
Optimal Control Dependence Computation
and the Roman Chariots Problem

KESHAV PINGALI

Cornell University

and

GIANFRANCO BILARDI

Università di Padova, Italy, and University of Illinois, Chicago

The control dependence relation plays a fundamental role in program restructuring and optimiza-
tion. The usual representation of this relation is the control dependence graph (CDG), but the
size of the CDG can grow quadratically with the input program, even for structured programs.
In this article, we introduce the augmented postdominator tree (APT), a data structure which
can be constructed in space and time proportional to the size of the program and which supports
enumeration of a number of useful control dependence sets in time proportional to their size.
Therefore, APT provides an optimal representation of control dependence. Specifically, the APT
data structure supports enumeration of the set cd(e), which is the set of statements control de-
pendent on control-flow edge e, of the set conds(w), which is the set of edges on which statement
w is dependent, and of the set cdequiv(w), which is the set of statements having the same control
dependences as w. Technically, APT can be viewed as a factored representation of the CDG
where queries are processed using an approach known as filtering search.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers
and optimization; I.1.2 [Algebraic Manipulation]: Algorithms—analysis of algorithms

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Compilers, control dependence, program optimization, pro-
gram transformation

1. INTRODUCTION

Control dependence is a key concept in program optimization and parallelization.
Intuitively, a statement w is control dependent on a statement u if u is a conditional
that affects the execution of w. For example in an if-then-else construct, statements

Keshav Pingali was supported by an NSF Presidential Young Investigator award CCR-8958543,
NSF grant CCR-9503199, and ONR grant N00014-93-1-0103. Gianfranco Bilardi was supported
in part by the ESPRIT III Basic Research Programme of the EC under contract No. 9072 (Project
GEPPCOM) and by the Italian Ministry of University and Research.
Authors’ addresses: K. Pingali, Department of Computer Science, Cornell University, Ithaca,
NY 14853; email: pingali@cs.cornell.edu; G. Bilardi, DEI, Università di Padova, Padova, Italy;
Department of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL
60607; email: bilardi@art.dei.unipd.it.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0500-0462 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997, Pages 462–491.

http://www.acm.org/pubs/citations/journals/toplas/1997-19-3/p462-pingali

Optimal Control Dependence Computation · 463

on the two sides of the conditional statement are control dependent on the predicate.
In the presence of nested control structures, multiway branches, and unstructured
flow of control, intuition is an unreliable guide, and one needs to rely on a formal,
graph-theoretic definition of control dependence, based on the following concepts.

Definition 1.1. A control flow graph G = (V,E) is a directed graph in which
nodes represent statements, and an edge u → v represents possible flow of control
from u to v. Set V contains two distinguished nodes: START, with no predecessors
and from which every node is reachable, and END, with no successors and reachable
from every node.

To simplify the discussion we will follow standard practice and assume that there
is an edge from START directly to END in the control flow graph [Ferrante et al. 1987].

Definition 1.2. A node w is said to postdominate a node v if every path from
v to END contains w.

Any node v is postdominated by END and by itself. It can be shown that postdom-
inance is a transitive relation and that its transitive reduction is a tree-structured
relation called the postdominator tree. The parent of a node in this tree is called the
immediate postdominator of that node. The postdominator tree of a program can
be constructed in O(|E|α(|E|)) time using an algorithm due to Lengauer and Tar-
jan [1979]; α(|E|) denotes the inverse Ackermann function which grows extremely
slowly with |E| so that the algorithm can be considered linear for all practical
purposes. This algorithm is relatively easy to code. A rather more complicated al-
gorithm due to Harel [1985] computes the postdominator tree optimally in O(|E|)
time. Control dependence can be defined formally as follows:

Definition 1.3. A node w is said to be control dependent on edge (u→ v) if

(1) w postdominates v and
(2) if w 6= u, then w does not postdominate u.

Intuitively, this means that if control flows from node u to node v along edge
u → v, it will eventually reach node w; however, control may reach END from
u without passing through w. Thus, u is a “decision-point” that influences the
execution of w.

Definition 1.4. Given a control flow graphG = (V,E), its control dependence
relation is the set C ⊆ E × V of all pairs (e, w) such that node w is control
dependent on edge e.

The notion of control dependence is due to Ferrante et al. [1987]. Cytron et al.
[1990] studied many of the properties of this relation. These authors define control
dependence as a relation between nodes (in the context of Definition 1.3, they view
w as being control dependent on node u rather than on the edge (u → v)). The
definition given in this article is easier to work with, but the difference is merely
one of presentation, not substance.

Control dependence is used in many phases of modern compilers, such as dataflow
analysis, loop transformations, and code scheduling. An abstract view of these
applications is that they require the computation of the following sets derived from
C [Cytron et al. 1990]:

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

464 · Keshav Pingali and Gianfranco Bilardi

aE
V

b c g

dec

ba

f

g
START

END

a

b

c

e

f

d

g

START

END

d e f

f b
c d
c e

aSTART

(a) Control Flow Graph

a b

(b) Postdominator Tree

(c) Control Dependence Relation

Fig. 1. A program and its control dependence relation.

Definition 1.5. Given a node w and an edge e in a control program graph with
control dependence relation C, we define the following control dependence sets:

—cd(e) = {w ∈ V |(e, w) ∈ C},
—conds(w) = {e ∈ E|(e, w) ∈ C}, and
—cdequiv(w) = {v ∈ V |conds(v) = conds(w)}.

Set cd(e) is the set of nodes that are control dependent on edge e, while conds(w)
is the set of control dependences of node w. These sets are used in schedul-
ing instructions across basic-block boundaries for speculative or predicated exe-
cution [Bernstein and Rodeh 1991; Fisher 1981; Newburn et al. 1994] and are used
in merging program versions [Horowitz et al. 1987]. They are also useful in au-
tomatic parallelization [Allen et al. 1988; Ferrante et al. 1987; Simons et al. 1990].
Set cdequiv(w) contains the nodes that have the same control dependences as node
w. This information is useful in code scheduling because basic blocks with the same
control dependences can be treated as one large basic block, as is done in region
scheduling [Gupta and Soffa 1987]. The relation cdequiv can also be used to de-
compose the control flow graph of a program into single-entry single-exit (SESE)
regions, and this decomposition can be exploited to speed up dataflow analysis
by combining structural and fixpoint induction [Johnson 1994; Johnson et al. 1994]
and to perform dataflow analysis in parallel [Gupta et al. 1990; Johnson et al. 1994].

Figure 1 shows a small program and its control dependence relation. For any
edge e, cd(e) is the set of marked nodes in the row corresponding to e. For any
node w, conds(w) is the set of marked edges in the column corresponding to w.
Finally, we see that cdequiv(c) = cdequiv(f) = {c, f} and that cdequiv(a) =
cdequiv(g) = {a, g}; all the other nodes are in cdequiv sets by themselves.

In this article, we design a data structure to represent the control dependence
relation. Such a data structure must be evaluated along three dimensions:

—preprocessing time T: the time required to build the data structure,
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 465

START

a

b

c

d

e

f

END

a b c d e fE
V

c
b
a

START a

d
e
f

Fig. 2. A program with three nested repeat-until loops.

—space S: the overall size of the data structure, and

—query time Q: the time required to answer cd, conds, and cdequiv queries.

The size of the control dependence relation gives an upper bound on the space
requirements of such a data structure. It is easy to show that the size of the relation
can be Ω(|V ||E|), even if we restrict our attention to structured programs. Figure 2
shows a program with three nested repeat-until loops and its control dependence
relation. It can be verified that for programs consisting of n nested repeat-until
loops, |E| = 3n+2 and |C| = n(n+3); therefore, the size of the control dependence
relation can grow quadratically with program size even for structured programs.

It would be incorrect to conclude that quadratic space is a lower bound on the
size of any representation of the control dependence relation. Note that the size
of the postdominator relation grows quadratically with program size (consider a
chain of n nodes), but this relation can be represented using the postdominator
tree, which can be built in O(|E|) space [Harel 1985; Lengauer and Tarjan 1979]
and which provides constant time access to the immediate postdominator of a
node, as well as proportional time access to all the postdominators of a node. The
explanation of the paradox is that (1) postdominance is a transitive relation and
(2) the postdominator tree, which is the transitive reduction of this relation, is a
“factored,” compact representation of postdominance. There is no point in building
a representation of the full relation because the factored relation is more compact,
and it answers postdominance queries optimally.

Is there a factored representation of the control dependence relation which can
be built in O(|E|) space and O(|E|) preprocessing time, and which will answer cd,
conds, and cdequiv queries in time proportional to the size of the output?

The standard representation of the control dependence relation is the control de-
pendence graph (CDG) [Ferrante et al. 1987], which is the bipartite graph (V,E;C).
That is, the two sets of nodes in the bipartite graph are V and E, and there is an
edge between v and e if v is control dependent on edge e. Since the size of the
CDG is Ω(|C|) (which can be Ω(|E||V |)), many attempts have been made to con-
struct more compact representations of the control dependence relation [[Ball 1993];
Cytron et al. 1990; Ferrante et al. 1987; Johnson and Pingali 1993; Sreedhar et al.
1994]. The lack of success led Cytron et al. to conjecture that any data structure

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

466 · Keshav Pingali and Gianfranco Bilardi

that provided proportional time access to control dependence sets must use space
that grows quadratically with program size.

In this article, we describe a data structure called the Augmented Postdominator
Tree (APT) which requires O(|E|) space, is built in O(|E|) time,1 and provides
proportional time access to cd, conds, and cdequiv sets. This is clearly optimal
to within a constant factor. In fact, our approach incorporates a design parameter
α(> 0) (under the control of the compiler writer) representing a trade-off between
time and space. A smaller value of α results in faster query time at the expense
of more memory for a larger data structure, corresponding to a “more explicit”
representation of the control dependence relation. Interestingly, the full control
dependence graph can be viewed as one extreme of this range of data structures,
obtained when α ≤ 1/|E|.

