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ABSTRACT
Few aspects of modern life inflict as high a cost on society as traf-
fic congestion and automobile accidents. Current work in AI and
Intelligent Transportation Systems aims to replace human drivers
with autonomous vehicles capable of safely and efficiently navi-
gating through the most hazardous city streets. Once such vehicles
are common, interactions between multiple vehicles will be possi-
ble. Traffic lights and stop signs, which were designed for human
drivers, may no longer be the best method for intersection control.

Previously, we made the case for a reservation-based intersection
control mechanism designed for autonomous vehicles, but compat-
ible with human drivers. Including human drivers allows incremen-
tal deployability as well as support for those who drive for pleasure,
but may result in significantly suboptimal performance, as human
drivers may be present in dramatically varying proportions. In this
paper, we develop a learning-based approach to determine which
variant of the control mechanism will be most effective under given
conditions, and then combine the resulting predictor with our mul-
tiagent intersection management mechanism, enabling it to deter-
mine when and how it should alter its configuration to best suit the
current traffic conditions. Our extension is fully implemented and
tested in simulation, and we provide experimental results demon-
strating its efficacy.

1. INTRODUCTION
With the average American wasting 46 hours per year in traffic

and accidents sapping upwards of $230 billion from the US econ-
omy annually, few activities take as high a financial or emotional
toll on people as automobile travel [7, 9]. Intelligent Transportation
Systems (ITS) is the field that focuses on integrating information
technology with vehicles and transportation infrastructure to make
travel safer and more efficient. Current work in AI and ITS aims
to replace error-prone human drivers with autonomous vehicles ca-
pable of safely and efficiently navigating the most hazardous and
congested roadways.

Once such vehicles become common, interactions between mul-
tiple vehicles will also be possible. Traffic lights and stop signs,
designed for human drivers, may no longer be the best method for
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intersection control. We recently proposed a multiagent intersec-
tion control mechanism for autonomous vehicles [3, 5]. This sys-
tem accommodates human drivers, but only with a large constant
efficiency penalty. If the proportion of human drivers decreases,
the system cannot exploit the more favorable conditions. While al-
luding to a mechanism for altering the configuration of the system
online, we did not fully specify, implement, or experiment with it,
nor did we provide any method for choosing an appropriate config-
uration given the current traffic conditions. Even if such a method
were to exist, measuring the current proportion of human drivers at
an intersection would necessitate expensive infrastructure beyond
that already required by the intersection control mechanism.

In this paper, we make three main contributions. First, we fully
specify a configuration switching mechanism, implement it in sim-
ulation, and analyze its performance. Second, we demonstrate that
a classifier trained on data from the multiagent communication pro-
tocol can select the most appropriate configuration for the current
traffic conditions without additional protocol or infrastructure re-
quirements. Third, we integrate this classifier into our switching
mechanism, producing a fully-implemented system that smoothly
and efficiently alters its configuration to suit changing traffic pat-
terns. Despite the lack of specialized sensory equipment, the per-
formance of our system approaches that of an omniscient agent able
to select the optimal configuration based on knowledge of the up-
coming traffic conditions.

2. RESERVATION-BASED INTERSECTION
CONTROL

In our 2004 paper, we make the case for a new type of inter-
section control mechanism [3]. This mechanism, instead of com-
municating with human drivers through lights, communicates di-
rectly with thedriver agentspiloting autonomous vehicles. Driver
agents “call ahead” to an agent stationed at the intersection, called
an intersection manager, to reserve a region of space-time in the
intersection. As part of the request, the driver agents include infor-
mation about the physical qualities and capabilities of the vehicle,
as well as a predicted arrival time, velocity, and desired direction
of travel. The intersection manager, using anintersection control
policy, decides whether or not to grant the driver agent’s request.
Once a reservation is made, the driver agent must only enter the
intersection in accordance with the parameters of the reservation.
If the driver agent determines that this is not possible, it must either
cancel the reservation or change the reservation. In scenarios com-
prising only autonomous vehicles, such a system can vastly outper-
form current intersection control mechanisms like stop signs and
traffic lights. Vehicles using such a system on average experience
much lowerdelay, which is increase in the time it takes for them to



reach their destinations due to the presence of the intersection. In
recent work, we have extended this mechanism to incorporate hu-
man drivers [5]. In the remainder of this section, we briefly review
our relevant previous results.

