysis problem that can be solved by the Delta test without resorting to exponential algorithms
or approximate methods (i.e., resorting to what they refer to as MIV tests) can be solved in polynomial time
by the Omega test.

In their study of the RiICEPS, Perfect, SPEC benchmarks and LINPACK and EISPACK, they found
that 97% percent of the cases could be solved without requiring the use of MIV tests.

Since the Omega test can solve effectively and in (effective) polynomial time any problem that be solved
by any combination of the Single Variable Per Constraint test, the Acyclic test, the Loop Residue test and

16

the Delta test, we expect that it should be able to solve more problems exactly and efficiently than any one
of them alone.

8 Related work on Exact Dependence Analysis

The Constraint-Matrix test [Wal88] makes use of the simplex algorithm modified for integer programming.
The Constraint-Matrix test can fail to terminate and it is not clear how efficiently it works in practice.

Lu and Chen describe [LC90] an integer programming algorithm for dependence analysis. However, their
method appears prohibitively expensive for use in a production compiler.

Triolet [Tri85] used Fourier-Motzkin techniques for representing affected array regions in interprocedural
analysis. Triolet found Fourier-Motzkin techniques to be expensive (22 to 28 times longer than using simpler
methods for representing affected array regions).

Several implementations of Fourier-Motzkin variable elimination have been described for use in depen-
dence analysis. The Power test described by Wolfe and Tseng [WT92] combines the Banerjee’s Generalized
GCD test, constraint tightening, and Fourier-Motzkin variable elimination. They take no special action when
performing an inexact projection except to flag the result as possibly being conservative. Fourier-Motzkin
elimination is used by Maydan, Hennessy and Lam [MHL91] if none of the other methods they use give
an exact answer. They use back substitution to determine a sample solution. If the sample solution is not
integral, they suggest the use of branch and bound methods to verify or disprove the existence of integer
solutions (they have not found the need to implement this thus far). Both Wolfe and Tseng [WT92] and May-
dan, Hennessy and Lam [MHLI1] suggest that due to the expense of Fourier-Motzkin variable elimination,
simpler tests should be used instead in situations where they are known to be accurate.

Ancourt and Irigoin [AI91] describe the use of Fourier-Motzkin variable elimination so as to determine
loop bounds for iterating over an iteration space described by a set of linear inequalities (using projection
as described in Section []). Their work has significant overlaps with ours.

When performing what is apparently an inexact projection, they first perform a more elaborate process
to check if the projection is indeed inexact. They consider a concept similar to our dark shadow, except
they use force the difference between the upper and lower bounds to be at least (a — 1)b, as opposed to
(a —1)(b—1). Since our definition is safe and makes the dark shadow larger, it is the preferred choice.

They do not actually generate the dark shadow as a separate problem. Rather, they check to see if the
constraints in the dark shadow are redundant with respect to the real shadow. If they are, then the dark
shadow and real shadow are identical, and the elimination is exact.

If the projection is not exact, then they add pseudo-linear constraints to the real shadow to obtain the
integer shadow. These pseudo-linear constraints appear useful and appropriate for determining loop bounds.
However, they are difficult to use for determining the existence of integer solutions.

Ancourt and Irigoin [AT91] do not give any performance data for their algorithm.

A recent report [LIT91] on the PIPS project mentions that Fourier-Motzkin variable elimination is used
to analyze dependences (based on the work described in [AI91]). The methods used are not fully described,
but the basic framework appears similar to that described in Section [l It is not clear how the pseudo-
linear constraints of [AI91] are handled. They point out that in many simple cases, Fourier-Motzkin variable
elimination is fast and efficient. They state that using integer programming techniques for dependence
analysis incurs a very high cost (that is acceptable since PIPS is not a production system). They also state
that in their implementation dependence testing does not take a noticeable amount of time compared with
the whole parallelization process.

9 Source code availability
A C language implementation of the Omega test is freely available for anonymous ftp from ftp.cs.und.edu

in directory pub/omega. Files available include a stand-alone version of the Omega test and a version of
Wolfe’s tiny tool [Wol91] extended to use the Omega test.

17

10 Conclusions

Conservative dependence analysis methods may be efficacious for the demands of vectorizing compilers.
Transforming programs so as to make efficient use of massively parallel SIMD computers is a much more
demanding task. Also, programs that have undergone transformations such as loop skewing and loop in-
terchange present analysis problems substantially more difficult than encountered in typical dusty-deck
FORTRAN.

Our studies have convinced us that the Omega test is a fast and practical method for performing data
dependence analysis that is not only adequate for problems encountered in vectorizing FORTRAN code, but
also for the demands of more sophisticated program transformation tools.

Performing projection of integer programming problems is an exciting concept. We have discussed how
it can be used to determine efficiently information about dependence direction and distance vectors, as well
for several other uses. It can make it much easier to describe and build program analysis and transformation
tools. For example, it can be used for determining loop bounds after loop interchange [AT91], and we have
made extensive use of it in work that considers loop transformations in a uniform manner [Pug91].

11 Acknowledgments

Thanks to everyone who gave me feedback on this work, especially Michael Wolfe and the anonymous referee
who provided detailed comments, as well as to my research group (Dave Wonnacott, Udayan Borkar and
Wayne Kelly). This work is supported by NSF grants CCR-8908900 and CCR-9157384 and a Packard
Fellowship.