The rest of the article is organized as follows. In Section 2, we reformulate the
conds problem as a naturally stated graph problem called the Roman Chariots
problem. The APT data structure is described incrementally by considering the
requirements of the three kinds of control dependence queries. In Sections 3, 4, and
5, we examine cd, conds, and cdequiv queries respectively and develop the machin-
ery to answer these queries optimally. Experimental results using the SPEC bench-
marks are reported in Section 6. Finally, in Section 7, we contrast our approach
with dynamic techniques like memoization [Michie 1968]; we also show that our ap-
proach can be viewed as an example of Chazelle’s filtering search [Chazelle 1986].

2. THE ROMAN CHARIOTS PROBLEM

We show that the computation of control dependence sets (Definition 1.5) has
a natural graph-theoretic formulation which we call the Roman Chariots prob-
lem. This formulation exploits the fact that nodes that are control dependent
on an edge e in the control flow graph form a simple path in the postdominator
tree [Ferrante et al. 1987]. First, we introduce some convenient notation.

Definition 2.1. Let T =< V,F > be a tree. For v, w ∈ V , let [v, w] denote
the set of vertices on the simple path joining v and w in T , and let [v, w) denote
[v, w]− {w}. (In particular, [v, v) is empty.)

For example, in the postdominator tree of Figure 1(b), [d, a] = {d, f, c, a}, while
[d, a) = {d, f, c}. This notation is similar to the standard one for open and closed
intervals of the line. The following key theorem, due to Ferrante et al. [1987],
shows how edges of the control flow graph are constrained with respect to the
postdominator tree and provides a simple characterization of cd sets.

Theorem 2.2. If (u→ v) is an edge of the control flow graph, then

(1) parent(u) is an ancestor of v in the postdominator tree and
(2) cd(u→ v) = [v, parent(u)).

Proof. Note that since no control flow edge emanates from END, the expression
parent(u) is defined whenever (u→ v) ∈ E.

1We assume that the postdominator relation is computed using Harel’s algorithm; if the Lengauer
and Tarjan algorithm is used, preprocessing time becomes O(|E|α(|E|)).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 467

aE
V

b c gd e f

f b
c d
c e

aSTART

a b

(a) Control dependence relation

a b

dec

ba

f

g
START

END

f b
c d
c e

aSTART

setsE cd

)[,a
b,g

END

d,f
[
[
[
[

)
)
)
)

e,f
b,c

(b) Postdominator tree and cd sets

Fig. 3. Compact representation of control dependence.

(1) If parent(u) does not postdominate v, we can find a path v → ...→ END which
does not contain parent(u). Prefixing this path with the edge u→ v, we obtain
a path from u to END which does not contain parent(u), contradicting the fact
that parent(u) postdominates u.

(2) We show that cd(u→ v) ⊆ [v, parent(u)). Let w be an element of cd(u→ v).
From the definition of control dependence, w must postdominate v, so w is on
the path [v, END] in the postdominator tree. From part (1), parent(u) is also on
the path [v, END]. However, w cannot be on the path [parent(u), END], since in
that case it would be distinct from u and postdominate u. Therefore, w must
be on the path [v, parent(u)). Conversely, assume that w is contained in the
path [v, parent(u)). From part (1) it follows that w postdominates v; it also
follows that w does not postdominate parent(u). Therefore, if w 6= u, then
w cannot postdominate u either. Therefore w is control dependent on edge
u→ v.

This gives a concise characterization of cd sets.

Figure 3 shows the nonempty cd sets for the program of Figure 1(a). If [v, w)
is a cd set, we will refer to v and w as the bottom and top nodes of this set
respectively, where the orientations of bottom and top are with respect to the
tree.2 The postdominator tree and the array of cd sets, together, can be viewed as

2As an aside, we remark that the bottom-closed, top-open representation for the sets has been

chosen here, since it is the most immediate to obtain in our application. In general, a closed set[b, t],
in which t is an ancestor of b, is readily converted into the equivalent half-open one [b, parent(t)),
in constant time. The conversion of set [b, t) into a closed one is less straightforward and takes
time proportional to the number of children of t, assuming that ancestorship can be decided in

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

468 · Keshav Pingali and Gianfranco Bilardi

a compact representation of the control dependence relation, since we can recover
the full control dependence relation by expanding each entry of the form [v, w) to
the corresponding set of nodes by walking up the postdominator tree from v to w.
The advantage of using the postdominator tree and cd sets, instead of the CDG, is
that they can be represented in O(|E|) space, and as we will see, they can be built
in O(|E|) time. What is not obvious is how they can be used to answer control
dependence queries in proportional time — that is the subject of the rest of the
article.

For the purpose of exposition, it is convenient to assume that the array of cd
sets, which is indexed by CFG edges in Figure 3, is indexed instead by the integers
1..m, where m is the number of CFG edges for which the corresponding cd sets
are nonempty. We will assume that the conversion from an integer (between 1 and
m) to the corresponding CFG edge and vice versa can be done in constant time.
We can now reduce the control dependence problem to a naturally stated graph
problem.

Roman Chariots Problem. The major arteries of the Roman road system form
a tree rooted at Rome.3 Nodes represent cities, and edges represent roads. Public
transportation is provided by chariots that travel between a city and one of its
ancestors in the tree.

Given a rooted tree T =< V,F,ROME > and an array A[1..m] of chariot routes
each specified in the form [v, p), where p is an ancestor of v in T , design a data
structure that permits enumeration of the following sets:

(1) cd(ρ): the cities on route ρ.
(2) conds(w): the routes that serve city w.
(3) cdequiv(w): the cities that are served by all and only the routes that serve

city w.

For future reference, we introduce the following definition:

Definition 2.3. The set of chariots serving a node v is a subset of A, the set of
all chariots, and will be referred to as set Av.

The control dependence problem is reduced to the Roman Chariots problem as
follows. Procedure ConstructRomanChariots in Figure 4 takes a control flow
graph as input and returns the corresponding Roman Chariots problem. Assuming
the postdominator tree can be built in time O(|E|), Procedure ConstructRo-
manChariots takes time O(|E|) and space O(|E|). Control dependence queries
are handled as follows:

—cd(u→ v): If v is parent(u), return the empty set. Otherwise, let i be the index
into array A for edge u→ v. Execute the Roman Chariots query cd(i).

constant time. However, if the conversion has to be performed for a batch of half-open sets A, it
can be accomplished in time O(|V |+ |A|) by a depth-first traversal of the tree. This conversion is

not needed in this article.
3A thorough literature search failed to turn up any historical evidence to support this statement,
but it is a matter of record that all roads led to Rome (Cicero, 56 B.C., Pro L. Cornelio Balbo
Oratio 39), just as in a tree rooted at Rome.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 469

Procedure ConstructRomanChariots(G:CFG):Tree, RouteArray;
{
1: % G is the control flow graph
2: T := construct-postdominator-tree(G);
3: A := []; %Initialize to empty array
4: i := 0;
5: for each node p in T in top-down order do
6: for each child u of p do
7: for each edge (u → v) in G do
8: if v is not p
9: then %append a cd set to end of A
10: i := i + 1;
11: A[i] := [v, p);
12: Note the correspondence between
13: edge u→ v and index i;
14: endif
15: od
16: od
17: return T , A;
}

Fig. 4. Constructing a Roman Chariots problem.

—conds(w): Execute the Roman Chariots query conds(w), and translate each
integer (between 1 and m) returned by this query to the corresponding CFG
edge.

—cdequiv(w): Execute the corresponding Roman Chariots query cdequiv(w).

The correctness of this reduction follows immediately from Theorem 2.2 and
Procedure ConstructRomanChariots. In the construction of Figure 4, the cd
sets in A are sorted by decreasing top nodes; that is, if t1 is a proper ancestor of
t2 in the postdominator tree, then any cd set whose top node is t1 is inserted in
the array before any cd set whose top node is t2. We will exploit this order when
we consider conds queries in Section 4. Note that for a general Roman Chariots
problem (not arising from a control dependence problem), this sorting can be done
by a variation of Procedure ConstructRomanChariots, in time O(|A| + |V |).
This is within the budget for preprocessing time given below. Therefore, we will
assume without loss of generality that A has been sorted in this way.

In subsequent sections, we develop a data structure for the Roman Chariot prob-
lem, obtained by a suitable augmentation of the given tree T . Motivated by the
application to control dependence, we call this data structure an Augmented Post-
dominator Tree (APT). The rest of the article establishes the following result.

Theorem 2.4. There is a data structure APT for the Roman Chariots problem
(T =< V,F,ROME >,A) that can be constructed in time τ = O(|A|+(1+1/α)|V |)
and stored in space S = O(|A|+ (1 + 1/α)|V |), where α > 0 is a design parameter.
By traversing APT , the queries can be answered with the following performance:

—cd(e): time O(|cd(e)|), independent of α.

—conds(w): time O((1 + α)|conds(w)|).
—cdequiv(w): time O(|cdequiv(w)|), independent of α.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

470 · Keshav Pingali and Gianfranco Bilardi

For the special case when T is the postdominator tree of a control flow graph,
we have |A| ≤ |E| and |V | ≤ |E|+ 1, leading to the following result.

Corollary 2.5. Given a CFG G = (V,E), structure APT can be built in
O(|E|) preprocessing time and space and provides proportional time access to cd,
conds, and cdequiv sets.

