
An Architecture for Action Selection in Robotic Soccer

Peter Stone and David McAllester

AT&T Labs — Research
180 Park Ave.

Florham Park, NJ 07932
fdmac,pstoneg@research.att.com

http://www.research.att.com/~{dmac,pstone}

ABSTRACT
CMUnited-99 was the 1999 RoboCup robotic soccer simu-
lator league champion. In the RoboCup-2000 competition,
CMUnited-99 was entered again and despite being publicly
available for the entire year, it still �nished in 4th place.
This paper presents some of the key elements behind ATT-

CMUnited-2000, one of the three teams that �nished ahead of
CMUnited-99 in RoboCup-2000 out of thirty four entrants.
Playing against CMUnited-99, ATT-CMUnited-2000 scores
an average of about 8 goals per opponent goal. This pa-
per describes some of the key innovations that make this
improvement possible.

1. INTRODUCTION
RoboCup is a continuing AI research initiative that uses

the game of soccer as a unifying and motivating domain [9].
RoboCup as a whole includes technical sessions, robotic
demonstrations, competitions with real robots, and a sim-
ulator competition. The RoboCup simulator competition,
pits teams of 11 independently-controlled autonomous agents
against each other in the RoboCup simulator, or Soccer
Server, a real-time, dynamic environment [2].
One feature of the RoboCup simulator competition is that

many participating teams release their teams, as an exe-
cutable and/or source code, after each event. Thus, there
is typically dramatic progress in the level of play (measured
by performance against the previous year's champion) from
year to year [4].
CMUnited-99 was the 1999 RoboCup robotic soccer sim-

ulator league champion. Unlike the previous champions, it
performed quite well in the subsequent competition, RoboCup-
2000, �nishing in 4th place despite having been publicly
available for the entire year. This paper presents some of the
key elements behind ATT-CMUnited-2000, one of the three
teams that �nished ahead of CMUnited-99 in RoboCup-
2000. Playing against CMUnited-99, ATT-CMUnited-2000

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

wins by an average score of 2.5{0.3 in 10-minute games: it
scores an average of about 8 goals per opponent goal.
ATT-CMUnited-2000 is based on CMUnited-99 but with

a variety of innovations. First, we use an option-evaluation
architecture for controlling the player with the ball. In this
architecture an option is an object (in the object-oriented
programming sense) which can be scored and can be exe-
cuted. The architecture simply selects the option with the
highest score and executes it. The use of objects to represent
options allows a �xed architecture to operate over a wide va-
riety of di�erent kinds of options. In ATT-CMUnited-2000

the options include, among others, passing and shooting.
The option-evaluation architecture and the general theory
of option scoring is described in Section 2.
A second innovation is the introduction of leading passes

| the ability to pass the ball at an oblique angle to the
intended receiver (as opposed to passing only directly to
the receiver). Because we allow leading passes, hundreds of
di�erent pass options are considered for the same intended
receiver.
A third innovation is the development of an eÆcient nu-

merical algorithm for computing interception times. The
interception time of a given player and a given pass (initial
kick) is the time required for that player to reach the ball
assuming it continues on its initial path. A pass option is
determined by the initial kick | the initial direction and ve-
locity of the passed ball. The intended receiver is simply the
teammate with the earliest interception time for that kick.
The key opponent is the opponent player with the earliest
interception time. The safety margin is the di�erence be-
tween these two interception times. In order to compute
safety margins for hundreds of passes it is necessary to do
thousands of interception time calculations. While in pos-
session of the ball, e.g., while dribbling, these thousands of
interception times are calculated on each cycle of the simula-
tion (100 milliseconds). To make this computation feasible
we use a continuous-time modi�ed Newton method which
provably converges on the minimum interception time and
converges in practice in four or �ve numerical iterations.
This algorithm is described in Section 3.
A fourth innovation is the use of force �elds to control

the motion of players not with the ball. The force �eld
control is described in Section 4. Related work is discussed
in Section 5.