2.1 FCFS
The intersection control policy is the central part of the intersec-

tion manager, and thus a crucial component of the whole system.
Our first policy operates on a “first come, first served” basis, earn-
ing it the name “FCFS”. Much more efficient than current intersec-
tion control mechanisms like traffic lights, FCFS enables the inter-
section manager to interleave traffic from all directions simultane-
ously, orchestrating “close calls” which human drivers would not
be capable of performing. In situations involving only autonomous
vehicles, FCFS can reduce average delay by as many as two orders
of magnitude compared to traditional intersection control mecha-
nisms [4]. To accomplish this, FCFS divides the intersection into
a grid ofn × n reservation tiles, wheren is thegranularity of the
policy. When determining whether to grant a reservation request,
FCFS simulates the trajectory of the requesting vehicle according
to the parameters of the request. Throughout the simulation, FCFS
determines which tiles will be occupied by the vehicle. If the vehi-
cle does not occupy any reserved tiles, FCFS grants the reservation
and reserves the occupied tiles for the appropriate times. Other-
wise, FCFS rejects the request.

2.2 FCFS-Light
To accommodate humans, the FCFS-LIGHT policy must be able

to communicate to them, and it does so using the existing inter-
section infrastructure (traffic lights). FCFS-LIGHT associates a set
of reservation tiles with each light, calledoff-limits tiles. For the
purposes of granting reservations, FCFS-LIGHT treats these tiles
as “reserved” whenever the associated light is green, yellow, or has
very recently turned red. The reservation process for FCFS-LIGHT

identical to that of FCFS, except that vehicles approaching a green
light are not restricted by the off-limits tiles for that light.

The part of the policy that controls the lights is called the policy’s
light model. In addition to manipulating the physical lights, the
light model is responsible for providing the policy with information
about the current and future state of the lights. Here we describe
two light models: ALL -LANES and SINGLE-LANE.

2.2.1 ALL -LANES

The ALL -LANES light model is very similar to modern-day traf-
fic lights. In this model, all lanes in each direction are turned green
simultaneously, one direction after another in a cycle. ALL -LANES

is particularly well-suited to conditions with significant portions of
human drivers. Figure 1 shows each phase ALL -LANES. For the
remainder of this paper, if we refer to ALL -LANES as a policy, we
mean FCFS-LIGHT using the ALL -LANES light model.

Figure 1: The ALL -L ANES light model. Each direction is given
all green lights in a cycle: north, east, west, south.

2.2.2 SINGLE-LANE

As opposed to ALL -LANES, the SINGLE-LANE light model is
much more like standard FCFS than a traffic light. Instead of turn-

ing all lights in each direction green simultaneously, the lights in
each lane are turned green one by one. This reduces the number
of simultaneously off-limits tiles, thereby freeing up more of the
intersection to be used by autonomous vehicles. As can be ex-
pected, this model performs well when the proportion of human
drivers is small. Figure 2 shows the first half of the SINGLE-LANE

light model. If we refer to SINGLE-LANE as a policy, we mean the
FCFS-LIGHT policy using the SINGLE-LANE light model.

Figure 2: The first half-cycle of SINGLE -L ANE. The lights in
each individual lane are turned green in succession.

3. POLICY SWITCHING
Because policies using different light models perform differently

under various traffic conditions, it would be useful to have an inter-
section manager that can switch policies, without having to bring
the whole system to a halt. In this section, we fully specify a
method for switching smoothly between policies, which we im-
plement and empirically validate.

3.1 Smoothly Switching Between Two Policies
The simplest way for an intersection manager to switch between

two intersection control policies is to turn all the lights red and
refuse all reservation requests until the intersection is empty, at
which point the manager could resume with the new intersection
control policy. This näıve approach ignores the ability of the ve-
hicles and intersection manager to plan ahead and schedule around
the switchover. Our more efficient solution places only a small ad-
ditional requirement on intersection control policies: each policy
P must keep track of the latest timelastP for which any vehicle
could be in the intersection. Initially,lastP is the current time, and
P ensures thatlastP is always at least as late as the current time.
WheneverP grants a reservation, it updateslastP . If P ’s light
model ever turns a light green, it updateslastP such thatlastP is
after the time a vehicle using that light could leave the intersection.