3. APT : CD QUERIES

No preprocessing is required to answer cd queries optimally. If the query is cd(i),
where i is between 1 and m (the size of A), let [v, w) be the ith route in A. Walk
up the tree T from node v to node w, and output all nodes encountered in this
walk, other than node w. This takes time proportional to the size of the output.
This algorithm is similar to that of Ferrante et al. [1987].

4. APT : CONDS QUERIES

One way to answer conds queries is to examine all routes in array A and report
every route whose bottom node is a descendant of the query node and whose top
node is a proper ancestor of the query node. This algorithm is too slow.

A better approach is to limit the search to routes whose bottom nodes are de-
scendants of the query node, since these are the only routes that can contain the
query node. To facilitate this we will assume that at every node v we have recorded
all routes whose bottom node is v; then the query procedure must visit the subtree
of the postdominator tree rooted at the query node and examine routes recorded
at these nodes. This is shown in Figure 5(a). The space taken by the data struc-
ture is S = O(|V | + |A|), which is optimal. However, in the worst case, the query
procedure must examine all nodes and all routes (consider the query conds(END)),
so query time is Q = O(|A| + |V |), which is too slow. To speed up query time, we
extend this idea as follows. Rather than store a route only at its bottom node, we
can store the route at every node contained in the route, as in Figure 5(b). We call
this approach full caching, to contrast it to the previous scheme which we call no
caching. Given a query at node q, the query procedure simply outputs all routes
stored at that node; if |Aq| is the size of this output, this takes time Q = O(|Aq |),
which is optimal. Unfortunately, this strategy produces the control dependence
graph in disguise and therefore blows up space requirements. For example, for the
Roman Chariots problem arising from a nested repeat-until loop, the reader can
verify that Ω(|A|) routes each contain Ω(|V |) nodes and hence are represented in
as many lists, requiring space S = Ω(|V ||A|) overall, which is far from optimal.

It is possible to compromise between these two extremes. Suppose we partition
the nodes in V into two disjoint sets called boundary nodes and interior nodes.
Although this partition can be made arbitrarily, it is simpler to make all leaf nodes
boundary nodes; for now, nonleaf nodes can be classified arbitrarily as boundary
or interior nodes. With each node v ∈ V , we associate a list of routes L[v] defined
formally as follows.

Definition 4.1. If v is an interior node, L[v] is the list of all routes whose bottom
node is v; if v is a boundary node, L[v] is the list of all routes containing v.

In Figure 5, boundary nodes are shown as solid dots, while interior nodes are
shown as hollow dots. Figure 5(a) shows one extreme in which all nonleaf nodes
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 471

)[,a
b,g

END

d,f
[
[
[
[

)
)
)
)

e,f
b,c

Chariot
Routes

4

5

1

2

3
dec

ba

f

g

END

START

{3}{4}

{2,5}{1}

dec

ba

f

g

END

START

dec

ba

f

g

END

START

{4} {3}

{1,2}

{}

{4} {3}
{1,2}

{1,2}

{1}

{1} {2,5}

{}

{}

{}

{1} {2,5}

(a) No caching

(b) Full caching (c) Some caching: α = 1

Fig. 5. Zone structure.

are interior nodes, while Figure 5(b) shows the other extreme in which all nodes are
boundary nodes. In Figure 5(c), nodes c and g are interior nodes, while all other
nodes are boundary nodes.

Our conds query procedure visits nodes in the subtree below the query node as
before, but it exploits boundary nodes to limit the portion of this subtree that it
visits. Suppose that the query node is q and that the query procedure encounters
a boundary node x. It is easy to show that the query procedure does not need
to visit nodes that are proper descendants of x — any route ρ which contains q
and whose bottom node is a proper descendant of x must also contain x; from
Definition 4.1, ρ must be stored at x. Therefore, to answer the query conds(q),
it is unnecessary to examine the subtree below x, since all the relevant chariot
routes from this subtree are stored at x itself. For example, in Figure 5(c), when
answering the query conds(g), it is unnecessary to look below boundary node f ,
and the query can be answered just by visiting nodes f and g. One way to visualize
this is to imagine that the edges connecting a boundary node to its children are
deleted from the tree (these edges are never traversed by the query procedure).
This leaves a forest of small trees, and the query procedure needs to visit only the
descendants of a query node in this forest. We will call each tree in this forest a
zone; the portion of the forest below a node q will be called the subzone associated
with node q. These concepts are defined formally as follows.

Definition 4.2. A node w is said to be in the subzone associated with a node
q, referred to as Zq, if (1) w is a descendant of q and (2) the path [q,w) does not

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

472 · Keshav Pingali and Gianfranco Bilardi

Procedure CondsQuery(QueryNode);
{
1: % APT data structure is global variable;
2: % Query outputs list of routes numbers
3: CondsVisit(QueryNode, QueryNode);
}
Procedure CondsVisit(QueryNode, V isitNode);
{
1: for each route i in L[V isitNode]
2: in list order do
3: let A(i) be [b, t);
4: if t is a proper ancestor of QueryNode
5: then output i;
6: else break ; % exit from the loop
7: od ;
8: if V isitNode is not a boundary node
9: then
10: for each child C of V isitNode
11: do
12: CondsVisit(QueryNode,C)
13: od ;
14: endif ;
15:
}

Fig. 6. Query procedure for conds.

contain any boundary nodes.
A zone is a maximal subzone, that is, a subzone that is not strictly contained in

any other subzone.

In Figure 5(c), there are six zones induced by the following sets of nodes: {a, b, c},
{d}, {e}, {f, g}, {START}, and {END}. The subzone associated with node g is the set
of nodes {f, g}. Note that even though Chariot Route 1 contains nodes {a, c, f, g},
it is stored only at nodes a and f , since these are the only boundary nodes it
contains.

Given a query node q, the query procedure examines routes stored at nodes in
subzone Zq. To avoid examining routes unnecessarily, we will assume that each list
L[v] is sorted by top endpoint, from higher (closer to the root) to lower. Exami-
nation of routes in a list L[v] can terminate as soon as a route [b, t) not containing
q is encountered; further routes on the list terminate at a descendant of t and do
not contain the query node q. A simple implementation of this query procedure
is given in Figure 6. Boundary nodes are distinguished from interior nodes by a
boolean named Bndry? which is set to true for boundary nodes and to false for
interior nodes; an algorithm for determining which nodes are boundary nodes will
be described in Section 4.1. In line 4 of Procedure CondsVisit, testing whether t
is a proper ancestor of QueryNode can be done in constant time as follows: since t
and QueryNode are ordered by the ancestor relation, we can give each node a dfs
(depth-first search) number and then establish ancestorship by comparing dfs num-
bers. Since dfs numbers are already assigned by postdominator tree construction
algorithms [Harel 1985; Lengauer and Tarjan 1979], this is convenient. Alterna-
tively, we can use level numbers in the tree.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 473

It follows immediately that the query time is proportional to the sum of the
number of visited nodes and the number of reported routes:

Qq = O(|Aq |+ |Zq|). (1)

Next, we discuss how zones can be constructed to obtain optimal query time
without blowing up space requirements.

4.1 Criterion for Zones

To obtain optimal query time, we require that the following inequality hold for all
nodes q; α, a positive real number, is a design parameter:

|Zq| ≤ α|Aq|+ 1 . (2)

Intuitively, the number of nodes visited when q is queried is at most one more than
some constant proportion of the answer size. The additive term of 1 prevents zone
Zq from becoming empty when q is not contained in any route (|Aq| = 0). By
combining Eqs. (1) and (2), we see that

Qq = O((1 + α)|Aq |). (3)

Thus, the amount of work done for a query is basically proportional to the output
size; for α a constant, this is asymptotically optimal.

To get some intuition for the significance of α, consider what happens if we fix
the problem and vary α. If α is set to a small number close to 0 (strictly speaking,
a number less than 1/|A| where |A| is the number of chariot routes), the size of the
subzone associated with each node is 1. This means that each node is in a zone
by itself, which corresponds to full caching. At the other extreme, if we choose a
very large value of α, nodes can be contained in arbitrarily large zones, and the
situation corresponds to no caching. Thus, by varying α, we get the full range of
behavior from full caching to no caching.

Can we build zones so that Inequality (2) is satisfied, without blowing up storage
requirements? One bit is required at each node to distinguish boundary nodes from
interior nodes, which takes O(|V |) space. The main storage overhead arises from
the need to list all overlapping routes at a boundary node, even if these routes
originate at some other node. This means that a route must be entered into the
L[v] list of its bottom node and of every boundary node between its bottom node
and top node.

Our zone construction algorithm is a simple bottom-up, greedy algorithm that
tries to make zones as large as possible without violating Inequality (2). More
precisely, a leaf node is always a boundary node. For a nonleaf node v, we see if
v and all its children can be placed in the same zone without violating Inequal-
ity (2); if not, v is made a boundary node, and otherwise v is made an interior
node.4 Formalizing this intuitive description, we obtain a definition for subzone
construction.

4A variation of this scheme is to allow a node to be in the same zone as some but not all of its
children. We do not need this complication, but it may be possible to exploit this idea to reduce
storage requirements further.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

474 · Keshav Pingali and Gianfranco Bilardi

Definition 4.1.1. If node v is a leaf node or (1 +
∑
u∈children(v) |Zu|) > (α|Av|+

1), then v is a boundary node, and Zv is {v}. Else, v is an interior node, and Zv
is {v} ∪u∈children(v) Zu.

Note that the term (1 +
∑
u∈children(v) |Zu|) is simply the number of nodes that

would be visited by a query at node v if v were made an interior node. If this
quantity is larger than (α|Av| + 1), Inequality (2) fails, so we make v a boundary
node. Zones are simply maximal subzones.