2. AN ARCHITECTURE FOR ACTION
SELECTION

An option is something that can be scored (evaluated)
and executed. In our C++ implementation we have a gen-
eral class for options with various di�erent subclasses cor-
responding to di�erent kinds of options for activities such
as passing, dribbling, and shooting. When a player has the
ball, it considers many options and executes the one with
the highest score.
In this architecture it is important that the scores be com-

parable, e.g., if a certain shooting option has a higher score
than a certain passing option then one would hope that the
shooting option is really \better". From a theoretical per-
spective, option scores are best understood as expected re-
wards in the sense of reinforcement learning [8]. One might
say, for example, that a goal achieves a reward of 1000 and
an opponent goal gives a reward of -1000. The idealized
score of an option can be de�ned to be the expected re-
ward in, say, the next 30 seconds of play if that option is
taken. If one could really compute this idealized score then
one would have con�dence that higher scoring options are
really better. In practice, of course, it is not possible to ex-
actly calculate the expected reward for a given option and in
our implementation we use hand-written scoring functions.
However, the intended semantics of the score | expected
reward | provides conceptual guidance when writing the
scoring functions.
We score a pass or shot option by calculating a probability

that the option is successful | that the pass is completed
or that the shot scores a goal. The score of the option is
then of the form psvs + (1 � ps)vf where ps is the proba-
bility of success and vs and vf are the values of succeeding
and failing respectively. Although our value functions are
currently hand-written, it would be natural to have agents
learn the probabilities ps and values vs and vf as a function
of features of the current position. We leave this learning for
future work. Automated learning of value functions should
make it easier to \calibrate" the values such that, for ex-
ample, pass values can be meaningfully compared with shot
values. This calibration across di�erent kinds of options
seems diÆcult for hand written scoring functions.

2.1 Soft Boolean Expressions
We use hand written functions for scoring options and for

computing the force �elds described in Section 4. In our ex-
perience it seems that continuous functions are preferable to
functions with discontinuous steps. We have found that cer-
tain primitives are quite useful in writing continuous func-
tions that are easy to understand qualitatively. The basic
idea is to replace Boolean expressions with \soft" functions.
We do not intend our use of soft or \fuzzy" Boolean ex-
pressions to have any deep philosophical signi�cance. We
simply want a way of writing easily understood continuous
functions.
For example, rather than compute the Boolean value x <

y we use x <Æ y which is a real number in the interval [0; 1]
and is de�ned as follows.

x <Æ y � s((y � x)=Æ)

s(x) � 1=(1 + e�x)

Here s(x) is the sigmoid function | we have s(x) 2 [0; 1];
s(0) = 1=2; s(x) � 0 for x << 0; and s(x) � 1 for x >> 1.

So if y� x is large compared to Æ then x <Æ y is near 1 and
if x� y is large compared to Æ then x <Æ y is near 0.
We also use a soft or fuzzy version of conditional expres-

sions. In particular, we de�ne the function if� as follows.

if
�(p; x; y) � px+ (1� p)y

Here we assume p 2 [0; 1] and for p � 1 we have if�(p; x; y) �
x and for p � 0 we have if�(p; x; y) � y. We often write
expressions of the form if�(x <Æ y; z; w).

2.2 Pass Options
CMUnited-99 players only consider passing the ball di-

rectly to teammates at a velocity such that the ball will be
moving at a �xed target velocity when it reaches the in-
tended receiver [5]. Thus, there are at most 10 passes to
consider at any given time (1 to each teammate). On the
other hand, ATT-CMUnited-2000 considers passing the ball
in arbitrary directions and at arbitrary velocities. There are
potentially in�nitely many possible passes.
In practice, ATT-CMUnited-2000 considers passing the ball

at discreet angle increments (4o by default) and speed in-
crements (0:2m=sec by default). For each angle-speed pair,
ATT-CMUnited-2000 begins by determining which teammate
and opponent would be quickest to intercept the ball were
the ball to be propelled from its current position at the given
angle and speed.
Let It be the minimum time it would take a teammate

to intercept the hypothetical pass, and let Io be the corre-
sponding time for opponents. Our formula for computing
the probability that the pass succeeds is the following.