When the intersection manager decides to switch from policyP

to policy P ′, it freezesP . If P is frozen, it rejects any reservation
requests that would cause it to modifylastP . When the intersec-
tion manager receives a new request, it usesP ′ to determines its
response if the arrival time in the request is afterlastP . Other-
wise, it usesP . The transition is complete oncelastP has passed.
Thus, the intersection manager preserves the safety properties of
the mechanism as a whole, ensuring that each request is handled
exclusively by eitherP or P ′, each of which is assumed to be safe.

3.2 The Cost Of Switching
The main benefit of this switching mechanism is that the inter-

section manager need not always choose a policy capable of han-
dling the maximum possible proportion of human drivers. Instead,
as traffic conditions change, the manager can adjust the policy to
compensate, increasing efficiency during periods in which human
drivers are more scarce. However, during a switch betweenP and
P ′, the mechanism insists that no vehicle can enter the intersection
beforelastP unless it also exits beforelastP . For a brief instant
at time lastP , there can be no vehicles in the intersection; there
is a “wall” (in time) that cannot be crossed. Autonomous vehicles
that would otherwise be in the intersection atlastP must accel-
erate or decelerate such that they get a reservation which will be



completed beforelastP or begin afterlastP . Placing additional
constraints on the vehicles could decrease the overall efficiency of
the intersection, increasing delays. This would create an interesting
tradeoff: switching policies could have a benefit, but it might not
outweigh the cost of making the switch.

However, we determined that with the FCFS-LIGHT policy, no
real tradeoff exists. FCFS-LIGHT’s off-limits tiles already create
many “walls” (in space) that cannot be traversed, and the addi-
tion of the constraint made by switching does not have a signifi-
cant effect. To quantify the effects of switching, we ran a series of
24-hour simulations in which the intersection manager repeatedly
“switched” from an FCFS-LIGHT policy with the SINGLE-LANE

light model to an identical policy at regular intervals. In the ex-
periment, we set the vehicle spawning probability to a moderate
0.01 — enough that vehicles would actually compete for passage
through the intersection, but also low enough to make random con-
gestion unlikely. The baseline time for a vehicle to complete its
trip is 10 seconds — 250 meters at the speed limit of 25 m/s. By
varying the time between switches from 24 hours (effectively∞)
to 5 seconds, we determined that the policy switching has no signif-
icant negative effects until the switches occur extremely frequently.
At the highest frequencies, the “walls” created by the switch create
compartments in space-time that are only slightly longer than the
time it takes a vehicle to traverse the intersection. At this point, it
becomes more difficult for the intersection manager to fit a vehicle
into the available space-time. Table 1 presents the results from this
experiment.

Period Delay(s) CI(95%)
∞ 2.03 ±0.01
1h 2.03 ±0.01

10m 2.03 ±0.01
1m 2.13 ±0.01
30s 2.20 ±0.01
10s 4.25 ±0.1
5s 5.14 ±0.07

Table 1: The policy switching mechanism has no effect on delay
until the time between switches approaches the time it takes to
traverse the intersection.

4. POLICY SELECTION
The two light models described earlier, ALL -LANESand SINGLE-

LANE, each define a different intersection control policy when com-
bined with FCFS-LIGHT. ALL -LANES is suited to scenarios in-
volving many humans, while SINGLE-LANE is better for scenar-
ios in which humans are scarce. Determining which policy to use
should thus be as simple as determining how many of the vehi-
cles using the intersection are not autonomous. Unfortunately, this
would involve additional expensive infrastructure, either sensors at
the intersection or signaling devices on the human-driven vehicles.
The humans drivers may not even be willing to place such signaling
devices on their vehicles due to privacy concerns.