The definition of zones lets us bound storage requirements as follows. Denote by
X the set of boundary nodes that are not leaves. If v ∈ (V −X), then only routes
whose bottom node is v are listed in L[v]. Each route in A appears in the list of
its bottom node and, possibly, in the list of some other node in X . For a boundary
node v, |L[v]| = |Av|. Hence, we have∑

v∈V
|L[v]| =

∑
v∈(V−X)

|L[v]|+
∑
v∈X
|L[v]| ≤ |A|+

∑
v∈X
|Av|. (4)

From Definition 4.1.1, if v ∈ X , then

|Av| <
∑

u∈children(v)

|Zu|/α. (5)

When we sum over v ∈ X both sides of Inequality (5), we see that the right-
hand side evaluates at most to |V |/α, since all Zu subzones involved in the resulting
double summation are disjoint. Hence,

∑
v∈X |Av| ≤ |V |/α, which, used in Relation

(4), yields ∑
v∈V
|L[v]| ≤ |A|+ |V |/α. (6)

In conclusion, to store APT , we need O(|V |) space for the postdominator tree,
O(|V |) further space for the Bndry? bit and for list headers, and finally, from
Inequality (6), O(|A| + |V |/α) for the list elements. All together we have S =
O(|A|+ (1 + 1/α)|V |), as stated in Theorem 2.4.

We observe that design parameter α embodies a tradeoff between query time
(increasing with α) and preprocessing space (decreasing with α). In fact, for α <
1/|A|, we obtain single-node zones (essentially, the control dependence graph, since
every node has its overlapping routes explicitly listed), and for α ≥ |V |, we obtain
a single zone (ignoring START and END and assuming |Av| > 0 for all other nodes,
which is the case for the control dependence problem). Small constant values such
as α = 1 yield a reasonable compromise. Figure 5(c) shows the zone structure of
the running example for α = 1.

4.2 Preprocessing for conds Computations

We now describe an algorithm to construct the search structure APT in linear
time. The preprocessing algorithm takes three inputs:

—Tree T for which we assume that the relative order of two nodes one of which
is an ancestor of the other can be determined in constant time. For the control
dependence problem, this is the postdominator tree.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 475

Procedure CondsPreprocessing(T:tree,A:RouteArray,α:real);
{
1: % b[v]/t[v]: number of routes with bottom/top node v
2: for each node v in T do
3: b[v] := t[v] := 0;
4: od
5: for each route [x, y) in A do
6: Increment b[x];
7: Increment t[y];
8: od
9: %Determine boundary nodes.
10: for each node v in T in bottom-up order do
11: %Compute output size when v is queried.
12: a[v] := b[v] - t[v] + Σu∈children(v)a[u];
13: z[v] := 1 + Σu∈children(v)z[u]; %Tentative zone size.
14: if (v is a leaf) or (z[v] > α ∗ a[v] + 1)
15: then % Begin a new zone
16: Bndry?[v] := true;
17: z[v] := 1;
18: else %Put v into same zone as its children
19: Bndry?[v] := false;
20: endif
21: od
22: % Chain each node to the first boundary node that is an ancestor.

23: for each node v in T in top-down order do

24: if v is root of postdominator tree
25: then NxtBndry[v] := - ∞;
26: else if Bndry?[parent(v)]
27: then NxtBndry[v] := parent(v);
28: else NxtBndry[v] := NxtBndry[parent(v)];
29: endif
30: endif
31: od
32: % Add each route in A to relevant L[v]
33: for i := 1 to |A| do
34: let A[i] be [b, t);
35: w := b;
36: while t is proper ancestor of w do
37: append i to end of list L[w];
38: w := NxtBndry[w];
39: od
40: od
}

Fig. 7. Constructing the APT structure.

—The array of routes, A, in which routes are sorted by top endpoint. For control
dependence problems, this array is built by Procedure ConstructRomanChar-
iots shown in Figure 4.

—Real parameter α > 0, which controls the space/query-time tradeoff, as described
in the previous section.

The preprocessing algorithm consists of a sequence of a few simple stages.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

476 · Keshav Pingali and Gianfranco Bilardi

(1) For each node v, compute the number of routes whose bottom node is v and the
number of routes whose top node is v. Let b[v] be the number of routes in A
whose bottom endpoint is v, and let t[v] be the number of routes whose top
endpoint is v. To compute b[v] and t[v], two counters are set up and initialized
to zero. Then for each route in A, the appropriate counters of its endpoints
are incremented. This stage takes time O(|V |+ |A|) for the initialization of the
2|V | counters and for constant work done for each of the |A| routes.

(2) Compute, for each node v, the size |Av| of the answer set Av. It is easy to see
that |Av| = b[v]− t[v] +

∑
u∈children(v) |Au|. This relation allows us to compute

the |Av| values in bottom-up order, using the values of b[v] and t[v] computed
in the previous step, in time O(|V |).

(3) Determine boundary nodes. The objective of this step is to set, at each node,
the value of a boolean variable Bndry?[v] that identifies boundary nodes. Def-
inition 4.1.1 can be expressed in terms of subzone size z[v] = |Zv| as fol-
lows. If v is a leaf or (1 +

∑
u∈children(v) z[u]) > (α|Av| + 1), then v is a

boundary node, and z[v] is set to 1. Otherwise, v is an interior node, and
z[v] = (1+

∑
u∈children(v) z[u]). Again, z[v] and Bndry?[v] are easily computed

in bottom-up order, taking time O(|V |).
(4) Determine, for each node v, the next boundary node NxtBndry[v] in the path

from v to the root. If the parent of v is a boundary node, then it is the next
boundary for v. Otherwise v has the same next boundary as its parent. Thus,
NxtBndry[v] is easily computed in top-down order, taking O(|V |) time. A
special provision is made for the root of T , whose next boundary is set by
convention to −∞, considered as a proper ancestor of any node in the tree.

(5) Construct list L[v] for each node v. By Definition 4.1, a given route [b, t)
appears in list L[v] for v ∈ W , where W contains b as well as all boundary
nodes contained by [b, t). Specifically let W = {w0 = b, w1, ..., wk}, where
wi = NxtBndry[wi−1] for i = 1, 2, ..., k and where wk is the proper descendant
of t such that t is a descendant of NxtBndry[wk]. L[v] lists are formed by
scanning the routes in A where routes have been entered in decreasing order of
top endpoint. Each route ρ is appended at the end of (the constructed portion
of) L[v] for each node v in the set W corresponding to ρ. This procedure
ensures that in each list L[v] routes appear in decreasing order of top endpoint.
This stage takes time proportional to the number of append operations, which
is
∑
v∈V |L[v]| = O(|A| + |V |/α).

In conclusion, we have shown that the preprocessing time is T = O(|A| + (1 +
1/α)|V |), as claimed.

Figure 7 shows the pseudocode for building the search structure. All the prepro-
cessing, including construction of the route array A, can be done in two top-down
and one bottom-up walks of the postdominator tree, followed by one traversal of
the route array. Figure 8 illustrates the APT data structure (with α = 1) for the
control flow graph of Figure 1.

5. APT : CDEQUIV QUERIES

The routes in a Roman Chariots problem induce a natural equivalence relation
on cities: two cities are placed in the same equivalence class if and only if they
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 477

dec

ba

f

g

END

START
{1,2}

{}

{4} {3}

{1} {2,5}

{})[,a
b,g

END

d,f
[
[
[
[

)
)
)
)

e,f
b,c

Chariot
Routes

4

5

1

2

3

(a) Caching: α = 1

Node v b[v] t[v] a[v] z[v] NxtBndry[v] Bndry?[v] L[v]

a 1 0 1 1 f 1 {1}
b 2 0 2 1 f 1 {2, 5}
c 0 1 2 3 f 0 {}
d 1 0 1 1 f 1 {3}
e 1 0 1 1 f 1 {4}
f 0 2 2 1 END 1 {1, 2}
g 0 1 1 2 END 0 {}
START 0 0 0 1 END 1 {}
END 0 1 0 1 −∞ 1 {}

(b) Values computed during preprocessing

Fig. 8. The APT structure and its parameters.

are served by the same set of routes. In this section, we describe a preprocessing
algorithm that produces a list representation of the equivalence classes where each
list cell points to the next cell as well as to the header of its list. A query cdequiv(w)
is answered by simply traversing the list containing w, starting from the header.
A query of the form “Are cities v and w in the same equivalence class?” can be
answered in constant time by checking whether w and v have the same header.

A straightforward computation and pairwise comparison of the |V | conds set
takes time O(|V |2|A|) [Ferrante et al. 1987]. Exploiting structure leads to faster
algorithms for some problems, but we are not aware of any structure in cdequiv
sets. In particular, nodes in a cdequiv equivalence class are not necessarily adjacent
either in the control flow graph or in the postdominator tree (consider nodes a and
g in Figure 1). This suggests that we cannot afford to compute and compare conds
sets explicitly if we want a fast algorithm. In Section 5.3, we obtain a O(|V |+ |A|)
time algorithm by showing that a conds set is uniquely identified by two functions:
|Av|, its size, and Lo(Av), a descendant of v as defined below; both these functions
are computable in linear time, as shown in Section 5.2. Thus, the two functions act
as fingerprints of their sets, and a cdequiv set simply collects nodes with the same
fingerprints.5

The fingerprints we use are easily understood if we restrict attention to the special

5An analogy from physics is the identification of elements from their spectra rather than directly
from their atomic structure.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

478 · Keshav Pingali and Gianfranco Bilardi

case when the tree is a chain. A single bottom-up walk is sufficient to compute the
size of the conds set of each node in the chain. Treating this integer as a fingerprint,
we can form equivalence classes by placing all nodes with conds sets of the same size
into one class. This gives a coarser equivalence relation than the cdequiv relation
because the conds sets of nodes p and q are not necessarily equal just because
these sets are of the same size. Therefore, we need another fingerprint. Let p be
an ancestor of q, and suppose that Ap 6= Aq. If |Ap| = |Aq|, there must be some
route ρ = [b, t) ∈ Ap which is not contained in Aq. Therefore, b must be a proper
ancestor of q. This suggests the second fingerprint. For each node v, compute the
node Lo(Av) which is defined to be the lowest node contained in all the routes in
Av, and place nodes in the same equivalence class only if this fingerprint is the same
for both nodes. In our example, Lo(Ap) will be an ancestor of b, while Lo(Aq) will
be a proper descendant of b, so p and q will have different fingerprints.