ps = if
�(It <

5 Io; :9; 0)

That is, the larger the margin between the teammate's and
the opponent's interception times, the higher the probability
of success for the pass.
The success value vs is determined by the location at

which the teammate would intercept the hypothetical pass.
In ATT-CMUnited-2000 vs is a simple function over ball po-
sition that increases as the ball advances towards the op-
ponent's end-line, with strong attraction points at the op-
ponent's goal and the corners adjacent to their goal. Thus,
down-�eld passes are favored, and the team is particularly
encouraged to move the ball towards the corners or towards
the opponent's goal. For the pass option, vf is taken to be
zero.
The calculations of ps, vs and vf are clearly heuristic. For

example, as is described in Section 3, interception time cal-
culations assume that the players move at constant velocity
in the ideal direction from the moment the ball is kicked.
This assumption can be modi�ed by manipulating the as-
sumed player velocity as well as assuming that players wait
a certain amount of time before noticing the ball's trajectory
and starting to move towards it. In order to be conservative
about passing decisions, ATT-CMUnited-2000 assumes that
the opponents can move faster and react more quickly than
teammates.
The calculation of vs is unrealistic in that it considers only

the ball's position. In reality, the con�guration of players on
the �eld plays a large role in the value of the resulting state
after a pass.
Even with these simplifying assumptions, qualitatively

ATT-CMUnited-2000 is often able to pass the ball in such
a way that teammates can \run on" to it and such that the

ball advances towards the opponent's goal when possible,
but away from the goal when such a pass has a signi�cantly
higher probability of success.

2.3 Shot Options
In addition to considering hundreds of pass options, the

player with the ball must also consider the possibility of
shooting, particularly when it is near the opponent's goal.
A separate option is needed for this action due to the fact
that the value of ps does not depend on teammates being
able to intercept the ball. It only relates to whether an
opponent can intercept the ball before it reaches the goal.
As such, let Ip be the nearest point at which an opponent

can intercept the ball. If Ip is o� the �eld (i.e. the ball
would have to enter the goal to get to Ip), then let d = 0.
Otherwise, let d be the distance from Ip to the opponent's
goal. Then the success probability ps is calculated as follows.

ps = 1�Max(0;Min(1;
d+ 1

2
))

That is, the closer the opponent's interception point is to
the front of the goal, or the further within the goal the
interception point, the higher the probability that a goal
will be scored. If the opponent could only intercept the
ball once it's more than 3 meters within the goal, then we
take ps to be 1. This conservative parameter setting is due
to the fact that if the goalie does reach the ball in time, it
catches the ball and is freely able to clear it, thus ending the
entire goal-scoring opportunity. In general, if there are good
passes available, it is best to shoot only when the likelihood
of scoring is very high.
The success value vs for the shot option is a �xed number

that is relatively large in the context of the value function
used for pass options: a successful goal is the ultimate re-
ward possible in this domain. Again vf is taken to be zero.
Like in the case for pass options, the player can consider

several shot options, each representing a shot to a di�er-
ent part of the goal. The relative merits of the di�erent
shot options are easily comparable. However, comparing
the relative merits of a shot option and a pass option is
not nearly as straightforward. Changing the success value
for the shot option, an arbitrary parameter, can drastically
a�ect an agent's selected option.

2.4 Other Options
Due to the diÆculty in comparing di�erent types of op-

tions, we sought to limit the number of types used, focusing
most of the agent's computational resources on evaluating
pass (and shot) options. Other option types that we imple-
mented include

Dribble options: A player might consider dribbling the
ball rather than passing it. Note, however that drib-
bling can be considered a pass with low velocity such
that the kicker is also the receiver.

Hold-ball option: A player can consider standing still with
the ball, just keeping it from the opponents and wait-
ing for a passing opportunity to develop.

Clear option: In the defensive zone, it is often useful to
simply kick the ball away from the goal such that the
opponents can't get it, but without any consideration
for whether a teammate can receive the ball.

Send ball option: Similar to the clear option, except that
the goal is to get the ball into the opponent's zone
(typically towards a corner) rather than away from
one's own goal.

Cross option: When a teammate has the ball in the cor-
ner, it is often e�ective to kick the ball hard across
the front of the goal (to cross the ball). Even though
the pass option might evaluate this option unfavorably
if several opponents are nearby, the fact that the ball
ends up bouncing around in front of the goal can often
lead to unpredictable, e�ective shots.

Although we implemented functions for calculating ps, vs
and vf for each of these options, we limited ATT-CMUnited-

2000 to considering pass options, shot options, and the clear
option. Perhaps more option types could be considered con-
junctively provided the values of ps, vs and vf were learned
on-line so as to more faithfully represent actual success prob-
abilities and expected rewards.