Instead, we base our choices on the information already avail-
able to the intersection manager via the reservation requests made
by the autonomous vehicles. If an autonomous vehicle is stuck
behind a human vehicle waiting at a red light, the parameters of
the autonomous vehicle’s next reservation request will change. It
may even be forced to cancel. One altered message may not con-
tain much information, but the intersection manager communicates
with many vehicles. By maintaining a sliding window of statistics
from these messages, we can gather enough information about the

current state of traffic such that a trained classifier can select the
most appropriate policy. Our first instinct was to use a regression
learner to estimate the average delay under the various candidate
policies, allowing the intersection manager to choose the policy
with the lowest estimate, but the regression learner proved unre-
liable. Instead, we learn the choice the intersection manager must
make: which policy to use.

4.1 Classifier Inputs
Obtaining information about the human-driven vehicles is non-

trivial. To gather information directly, either all human-driven vehi-
cles must be retrofitted with signaling devices, or elaborate sensing
mechanisms would need to be installed at all intersections. Both
options are expensive and difficult. Instead, we collect informa-
tion about humans indirectly, via the parameters of the requests
made by autonomous vehicles. None of the parameters give any
explicit information about human vehicles, nor is it immediately
obvious how one could extract such information from these param-
eters. Furthermore, these statistics are gathered from information
that the autonomous vehicles already need to provide to the inter-
section manager — no additional responsibility is placed on the
autonomous vehicles.

The classifier has 7 inputs:

• The current policy
• The rate (requests/second) at which the intersection manager

is receiving reservation requests
• The rate (cancellations/second) at which the intersection man-

ager is receiving reservation cancellations
• The rate (changes/second) at which the intersection manager

is receiving reservation change requests
• The average time before the start of a reservation that re-

quests are made
• The average velocity at which autonomous vehicles expect

to arrive at the intersection
• The ratio of accepted reservations to total requests

4.2 Generating Training Data
We created a large body of training data by simulating over 800

one-hour episodes, half using ALL -LANES and half using SINGLE-
LANE. Each episode included a five-minute “warm-up” period dur-
ing which no data were recorded, to eliminate the effects of starting
with an empty intersection. Classifier input data were then recorded
in sliding windows from 2.5 to 30 minutes long. At the end of the
episode, we set the target policy for each generated instance to the
policy that had the lowest average delay at the end of the episode.
Each episode used randomized traffic conditions, however every
randomly-generated configuration was used twice — once for each
policy. The spawning rate was chosen uniformly from the interval
(0.001, 0.025], which represents everything from very light to ex-
tremely heavy traffic. The proportion of human drivers was chosen
uniformly from the interval(0, 0.25]. Above 25% humans, all but
the lightest traffic scenarios favor ALL -LANES.

4.3 Choosing a Classifier
With this data, we tested many different classifiers using the

WEKA machine learning software [10]. We evaluated each clas-
sifier on each sliding window size with 10-fold cross-validation.
Table 2 presents results from four representative classifiers: JRip
(rules), J48 (decision tree), AdaBoost with decision stumps, and a
neural network. Each classifier used WEKA’s default settings.

The neural network performed the best overall, followed closely
by the J48 decision tree. All results were reported by WEKA as
statistically significant (with respect to the constant classifier) with



Classifier
Window Const. AdaB. J48 JRip N.N.

2.5 min. 66.94 69.03 78.94 79.21 80.19
5 min. 66.95 71.15 80.33 81.23 82.19
10 min. 66.84 70.05 83.23 82.18 83.16
20 min. 65.64 74.10 81.66 81.44 84.88
30 min. 67.82 73.27 85.89 83.16 88.48

Table 2: Percentage of correctly classified instances on the
training data using 10-fold cross-validation.

95% confidence. As we had initially suspected, the longer slid-
ing windows were much less noisy, and therefore easier to learn.
For the rest of the paper, unless otherwise specified, when we re-
fer to the classifier, we mean the neural network as implemented
in WEKA and trained on the data from the 10-minute sliding win-
dows. While exploring the space of potential training data might
make for an interesting optimization, it is not the main focus of
this paper, and thus we fix this variable in order to study other as-
pects of the mechanism more closely. Because performance does
not vary dramatically over the range tested, we chose a value near
the middle of the range.