It is easily seen that the two fingerprints set size and Lo together determine the
cdequiv equivalence relation completely. The rest of the section shows how to
compute these fingerprints quickly in general trees.

5.1 Fingerprints of cdequiv Sets

For notational convenience, we augment the tree with a distinguished node, denoted
by ∞, which is considered to be a descendant of all other nodes, and by a node,
denoted by −∞, which is considered to be an ancestor of all other nodes.

Definition 5.1.1. If R is a set of chariot routes, Lo(R) is defined to be the least
common ancestor (lca) of the bottom nodes of routes in R. By convention, Lo(R)
is ∞ if R is empty.

This definition is more general than we need because the sets of routes we deal
with always have at least one node in common. For this special case, Lo can be
defined more intuitively as follows.

Lemma 5.1.2. Let R be a nonempty set of chariot routes, and let N be the set
of nodes that belong to every route in R. If N is nonempty, the nodes in N are
totally ordered by the ancestor relation, and Lo(R) is the lowest node in N .

Proof. Since the nodes in N are contained in every route r ∈ R, and the nodes
in r are totally ordered by the ancestor relation, it follows that the nodes in N are
ordered by this relation. Let l be the lowest node in N .

Since l is contained in each route r ∈ R, l is an ancestor of the bottom node of
r. By definition of Lo, this means that Lo(R) is a descendant of l.

For every route r = [b, t) ∈ R, b is a descendant of Lo(R) (definition of Lo), and
t is a proper ancestor of l (definition of l) and therefore of Lo(R) (since Lo(R) is
a descendant of l). Therefore, Lo(R) ∈ N , which means that l is a descendant of
Lo(R) (definition of l).

Therefore l and Lo(R) are identical.

For example, in Figure 5(b), Lo(Af) is c, and Lo(Ag) is a. Note that, for a given
node v, Lo(Av) is always a descendant of v, since v is contained in every route in
Av. We show next that |Av| and Lo(Av) uniquely identify Av.

Theorem 5.1.3. Let p and q be two nodes in the tree. Sets Ap and Aq are equal
if and only if both of the following are true: |Ap| = |Aq| and Lo(Ap) = Lo(Aq).
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 479

Proof.

(→). If Ap and Aq are equal, clearly so are their fingerprints.
(←). If Ap and Aq are different, then so are p and q. There are two cases to

consider.
(1) Nodes p and q are not related by the ancestor relation. Since Lo(Ap) and

Lo(Aq) are descendants of p and q respectively, it follows that Lo(Ap) 6=
Lo(Aq).

(2) Node q is a descendant of node p. Suppose that |Ap| = |Aq|. Then, there
must be some route ρ = [b, t) that contains p but not q. Lo(Ap) must be
an ancestor of b, and q must be a proper descendant of b. Since Lo(Aq)
is a descendant of b, it follows that Lo(Ap) 6= Lo(Aq). Therefore, either
|Ap| 6= |Aq| or Lo(Ap) 6= Lo(Aq).

In conclusion, whenever Ap and Aq are different, their fingerprints are different
in at least one component.

5.2 Computing Fingerprints Efficiently

Figure 7 shows how |Av| can be computed for each node v in a single bottom-up
walk of the tree in O(|A| + |V |) time. In this subsection we give an algorithm to
compute Lo(Av) for each node v.

Consider first the simpler problem of computing Lo(Aq) just for a given node
q. It is natural to look for a recursive definition of Lo(Aq) in terms of local values
computed at q and some values propagated up from its children. If v is a descendant
of q, let Aq↓v (read as “Aq restricted to v”) be the subset of routes in Aq whose
bottom nodes are descendants of v. For example, in Figure 9, Ae↓g is the set of
chariot routes {1}. Our algorithm will perform a bottom-up walk of the descendants
of q, propagating the value Lo(Aq↓v) up from each node v; notice that the value
computed when retreating out of q is Lo(Aq↓q), which is nothing but Lo(Aq). Before
describing this algorithm, we introduce some ancillary values defined at each node,
which can be computed during the bottom-up pass. In the formulae below, min
denotes the least common ancestor of a set of nodes totally ordered by the ancestor
relation, taken to be ∞ for the empty set.

Definition 5.2.1. The following quantities are defined for each node v.

—hv = min{t | [v, t) ∈ A},
—Hv = min{t | [b, t) ∈ Av},
—(v1, v2, ...): the children of v ordered so that Hvi is an ancestor of Hvi+1 , and
—tv = min{hv, Hv2 , v}.

Informally, hv is the highest top node of any chariot route in the set of chariot
routes whose bottom node is v; for example in Figure 9 he is c. Hv is the highest
top node of any chariot route in the set of chariot routes containing v; in Figure 9
He is a. For node e, v2 is f , and Hv2 is b.

To understand the significance of tv, note that a node on the tree path [v, tv)
cannot be in the same cdequiv class as nodes that are strictly below v, for two
reasons: because it is either contained in a chariot route whose bottom node is v
(this is the case if tv = hv), or it is contained in two routes that come together at v

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

480 · Keshav Pingali and Gianfranco Bilardi

a

ig

)

[

)

[f h

1

3

b

[

d

)c

e

2

Fig. 9. Computing Lo efficiently.

(this is the case if tv = Hv2). For example, the value of te is b because all nodes on
the tree path [e, b) are contained in both Route 1 and Route 3 which come together
at e, so these nodes cannot be the same cdequiv class as a node that is a strict
descendant of e.

It is straightforward to compute the ancillary values in a bottom-up walk. We
observe first that hv is easily computed for all nodes in linear time by first initializing
each hv to ∞ and then scanning every chariot route [b, t), updating the value of hb
with min{hb, t}.

Lemma 5.2.2. If v is a leaf, we have Hv = hv; tv = hv. If v is not a leaf node,
we have the following:

—H1 = Hv1 and H2 = Hv2 are the min and second min in the sequence of (possibly
repeated) values (Hv1 , Hv2 , ...), where v1, v2, ... are the children of v;

—Hv = min(H1, hv); and

—tv = min(H2, hv, v).

Given these ancillary values, the following recursive formula computes the value
of Lo(Aq↓v) for all nodes v that are descendants of a query node q. By convention,
for a leaf node q, Lo(Aq↓v1) is always ∞.

Lemma 5.2.3. For a fixed q, the following formula computes Lo(Aq↓v) for each
descendant v of q:

if q ∈ [v, tv)
then Lo(Aq↓v) = v;
else Lo(Aq↓v) = Lo(Aq↓v1).

Proof. Suppose q ∈ [v, tv). There are two cases.

(1) tv = hv. Then, by definition of hv, [v, tv) is a chariot route. Since q ∈ [v, tv),
[v, tv) ∈ Aq↓v, so Lo(Aq↓v) = v.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 481

(2) tv = Hv2 . Then, by definition of Hv, there are chariot routes [u1, Hv1) and
[u2, Hv2) where v1 and v2 are children of v and where u1 and u2 are descendants
of v1 and v2, respectively. These two routes both contain q and first meet at v.
Therefore Lo(Aq↓v) = v.

Suppose q is not contained in [v, tv). This means that every route in Aq↓v, if any,
originates in the subtree rooted at v1, which means that Aq↓v ⊆ Aq↓v1. Moreover,
since all routes in Aq↓v1 contain q, they must contain v. Therefore, Aq↓v = Aq↓v1,
which implies that Lo(Aq↓v) = Lo(Aq↓v1).

The value of Lo(Aq↓q) is the desired value Lo(Aq). Therefore, a walk over the
array of chariot routes (to compute hv) and then a single bottom-up walk of the
descendants of q suffice to compute the value of Lo(Aq).

We now extend this scheme to compute Lo(Aq) for all nodes q. For a given q,
we propagated the single value Lo(Aq↓v) up from each node v that is a descendant
of q. To extend this scheme, we propagate a sequence of values out of each node
v, where the sequence encodes the values of Lo(Aq↓v) for every node q that is an
ancestor of v. For example, in Figure 9, the ancestors of e in bottom-up order are <
e, d, c, b, a >, and the corresponding sequence of Lo(Aq↓e) values is < e, e, e, i,∞ >.
Since it is too expensive to have duplicate values in the sequence, we propagate
instead a sequence of pairs of the form [x, y), where x is a Lo value, and y is the
ancestor of v where this value is no longer relevant. In our example, out of node
e we propagate the sequence of pairs Se =< [e, b), [i, a), [∞,−∞) >. Read from
left to right, this states that the Lo(Aq↓e) value is e for any ancestor q of e up to
(but not including) node b, is i from there to node a, and is ∞ after that. With
this interpretation, it is clear that for any node q the value of Lo(Aq) is the first
element of the first pair in the sequence Sq.

If v is a node, the sequence Sv can be expressed in terms of the sequence Sv1

where v1 is the child of v described in Definition 5.2.1. By convention, Sv1 for a
leaf node v is < [∞,−∞) >.