2.5 Players Without the Ball
A crucial requirement for a soccer team|perhaps more

crucial than the decision of what to do with the ball|is an
e�ective mechanism for teammate positioning when not in
possession of the ball. Defensive and o�ensive goals must be
balanced, and teammate and opponent actions must be an-
ticipated. ATT-CMUnited-2000's defensive behavior is based
mostly on that of CMUnited-99 [5]. However, when on of-
fense, ATT-CMUnited-2000 takes advantage of the keepaway
behavior described in Section 4. Under the assumption that
the team will be able to generate scoring chances as long as
it maintains possession consistently near the opponent goal,
at least 5 o�ensive players, in addition to the one with the
ball, move to give the player with ball passing alternatives.
Since we observed that goals are often scored against good

teams by crossing the ball across the front of the goal to
players in the center, at least two supporting o�enders move
directly to the front of the goal whenever a teammate gets
possession of the ball near an o�ensive corner of the �eld.
The rest of these o�ensive players move according to a force-
�eld-based supporting-ball behavior de�ned in Section 4.

2.6 Results
The resulting team is able to consistently and signi�-

cantly outperform the RoboCup-99 champion, CMUnited-
99. While CMUnited-99 is only able to score about 1 goal
every three games against itself (an average �nal score of
roughly 0.3{0.3), ATT-CMUnited-2000 defeated CMUnited-
99 by an average score of 2.5{0.3 (roughly an 8{1 margin)
over the course of 56 games1.
Although the competition is not a controlled testing envi-

ronment, it is also signi�cant to note that ATT-CMUnited-

2000 was one of only 3 teams out of 34 to �nish ahead
of CMUnited-99 at RoboCup-2000, despite the fact that
CMUnited-99 was publicly available for almost a full year
prior to the event. The fact that the low-level skills used by

1The version of ATT-CMUnited-2000 described in this paper
is not precisely the one used at RoboCup-2000. The compe-
tition version included an additional independent improve-
ment, created by Patrick Riley that improves performance
against CMUnited-99 to 2.6{0.2 on average (measured over
33 games). Manuela Veloso was also a co-creator of the
overall competition version of ATT-CMUnited-2000.

ATT-CMUnited-2000 are almost identical to those of CMUnited-
99 suggests that the action selection architecture described
herein is responsible for the improved performance.

3. COMPUTING INTERCEPTION TIMES
In addition to the option-based architecture for action se-

lection, a second innovation embodied in ATT-CMUnited-

2000 is an eÆcient numerical algorithm for computing the
time it will take a given player to intercept a moving ball.
As mentioned in the introduction, for a given kick, i.e.,

initial ball direction and velocity, and a given player (ei-
ther teammate or opponent), the interception time of that
player for that kick is the least time required for that player
to reach the ball assuming that the ball is not kicked again
in the meantime. In scoring hundreds of pass options the
system must compute thousands of interception times. Fur-
thermore, these thousands of interception time calculations
are done on each simulation cycle while a teammate is con-
trolling the ball. The implementation can perform tens of
thousands of interception time calculations per second.
CMUnited-99 includes a computationally-intensive method

of computing interception times based on a discrete time
model (one time tick per simulation cycle) and including
simulations of the player's discrete turn and run actions.
This calculation takes into account the details of the ac-
tual soccer server [1, 7]. In CMUnited-99 this interception
time calculation is only used for actually going to the ball
and is not used for evaluating pass options. For this ap-
plication, an expensive accurate calculation is appropriate.
ATT-CMUnited-2000 also uses the slower, more accurate cal-
culation when actually going to the ball, e.g., when receiving
a pass. However, for evaluating pass options a less exact cal-
culation can be used. In evaluating passes ATT-CMUnited-

2000 computes interception times assuming that time is con-
tinuous and that players can run at a �xed velocity. The de-
tails of the numerical algorithm for computing interception
times under these assumptions are presented in Appendix A.
The algorithm is a modi�ed Newton's method that provably
converges to the correct interception time. This convergence
is nontrivial since the interception time is the least root of a
certain nonlinear function having up to three separate roots.
The algorithm for computing interception times and a proof
of convergence to the desired root are given in the appendix.