12 Awuthor’s Biography

Dr. William Pugh received his Ph.D. from Cornell in 1988. He has done research in the areas of incremental
computation, randomized data structures, implementation of multiple inheritance, programming languages
for hard real-time systems, and compilers for supercomputers. In 1991, he received a Presidential Young
Investigator Award and a Packard Fellowship. Dr. Pugh is currently an assistant professor at the University
of Maryland, College Park, in the Department of Computer Science and Institute for Advanced Computer
Studies.

13 CR Categories

D.3.4 Optimizing Compilers

References

[AI9]] Corinne Ancourt and Frangois Irigoin. Scanning polyhedra with DO loops. In Proceedings of the 3rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 39-50, April 1991.

[AK87] J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM Transactions
on Programming Languages and Systems, 9(4):491-542, October 1987.

[AlI83] J. R. Allen. Dependence Analysis for Subscripted Variables and Its Application to Program Transformations.
PhD thesis, Rice University, April 1983.

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Boston, MA, 1988.

[BC86] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In Proceedings of the
SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, CA, July 1986.

[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in parallelism
enhancing transformations. In ACM SIGPLAN ’89 Conference on Programming Language Design and
Implementation, June 1989.

18

[DE73)]
[GKT91]
[HK90]

[HP90]

[1JT91]

[KK91]

[KMCT72]

[LC90]

[LT8S]

[LY90]
[LYZ89)
[MHL91]
[Mur71]
[Pugd1]
[Sho81]
[Tri85)
[Wal8s]
[Wol82]

[Wol89)]
[Wol91]

[WT92]

G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory
(A), 14:288-297, 1973.

G. Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing. In ACM SIGPLAN ’91
Conference on Programming Language Design and Implementation, 1991.

Paul Havlak and Ken Kennedy. Experience with interprocedural analysis of array side effects. In Super-
computing 90, 1990.

M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high performance parallelizing
compilers. In Proceedings of the Third Workshop on Languages and Compilers for Parallel Computing,
August 1990.

Francgois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedural parallelization: An overview

of the PIPS project. In Proceedings of the 1991 International Conference on Supercomputing, pages 244—
253, June 1991.

D. Klappholz and X. Kong. Extending the Banerjee-Wolfe test to handle execution conditions. Technical
Report 9101, Dept. of EE/CS, Stevens Institute of Technology, 1991.

D. Kuck, Y. Muraoka, and S. Chen. On the number of operations simultaneously executable in FORTRAN-
like programs and their resulting speedup. IEEE Transactions on Computers, C-21(12):1293-1310, De-
cember 1972.

L. Lu and M. Chen. Subdomain dependence test for massive parallelism. In Proceedings of Supercomputing
’90, New York, NY, November 1990.

A. Lichnewsky and F. Thomasset. Introducing symbolic problem solving techniques in the dependence
testing phases of a vectorizer. In Proceedings of the 2nd International Conference on Supercomputing, St.
Malo, France, July 1988.

Z. Li and P. Yew. Some results on exact data dependence analysis. In D. Gelernter, A. Nicolau, and
D. Padua, editors, Languages and Compilers for Parallel Computing. The MIT Press, 1990.

Z. Li, P. Yew, and C. Zhu. Data dependence analysis on multi-dimensional array references. In Proceedings
of the 1989 International Conference on Supercomputing, June 1989.

D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence analysis. In ACM
SIGPLAN °91 Conference on Programming Language Design and Implementation, pages 1-14, June 1991.

Y. Muraoka. Parallelism Ezxposure and Exploitation in Programs. PhD thesis, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, February 1971.

William Pugh. Uniform techniques for loop optimization. In Proceedings of the 1991 International Con-
ference on Supercomputing, pages 341-352, Cologne, Germany, June 1991.

R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769-779,
October 1981.

R. Triolet. Interprocedural analysis for program restructuring with Parafrase. CSRD Rpt. 538, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, December 1985.

D. Wallace. Dependence of multi-dimensional array references. In Proceedings of the 2nd International
Conference on Supercomputing, St. Malo, France, July 1988.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, October 1982.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. Pitman Publishing, London, 1989.

Michael Wolfe. The tiny loop restructuring research tool. In Proc of 1991 International Conference on
Parallel Processing, volume 2, pages 46-53, 1991.

M. J. Wolfe and C. Tseng. The Power test for data dependence. IEEE Transactions on Parallel and
Distributed Systems, 3(5):591-601, September 1992.

19

	Introduction
	The Omega test
	Normalizing (and tightening) constraints
	Equality constraints
	Inequality constraints
	Detecting real solutions using Fourier-Motzkin variable elimination
	Detecting integer solutions using Fourier-Motzkin variable elimination
	An Omega test nightmare

	Implementation Details

	Nonlinear subscripts
	Projection of Integer Programming Problems
	Changes to the Omega test
	Projection with wildcards

	Using projection
	Dependence direction and distance vectors
	Run-time checks and Compile-time assertions
	Summarizing Array References
	Determining Loop Bounds

	Performance
	Polynomial time bounds
	Special cases

	Related work on Exact Dependence Analysis
	Source code availability
	Conclusions
	Acknowledgements
	Author's Biography
	CR Categories