Lemma 5.2.4. For any node v, the sequence Sv can be computed from Sv1 as
follows:

(1) From Sv1 , delete every entry of the form [x, y) where y is a descendant of tv.
(2) If [v, tv) is not empty, make [v, tv) the first element of the remaining sequence.

The resulting sequence is Sv.

Proof. The proof of correctness follows immediately from Lemma 5.2.3, since
Lo(Aq)↓v 6= Lo(Aq)↓v1 iff q ∈ [v, tv).

For any node q, the value of Lo(Aq) is the first element of the first pair in the
sequence Sq. Therefore, a single bottom-up pass is adequate to compute Lo(Aq)
for all nodes q. A key observation for efficiency is that, by definition, the sequence
of second elements of pairs in any Sq are totally ordered by ancestorship. For
example, in Se, the sequence of second elements is < b, a,−∞ >. This means that
the deletion of entries of the form [x, y) in Step (1) of Lemma 5.2.4 can start from
the first pair in the sequence and stop as soon as we come across a y that is not a
descendant of tv. In other words, sequences can be manipulated like stacks. This
is the key to obtaining an efficient implementation.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

482 · Keshav Pingali and Gianfranco Bilardi

5.3 A Fast Algorithm for cdequiv

Figure 10 shows the pseudocode for a fast algorithm that exploits the pair of fin-
gerprints {Lo, Size} (discussed above) to identify nodes in the same cdequiv class.
Each class is represented as a linked list of nodes; each node points to the next one in
the list as well as to the header of the list. The ability to link a node in constant time
rests on the following observation. Let u1, u2, . . . , uk be a set of nodes, ordered from
descendant to ancestor, all with the same Lo, i.e., Lo(u1) = Lo(u2) = . . . = Lo(uk).
Then, it can be easily seen that the corresponding Size values form a nonincreas-
ing sequence, i.e., |Au1 | ≥ |Au2 | ≥ . . . ≥ |Auk |. The sequence u1, u2, . . . , uk is then
naturally broken into segments representing cdequiv classes, the breaking points
being those where a strict inequality occurs.

We assume each node structure has the following six fields, the first four being
auxiliary to the computation of the last two, which encode the cdequiv classes and
are part of the APT :

—S[v]: stack of node pairs.

—H[v]: top node closest to root of any route originating from a descendant of node
v.

—RecentSize[v]: |Aw| where w is node for which Lo(Aw) = v most recently in
bottom-up walk. This field is initialized to 0.

—RecentNode[v]: node w for which Lo(Aw) = v most recently in bottom-up walk.
This field is initialized to v.

—CdEqNext[v]: Successor of v in the list of nodes representing cdequiv(v).

—CdEqHeader[v]: Header of the list of nodes representing cdequiv(v).

Since every node is control dependent on at least one edge, the Roman Chariots
problem derived from a control dependence problem has the property that every city
is contained in at least one chariot route. For a general Roman Chariots problem,
this is not necessarily the case, and it is necessary to put all nodes that are not
contained in any route into one equivalence class. It is natural to use node ∞ as
the header for this class. This processing can be omitted for control dependence
problems.

To determine the complexity of this algorithm, we note that the work required to
compute tv at a node v is some constant amount plus two terms: one proportional
to the number of children of v and the other proportional to the number of routes
whose bottom node is v. Summing over all nodes, we get a term that is O(|V |+|A|).
Next, we estimate the work required for pushing and popping pairs. At each node
v, we pop a number of pairs, test one pair that is not popped, and then optionally
push one pair. Since each pair is pushed once and popped once, the total cost
of pushing and popping is proportional to the number of pairs, which is O(|V |).
Finally, the cost of testing a pair that is not popped is charged to the cost of
visiting the node. Therefore the complexity of the overall algorithm is O(|V |+ |A|);
for the special case of the control dependence problem this expression is O(|E|).
The bottom-up traversal for computing the cdequiv relation can be folded into the
conds preprocessing of Section 4, but we have shown it separately for simplicity.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 483

Procedure CdEquivPreprocessing(T)
{
1: /* T is the postdominator tree */
2: /* Processing of node ∞ not needed for control dependence

problems */
3: RecentSize[∞] := 0;
4: RecentNode[∞] := ∞;
5: CdEqNext[∞] := null;
6: CdEqHeader[∞] := ∞;
7: for each node v in bottom-up order do
8: /* compute t[v] */ ;
9: /*min returns infinity (i.e. N + 1) if the set is empty.*/
10: h := min {t | [v, t) is a chariot route } ;
11: h below := min { H [c] | c is a child of v};
12: H [v] := min {h, h below} ;
13: v1 := any child c of v having H [c] = h below ;
14: Hv2 := min { H [c] | c is a child of v other than v1} ;
15: tv := min { h,Hv2 , v };
16: S[v] := S[v1];
17: From S[v], pop all pairs [x, y) where y is descendant of tv;
18: if [v, tv) is not empty then push [v, tv) onto S[v] endif ;
19: Lo := first element of first pair in S[v];
20: /* Determine class for node v */
21: RecentSize[v] := 0;
22: RecentNode[v] := v;
23: CdEqNext[v] := null;
24: /*a[v] is |Av| */
25: if RecentSize[Lo] = a[v] then
26: /* add to current cdequivclass */
27: CdEqNext[RecentNode[Lo]] := v;
28: CdEqHeader[v] := CdEqHeader[RecentNode[Lo]]
29: else /* start a new cdequivclass */
30: RecentSize[Lo] := a[v];
31: CdEqHeader[v] := v
32: endif
33: RecentNode[Lo] := v;
34: od
}

Fig. 10. Algorithm for identifying cdequiv classes.

5.4 Related Work

There is a large body of previous work on algorithms for computing the cdequiv
relation. Ferrante et al. [1987] gave the first algorithm for this problem: they
computed the conds set of every node explicitly and used hashing to determine set
equality. The complexity of this algorithm is O(|V |2|A|). This algorithm was later
improved by Cytron et al. [1990] who described a quadratic-time algorithm for de-
termining the cdequiv relation. A linear-time algorithm for the cdequiv problem
for reducible control flow graphs was given by Ball [1993] who needed both domina-
tor and postdominator information in his solution; subsequently, Podgurski [1993]

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

484 · Keshav Pingali and Gianfranco Bilardi

gave a linear-time algorithm for forward control dependence equivalence, which is
a special case of general control dependence equivalence. Newburg et al. [1994] use
encodings of paths from START to each node to determine the cdequiv relation.
They do not describe the complexity of their algorithm in terms of the size of the
CFG, but it is likely to be O(|V |2|A|), if not worse.

The first optimal solution to the general cdequiv problem was given by John-
son et al. [1994] who designed an algorithm that required O(|E|) preprocessing
time and space and that enumerated cdequiv sets in proportional time. This al-
gorithm required neither dominator nor postdominator information, since it used
a depth-first tree obtained from the undirected version of the control flow graph,
in which the analogs of chariot routes were back edges in the depth-first tree. The
algorithm was based on a nontrivial characterization of cdequiv classes in terms
of cycle equivalence, a relation that holds between two nodes when they belong to
the same set of cycles. This characterization, which is remarkable in that it does
not make any explicit reference to the postdominance relation, allows the cdequiv
relation to be computed in less time than it takes to compute the postdominator
tree! However, since postdominator information is available in APT , the reduc-
tion to cycle equivalence is not needed in here. The fingerprints of sets of chariot
routes used in this article are essentially identical to those in Johnson et al. [1994].
Other researchers are studying properties of cycle equivalence; for example, Rauch
[1994] has developed a dynamic algorithm for computing cycle equivalence incre-
mentally when the control flow graph is modified. A more detailed discussion of
cycle equivalence can be found in Johnson [1994].

Finally we note that the ancillary quantities, Hv and tv, which were introduced in
Definition 5.2.1, are interesting in their own right. The tree of a Roman Chariots
problem can be viewed as the DFS tree of an undirected graph, in which each
chariot route [b, t) represents a back edge connecting nodes b and t. For some
node v suppose that Hv1 is not ∞. Then Hv1 is the highest ancestor of v that is
connected to some proper descendant of v by a back edge. To see the significance
of Hv, note that Hv = min{hv, Hv1}. If Hv is not ∞, then Hv is the highest
ancestor of v reachable by a path that contains only descendants of v (other than
Hv itself). It is also easy to see that if Hv is not ∞, then there are two paths
from v to Hv that have no vertices in common other than v and Hv. One path
is the tree path [v,Hv]. If Hv = hv, then the other path is the back edge from v
to hv. If Hv = Hv1 , there is a proper descendant d of v such that there is a back
edge from d to Hv; in that case, the other path is the tree path [v, d] concatenated
with the back edge from d to Hv. The existence of two node-disjoint paths between
v and Hv means that these nodes are in the same biconnected component of the
undirected graph; in fact, the computation of Hv is the key step in the Hopcroft and
Tarjan algorithm for computing biconnected components [Aho et al. 1974], since it
determines articulation points in the undirected graph. It can be shown that the
computation of tv arises similarly in the computation of triconnected components.

6. IMPLEMENTATION AND EXPERIMENTS

We can summarize the data structure APT for the Roman Chariots problem as
follows:

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 485

a b bf c e c dadec

ba

f

g

END

START
{1,2}

{}

{4} {3}

{1} {2,5}

{})[,a
b,g

END

d,f
[
[
[
[

)
)
)
)

e,f
b,c

Chariot
Routes

4

5

1

2

3
START

b a c f g e dEND START

: control dependence edges

:postdominator tree edges

(a) APT : α = 1 (b) Actual Implementation

Fig. 11. Implementation of APT .