4.4 Putting the Classifier to Work
We combine the classifier with policy switching by maintaining a

sliding window of data in the intersection manager, which the clas-
sifier uses to select a policy at pre-specified intervals. If the clas-
sifier chooses the policy already in use, no switch occurs. By inte-
grating the trained classifier with the policy switching method, we
produce an intersection manager capable of selecting a policy based
on current traffic conditions, inasmuch as the traffic conditions are
communicated through the reservation requests of autonomous ve-
hicles. It is interesting to note that the classifier’s target task and
the simulations which generated its training data are subtly differ-
ent. When generating training data, each policy was essentially in
a steady state. However, in the target task the classifier must tol-
erate the fact that although current simulator settings may be best
served with a particular policy, congestion created earlier in the ex-
periment — perhaps the result of different simulator settings or a
poor choice of policy — will affect the vehicles currently making
reservation requests.

5. EXPERIMENTAL RESULTS
To evaluate the performance of the switching intersection man-

ager, we use the same custom discrete-time simulator presented in
our earlier work [5]. Time is discretized into intervals of 0.02 sec-
onds, and traffic flow is regulated by manipulating the probability
with which the simulator spawns a new vehicle during each time
step as well as the probability with which the simulator spawns a
human-driven vehicle. We also use identical parameters: the sim-
ulator models a 250m× 250m area, three lanes of traffic travel in
each cardinal direction, vehicles are limited to a maximum speed
of 25m/s, and the granularity of each policy is 24.

The test scenario comprises a series of 72 randomly generated
simulator traffic settings. As with the training data generation,
the spawning probability and human driver proportion were chosen
uniformly at random from the intervals(0.001, 0.025] and(0, 0.25],
respectively. Although the settings are randomly generated, we
use the same sequence for each trial. Each trial lasts 72 simulated
hours, with each configuration used for exactly one hour. Perfor-
mance is measured by calculating the average delay over all vehi-
cles spawned in the 72 hours. The switching managers use a sliding

window to keep an average of all input values from the last time a
decision was made; the size of the sliding window is equal to the
time between potential switches.

5.1 A Lower Bound
After analyzing the performance of ALL -LANES and SINGLE-

LANE throughout the 72-hour trial, we determined which policy
worked best for each configuration and created an intersection man-
ager that switches accordingly. We call this manager “omniscient”,
as it knows when to switcha priori. The omniscient manager is not
technically optimal — it chooses the policy that performs best on
each configuration, but it cannot adapt to changes in traffic condi-
tions that result from the stochastic nature of the traffic generation.

5.2 Switch Frequency
While the configuration changes took place at regular intervals,

a robust switching manager should not rely on such assumptions.
By allowing switching more frequently, the intersection manager
gains agility, but may pay a price in terms of stability. However,
as we showed, stability is not as important as one might think —
the cost for making a policy switch is negligible. Agility turns out
to be much more important: not only can the intersection manager
react quickly to changing conditions, but it can also switch back
quickly if it chooses the wrong policy. We created five versions
of the intersection manager, varying the switching period from 20
minutes to 30 seconds. Note that whenever the manager selects the
policy it is already using, no switch takes place. Table 3 shows
the results of running each of these five versions, as well as ALL -
LANES, SINGLE-LANE, and the omniscient intersection manager.

Policy Delay(s) CI(95%)
ALL -LANES 57.70 ±0.43
SINGLE-LANE 48.30 ±0.40

20m 43.28 ±0.51
10m 41.77 ±0.46

Switching 5m 41.53 ±0.33
1m 41.45 ±0.66
30s 41.05 ±0.42

Omniscient 37.50 ±0.45

Table 3: Average delay during a 72-hour simulated period. As
the intersection manager switches policies more often, it can
react to changing conditions more quickly, leading to lower av-
erage delay.

Every switching manager performed significantly better than ei-
ther ALL -LANES or SINGLE-LANE alone. The switching manager
with the shortest period (30 seconds) delayed the average vehicle
only a few seconds more than the omniscient switcher. However,
with the exception of the 20-minute version, the difference in per-
formance between the learned switchers was not statistically sig-
nificant. Perhaps most importantly, re-evaluating the policy choice
as frequently as every 30 seconds does not negatively affect per-
formance — the classifier rarely recommends switches at succes-
sive 30-second decision points. These results do not indicate that
SINGLE-LANE is better than ALL -LANES — it is trivial to adjust
the traffic settings (specifically the proportion of human drivers) so
that either policy performs better than the other. However, intelli-
gent policy switching should always perform about as well or better
than the best of the two static policies.