(1) T : tree that permits top-down and bottom-up traversals.
(2) A: array of chariot routes of the form [v, w) where w is an ancestor of v in T .
(3) dfs[v]: dfs number of node v.
(4) Bndry?[v]: boolean. Set to true if v is a boundary node, and set to false

otherwise.
(5) L[v]: list of chariot routes. If v is a boundary node, L[v] is a list of all routes

containing v; otherwise, it is a list of all routes whose bottom node is v.
(6) CdEqNext[v]: Successor of v in the list of nodes representing cdequiv(v).
(7) CdEqHeader[v]: Header of the list of nodes representing cdequiv(v).

Two aspects of our APT implementation for the control dependence problem
are worth mentioning. Instead of storing chariot routes (cd sets) at nodes, we
store (references to) the corresponding CFG edges. For example, in Figure 11(a),
chariot routes 1 and 2 are stored at node f . In the actual implementation, shown
conceptually in Figure 11(b), we store references to the corresponding CFG edges,
START→ a and f → b. This is convenient because it enables the output of conds
queries to be produced directly without translation from integers to CFG edges,
thereby eliminating a data structure that would be needed for this translation. Since
a CFG edge u → v can be converted to a chariot route [v, parent(u)) in constant
time, this does not affect the asymptotic complexity of any of the algorithms in the
article. Finally, in procedure CondsQuery of Figure 6, it is worth inlining the call
to procedure CondsVisit and eliminating ancestorship tests on routes cached at
the query node itself; if full caching is performed, the overhead of a conds query in
APT , compared to that in the CDG, reduces to a single conditional test.

For control dependence investigations, the standard model problem is a nest
of repeat-until loops where the problem size is the number of nested loops, n.
Figures 12(a) and (b) show storage requirements as problem size is varied. The
storage axis measures the total number of routes stored at all nodes of the tree.
The storage required for the CDG is n(n+3), which as expected grows quadratically
with problem size. For a fixed problem size, the storage needed for APT is between
the storage needed for the CDG (full caching) and the storage needed if there is
no caching (the dotted line at the bottom of Figures 12(a) and (b)).

Consider the graph for α = 1/32 in Figure 12(a). For small problem sizes (be-
tween 1 and 31), storage requirements look exactly like those of the CDG. For

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

486 · Keshav Pingali and Gianfranco Bilardi

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Nesting Depth

S
to

ra
ge CDG

ALPHA = 1/32

ALPHA = 1/16

ALPHA = 1

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

ALPHA = 1

ALPHA = 4

ALPHA = 32

ALPHA = >>

Nesting Depth

S
to

ra
ge

(a)Storage vs. Nesting Level (α ≤ 1) (b) Storage vs. Nesting Level (α ≥ 1)

−8 −6 −4 −2 0 2 4 6 8
0

2000

4000

6000

8000

10000

12000

depth = 100

depth = 64

depth = 32

actual predicted

log(ALPHA)

S
to

ra
ge

−8 −6 −4 −2 0 2 4 6 8
0

50

100

150

200

250

300

350

400

450

500

depth = 100

depth = 64

depth = 32

depth = 4

log(ALPHA)

W
or

st
 C

as
e

Q
ue

ry
 T

im
e

(c) Storage vs. α (d) Query Time vs. α

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Nesting Depth

P
re

pr
oc

es
si

ng
 T

im
e

(s
ec

s) ALPHA = 1/32

ALPHA = 1/16

PDOM Time

ALPHA = 1

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

9
x 10

−3

Log(ALPHA)

P
re

pr
oc

es
si

ng
 T

im
e

(s
ec

s)

depth = 64

depth = 32

depth = 4

PDOM: depth = 64

PDOM: depth = 32

(e) Preprocessing Time vs. Nesting Level (f) Preprocessing Time vs. α

Fig. 12. Experimental results for repeat-until loop nests.

problem sizes larger than 63, storage requirements grow linearly. In between these
two regimes is a transitory region. A similar pattern can be observed in the graph
for α = 1/16. These results can be explained analytically as follows. From Eq.(2),
it follows that every node is in a zone by itself if, for all nodes q, |Zq| ≤ α|Aq |+1 < 2.
This means that for all nodes q, |Aq| < 1/α. If the nesting depth is n, it is easy to
verify that the largest value of |Aq| is (n+ 1). Therefore, if n < (1/α)−1, all nodes
are in zones by themselves, which is the case for the CDG. This analysis shows the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 487

adaptive nature of the APT data structure. Intuitively, 1/α is a measure of the
“budget” for space — if the problem size is small compared with the budget, the
algorithm performs full caching. As problem size increases, full caching becomes
more and more expensive, until at some point (1) zones with more than one node
start to appear and (2) the graph for APT peels away from the graph for the CDG.
A similar analytical interpretation is possible for Figure 12(b), which shows storage
requirements for α > 1. Finally, Figure 12(c) shows that for a fixed problem size,
storage requirements increase as α decreases, as expected. The dashed line is the
minimum of the CDG size and the right-hand side of Inequality 6 for n = 100; this
is the computed upper bound on storage requirements for n = 100, and it clearly
lies above the graph of storage actually used.

Figure 12(d) shows that for a fixed problem size, worst-case query time decreases
as α decreases. Because actual query time is too small to measure accurately, we
measured instead the number of routes examined during querying (say r) and the
number of nodes in the subzone of the query node, other than the query node itself
(say s). The y-axis is the sum (r + 2s), where the factor of 2 comes from the need
to traverse each edge in the subzone twice, once on the way down and then again
on the way back up. Note that each graph levels off at its two ends (for very small
α and for very large α) as it should. It is important to note that the node for which
worst-case query time is exhibited is different for different values of α. In other
words, the range of query times for a fixed node is far more than the 5:1 ratio seen
in Figure 12(d).

Finally, Figures 12(e) and (f) show how preprocessing time varies with problem
size and with α. These times were measured on a SUN-4. Note that for α > 1/8,
preprocessing time is less than the time to build the postdominator tree; even for
very small values of α, the time to build the APT data structure is no more than
twice the time to build the postdominator tree. This shows that preprocessing is
relatively inexpensive.

Real programs, such as the SPEC benchmarks, are less challenging than the
model problem. Figure 13(a) shows a plot of storage versus program size for all the
procedures in the SPEC benchmarks. The x-axis is the number of basic blocks in
a procedure and is a measure of procedure size. The y-axis shows the total number
of routes stored at all nodes of an APT data structure for that procedure. For each
procedure, the APT data structure was constructed with three different values of
α: (1) a very small value of α (full caching), (2) α = 1, and (3) a very large value
of α. From Figure 13(a), we can show that storage requirements can be reduced by
a factor of 3 by using a large α. Figure 13(b) shows the total storage requirements
for all the procedures in each of the SPEC benchmarks.

For a fixed problem size, the use of a very small value of α is similar to building
the CDG; therefore the data points for small α in Figure 13(a) can be viewed as the
storage requirements for the CDG. Note that, unlike in the model problem, storage
requirements of procedures in the SPEC benchmarks grow linearly with problem size
(this observation has been made before by other researchers [Cytron et al. 1991]).
This can be explained as follows. It is easy to verify that if the height of the
postdominator tree does not grow with problem size, the size of the CDG will
grow only linearly with problem size. As is seen in Figure 13(c), the height of the
postdominator tree for procedures in SPEC is quite small, and it is more or less

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

488 · Keshav Pingali and Gianfranco Bilardi

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

+: Full Caching

*: Some Caching: ALPHA = 1

o: No Caching

Program Size: Nodes

S
to

ra
ge

0

2000

4000

6000

8000

10000

12000
spice

doduc

mdljdp

wave

tomcatv
ora

alvinn

ear

mdljsp

swm

su2cor
hydro2d

nasa7 fpppp

Full Caching

Some Caching: ALPHA = 1

No Caching

S
to

ra
ge

SPEC Floating−Point Benchmarks

(a) Storage vs. Program Size (b) Storage for SPEC Floating-Point Benchmarks

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Program Size

H
ei

gh
t o

f P
os

td
om

in
at

or
 T

re
e

(c) Height of Postdominator tree vs. Program Size

Fig. 13. Experimental results for SPEC benchmarks.

independent of the size of the procedure (only the procedure iniset.f in doduc has
a postdominator tree height of more than 75). This reflects the fact that deeply
nested loops and long sequential chains of code are rare in real programs.

Query time was not significantly affected when α was set to 1; for larger values
of α, query time for a few nodes was affected, but on the whole the effect was
small. Finally, for every procedure in the SPEC benchmarks, preprocessing time
to construct APT is a small fraction of the time to build the postdominator tree.

In general, the choice α = 1 appears quite reasonable for a implementation of
APT .

7. CONCLUSIONS

In recent work [Bilardi and Pingali 1996], we have shown how the ideas in APT
can be applied successfully to other interesting variants of the control dependence
problem such as weak control dependence, which was introduced by Podgurski and
Clarke [1990] for proving total correctness of programs. In particular, we provide
an APT -like data structure, constructed in O(|E|) preprocessing space and time,
for answering weak control dependence queries in optimal time. This improves the
O(|V |3) time required by the Podgurski and Clarke algorithm.

We have also used the ideas in APT to build the SSA form of a program in
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Optimal Control Dependence Computation · 489

O(|E|) time per variable by exploiting the connection between dominance frontiers
and conds sets [Pingali and Bilardi 1995]. This algorithm improves the quadratic-
time complexity of the commonly used algorithm of Cytron et al. [1991], and it
has the same complexity as a recent algorithm due to Sreedhar and Gao [1995].
The advantage of our algorithm over the Sreedhar and Gao algorithm is that APT
permits us to compute the dominance frontier of a node optimally, whereas the
Sreedhar and Gao algorithm requires O(|E|) time for this problem. On the SPEC
benchmarks, this advantage results in our algorithm (with α set to 1) running 5
times faster than the Sreedhar and Gao algorithm. Furthermore, our algorithm
subsumes both the Cytron et al. algorithm and the Sreedhar and Gao algorithm
— if we build APT with a small value of α, our algorithm reduces to the algorithm
of Cytron et al., while a large value of α produces the algorithm of Sreedhar and
Gao.