5.3 Outperforming The Omniscient Policy



The results in Table 3 show that the switching intersection man-
ager can handle varying proportions of human drivers, even though
it never directly senses or communicates with them — all infor-
mation used by the classifier is readily available from the reserva-
tion requests of the autonomous vehicles. When we used the same
72 sets of simulator settings, but without any humans, the switch-
ing intersection manager behaved exactly as we expected: quickly
switching to SINGLE-LANE and never going back. If the intersec-
tion manager were aware that the simulator was not spawning any
human drivers, this would not be remarkable. However, the inter-
section manager gleans all its information about the current state of
traffic from the reservation requests made by the autonomous ve-
hicles. In some sense, the classifier-based switcher can outperform
even the omniscient intersection manager at times, because the set-
tings on the simulator do not precisely determine the actual traffic
conditions — there is a lot of stochasticity.

Figure 3 shows the performance of the various policies on one
representative section of the test scenario, with delay reported in
10-minute sliding windows. In 3(a), the classifier-based switcher,
re-evaluating every 10 minutes, makes the switch from SINGLE-
LANE to ALL -LANES as soon as it senses the change in traffic
conditions. When conditions become more favorable to SINGLE-
LANE, it makes a second switch back. However, the second switch
is in the middle of the hour — it does not correspond to a change
in the simulator settings, but rather the actual traffic conditions.
In contrast, Figure 3(b) shows the performance of the omniscient
intersection manager on the same scenario. Notice that it makes
the first switch preemptively, before the classifier-based manager
would have any chance to sense a change. The traffic parameter
change at 22 hours does not change the optimal policy, so the om-
niscient agent stays with ALL -LANES. Because it is hard-coded to
switch based on the actual simulator settings, it cannot sense the
opportunity to switch later in that hour. Overall, however, the per-
fect prediction of the omniscient policy is more important than its
inflexibility; the classifier does not always make the correct choice
and this proves more significant (see Table 3).

6. CONCLUSION
In this paper, we described how a human-compatible multiagent

intersection control mechanism, combined with a learned classifier
and a method for switching policies, can adapt online to varying
traffic conditions. The policy-switching system presented signifi-
cantly outperforms each of the previously proposed static intersec-
tion control policies. Prior to this work, we assumed that in order to
efficiently handle varying numbers of human drivers, the intersec-
tion would need to be able to reliably detect their presence. A large
positive implication of the results presented here is that the explicit
detection of human drivers, as well as the expensive infrastructure
required to do so, is unnecessary.

Aside from our own work, a large body of research addresses
the problem of creating efficient, adaptive intersection control. The
most popular offline traffic signal timing optimization algorithm is
TRANSYT [8]. SCOOT represents an advancement over TRAN-
SYT, in that it can adapt online [6]. More recently, Abdulhai et
al. and Bull et al. have used Q-learning and Learning Classifier
Systems (LCS), respectively, to create even more robust adaptive
systems of traffic signals [1, 2]. However, in each of these cases,
the system works only with traditional traffic signals and vehicles,
and must sense the traffic conditions directly.

While this paper answers some important questions, it leaves
several avenues for further inquiry. We hope to explore the effects
of allowing intersection managers to choose between more policies,
or create new policies on the fly. We would also like to examine the
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Figure 3: In 3(a), the classifier-based switcher first switches
to ALL -L ANES once it senses traffic conditions have changed,
then switches back to SINGLE -L ANE when conditions change
the second time. In 3(b), the omniscient switcher knows in ad-
vance that conditions will change and preemptively switches
to ALL -L ANES. However, because it is not adapting online, it
does not switch back to SINGLE -L ANE until the traffic settings
change at the end of the hour.

type of data with which the intersection manager makes switching
decisions; perhaps using a larger sliding window of data will allow
the intersection manager to choose the correct policy more reliably.
Autonomous vehicles will soon be a reality. This work takes one
more step toward ensuring that we can fully exploit their capabili-
ties to create a safer and more efficient transportation system.
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