There are many alternatives to the zone construction algorithm given in this
article. For example, instead of searching the subtree below a query node for the
bottom ends of chariot routes, we can search the path from the query node to END
for the top ends of relevant chariot routes. In general, there is a trade-off between
the sophistication of the query procedure and the amount of caching in APT for
a given query time. For example we can use cdequiv information in answering
conds queries. It can be shown that the nodes in a cdequiv equivalence class are
ordered by the ancestor relation in the postdominator tree [Johnson et al. 1994].
Given a query conds(v), we can answer instead the query conds(w) where w is
the node in the cdequiv class of v that is lowest in the tree; this lets the query
procedure avoid examining nodes on the path [v, w), which can be exploited during
zone construction to reduce storage requirements.

Although we have used the term caching to describeAPT , note that most caching
techniques for search problems, such as memoization and related ideas used in
the theorem-proving community [Michie 1968; Segre and Scharstein 1993], per-
form caching at run-time (query time). In contrast, caching in APT is performed
during preprocessing, and the data structure is not modified by query processing.
This permits us to get a grip on storage requirements, which is difficult to do with
run-time approaches. Of course, nothing prevents us from using run-time caching
together with APT , if this is useful in some application.

There is a deep connection between APT and the use of factoring to reduce
the size of the CDG [Cytron et al. 1990]. Factoring identifies nodes that have
control dependences in common and creates representations that permit control
dependences to be shared by multiple nodes. The simplest kind of factoring exploits
cdequiv sets. If p nodes are in a cdequiv set, and have q routes in common, we can
introduce a junction node, connect the q routes to the junction, and introduce edges
from the junction to each of the p nodes. In this way, the number of edges in the
data structure is reduced from p ∗ q to p+ q. Exploitation of cdequiv information
alone is not adequate to reduce the asymptotic size of the graph, but the idea
of sharing routes can be extended — for example, factoring is possible when the
routes containing a node v1 are a subset of the routes containing node v2. However,
no factorization to date has reduced worst-case space requirements. To place the
APT data structure in perspective, note (1) that it can be viewed as a factored
representation, since a route is cached just once per zone, and (2) that entry for

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

490 · Keshav Pingali and Gianfranco Bilardi

the route is shared by all nodes in the zone. However, there is an important
difference between the traditional approaches to factorization and the one that we
have adopted in APT . In previous factorizations, every route encountered during
query processing is reported as output. In our approach, the query procedure
may encounter some irrelevant routes that must be “filtered out,” but there is a
guarantee that the number of irrelevant routes encountered during query processing
is at most some constant fraction of the actual output. By permitting this slack
in the query procedure, we are successful in reducing space and preprocessing time
requirements without affecting asymptotic query time.

More generally, the approach to conds described in this article can be viewed as
an example of filtering search [Chazelle 1986], a technique used in computational
geometry to solve range search problems. In these problems, a set of geometrical
objects in Rd is given. A query is made in the form a connected region in Rd, and all
objects intersecting this region must be enumerated. To draw the analogy, we can
view the routes in our problem as geometric objects, and we can view the query node
as the analog of the query region; clearly, the conds problem asks for enumeration
of all “objects” that intersect the query “range.” Filtering search exploits the fact
that to report k objects, it takes Ω(k) time. Therefore, we can invest O(k) time in
an adaptive search technique that is relatively less efficient for large k than it is for
small k. In our solution to the conds problem, nodes contained in a large number
of routes are allowed to be in zones with a large number of nodes; therefore, a query
at such a node may visit a large number of nodes, but this overhead is amortized
over the size of the output. Correspondingly, the search procedure visits a small
number of nodes if the query node has only a small amount of output. This kind of
search procedure with adaptive caching may prove useful in solving other problems
in the context of restructuring compilers.

ACKNOWLEDGEMENTS

Richard Johnson and David Pearson participated in early research that led to this
article. In particular the cdequiv algorithm described here uses ideas that were
developed jointly with Johnson and Pearson. Paul Chew, Guong-Rong Gao, Dexter
Kozen, Giuseppe Italiano, Mayan Moudgill, Ruth Pingali, Geppino Pucci, Barbara
Ryder, Richard Schooler, V. Sreedhar, Eric Stoltz, Eva Tardos, and Michael Wolfe
gave us invaluable feedback. We thank the referees for their constructive comments.

REFERENCES

Aho, A. V., Hopcroft, J., and Ullman, J. 1974. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, Mass.

Allen, F., Burke, M., Cytron, R., Ferrante, J., Hsieh, W., and Sarkar, V. 1988. A frame-
work for determining useful parallelism. In Proceedings of the 1988 International Conference
on Supercomputing. IEEE, New York, 207–215.

Ball, T. 1993. What’s in a region? or computing control dependence regions in near-linear time
for reducible control flow. ACM Lett. Program. Lang. Syst. 2, 1–4 (Mar.–Dec.), 1–16.

Bernstein, D. and Rodeh, M. 1991. Global instruction scheduling for superscalar machines. In
Proceedings of the SIGPLAN ’91 Conference on Programming Language Design and Imple-
mentation. ACM, New York, 241–255.

Bilardi, G. and Pingali, K. 1996. A framework for generalized control dependence. In Proceed-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

http://www.acm.org/pubs/citations/journals/loplas/1993-2-1-4/p1-ball/
http://www.acm.org/pubs/citations/journals/loplas/1993-2-1-4/p1-ball/

Optimal Control Dependence Computation · 491

ings of the SIGPLAN ’96 Conference on Programming Language Design and Implementation.
ACM, New York, 291–300.

Chazelle, B. 1986. Filtering search: A new approach to query answering. SIAM J. Comput. 15,

703–724.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans. Pro-
gram. Lang. Syst. 13, 4 (Oct.), 451–490.

Cytron, R., Ferrante, J., and Sarkar, V. 1990. Compact representations for control depen-
dence. In Proceedings of the SIGPLAN ’90 Conference on Programming Language Design and
Implementation. ACM, New York, 337–351.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987. The program dependency graph
and its uses in optimization . ACM Trans. Program. Lang. Syst. 9, 3 (June), 319–349.

Fisher, J. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput. 7, 3, 478–490.

Gupta, R., Pollock, L., and Soffa, M. L. 1990. Parallelizing data flow analysis. In Proceedings
of the Workshop on Parallel Compilation. Queen’s University, Kingston, Ontario.

Gupta, R. and Soffa, M. L. 1987. Region scheduling. In 2nd International Conference on
Supercomputing. IEEE, New York, 141–148.

Harel, D. 1985. A linear time algorithm for finding dominators in flowgraphs and related prob-
lems. In Proceedings of the 17th ACM Symposium on Theory of Computing. ACM, New York,
185–194.

Horowitz, S., Prins, J., and Reps, T. 1987. Integrating non-interfering versions of programs.
In Conference Record of the 14th Annual ACM Symposium on Principles of Programming
Languages. ACM, New York, 133–145.

Johnson, R. 1994. Efficient program analysis using dependence flow graphs. Ph.D. thesis, Cornell
Univ., Ithaca, N.Y.

Johnson, R. and Pingali, K. 1993. Dependence-based program analysis. In Proceedings of the
SIGPLAN ’93 Conference on Programming Language Design and Implementation. ACM, New
York, 78–89.

Johnson, R., Pearson, D., and Pingali, K. 1994. The program structure tree: Computing
control regions in linear time. In Proceedings of the SIGPLAN ’94 Conference on Programming
Language Design and Implementation. ACM, New York, 171–185.

Lengauer, T. and Tarjan, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1, 1 (July), 121–141.

Michie, D. 1968. Memo functions and machine learning. Nature 218, 19–22.

Newburn, C., Noonburg, D., and Shen, J. 1994. A PDG-based tool and its use in analyz-
ing program control dependences. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. IEEE, New York.

Pingali, K. and Bilardi, G. 1995. APT : A data structure for optimal control dependence com-
putation. In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design
and Implementation. ACM, New York, 32–46.

Segre, A. and Scharstein, D. 1993. Bounded-overhead caching for definite-clause theorem
proving. J. Autom. Reason. 11, 83–113.

Simons, B., Alpern, D., and Ferrante, J. 1990. A foundation for sequentializing parallel code.
In SPAA ’90: ACM Symposium on Parallel Algorithms and Architecture. ACM, New York.

Sreedhar, V. C., Gao, G. R., and Lee, Y. 1994. DJ-graphs and their applications to flowgraph
analyses. Tech. Rep. ACAPS Memo 70, McGill Univ., Montreal, Canada. May.

Received July 1996; accepted October 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

http://www.acm.org/pubs/citations/journals/toplas/1991-13-4/p451-cytron/
http://www.acm.org/pubs/citations/journals/toplas/1991-13-4/p451-cytron/
http://www.acm.org/pubs/citations/journals/toplas/1987-9-3/p319-ferrante/
http://www.acm.org/pubs/citations/journals/toplas/1987-9-3/p319-ferrante/

	Introduction
	The Roman Chariots Problem
	APT: cd queries
	APT: conds queries
	Criterion for Zones
	Preprocessing for conds Computations

	APT: cdeq queries
	Fingerprints of cdeq Sets
	Computing Fingerprints Efficiently
	A Fast Algorithm for cdeq
	Related Work

	Implementation and experiments
	Conclusions