4. FORCE FIELD CONTROL
Another innovation in ATT-CMUnited-2000 is a force-�eld-

based method for controlling players that don't have posses-
sion of the ball.
While the team is in control of the ball, the teammates

that do not have possession of the ball move in a direction
speci�ed by a controlling \force �eld." The �elds used in
ATT-CMUnited-2000 were developed for a simpli�ed \keep-
away" game. There are two reasons for developing these
�elds for this simpli�ed game. First, it is much easier to mea-
sure performance in a keepaway game than in the full game.
Consequently, a hill-climbing approach to program develop-
ment is more feasible and high performance programs can
be developed more rapidly. Second, a team that can hold
the ball for extensive periods of time close to the opponent's
goal is likely to have more scoring opportunities than the op-
ponents. So good performance in keepaway should translate
into good performance on the full game.

Our results on the keepaway task show, not surprisingly,
that the motion of players supporting the ball, i.e., o�ensive
teammates other than the one in control of the ball, has an
important e�ect on overall performance. Furthermore, force
�eld control seems to be an e�ective method of controlling
the supporting players.

4.1 The Keepaway Task
For the keepaway experiments, we used a modi�ed version

of the RoboCup soccer server [2]. In the keepaway task
there is a distinguished o�ensive team and a distinguished
defensive team. The game is played in a series of \trials."
At the beginning of a trial, the ball is placed next to the
most open o�ensive player, i.e., the player farthest from the
nearest defensive player. The trial lasts until a defensive
player gains control of the ball (is within kicking range of
the ball for half a second); the ball is passed in a way that
violates the o�sides rule; or the ball goes out of bounds.
When one trial ends a new trial is started by moving the
ball to the most open o�ensive player.
A �rst objective for the o�ensive team is to hold the ball

for as long as possible, i.e., to make each trial last as long
as possible. A second objective is to move the ball as far
down-�eld as possible. In the experiments described here,
the players are assigned random positions at the start of the
�rst trial. However, the runs are suÆciently long that per-
formance is dominated by an \equilibrium" player position-
ing achieved after the �rst few trials. The keepaway game
has no rules other than those ending a trial as described
above. When the defensive team (CMUnited-99) gains pos-
session of the ball, it simply holds the ball in order to end
the trial, rather than trying to pass and score. Otherwise,
the CMUnited-99 team plays as it would in tournament play,
which includes trying to take the ball away from the o�en-
sive team.
It is possible to use CMUnited-99 as the o�ensive as well

as the defensive team. When playing keepaway against
itself, CMUnited-99 has an average possession time (trial
length) of about 6 seconds. Many variants of our new pro-
gram for playing keepaway achieve an average possession
time against the CMUnited team of about 25 seconds. One
of these variants achieves an average possession time of about
25 seconds and an average ball position about 25 meters
from the opponent's end of the �eld.

4.2 The Basic Keepaway Program
The players in the keepaway experiments are built using

CMUnited-99 agent skills [5] as a basis. In particular, their
skills include the following:

HoldBall(): Remain stationary while keeping possession of
the ball in a position that is as far away from the op-
ponents as possible.

PassBall(t): Kick the ball directly towards teammate t.

GoToBall(): Intercept a moving ball or move directly to-
wards a stationary ball.

In each of the keepaway programs described here, each of-
fensive player is always in one of three modes: \with-ball",
\going-to-ball", or \supporting-ball". The player is in with-
ball mode if it is within kicking distance of the ball. If no
o�ensive player is within kicking distance then the o�ensive
player that can reach the ball the soonest (as determined by

a CMUnited-99 primitive) is in going-to-ball mode. Since
each player is actually run by a separate process, each player
must decide separately what mode it is in. Because of sens-
ing errors, occasionally two players will both think they can
each reach the ball soonest and both go into going-to-ball
mode. But this is rare and one can generally think of mode
assignment as being centrally determined.
In all of the keepaway teams described here, the with-

ball player either executes HoldBall() or PassBall(). When
a pass is kicked, the receiver generally becomes the player
which can reach the ball the soonest and automatically goes
into going-to-ball mode. The player in going-to-ball mode
executes GoToBall(): its behavior is identical to that of the
CMUnited-99 players in this mode.
In the experiments presented in Section 4.3 the with-ball

player is controlled with a somewhat elaborate heuristic.
However, based on our experience with controlling the with-
ball player, we believe that this elaborate heuristic achieves
roughly the same performance as always passing the ball
immediately and selecting the receiver that maximizes the
minimum angle between the pass and a defensive player no
further from the ball than the intended receiver. In the
experiments described here we hold the with-ball behavior
�xed so that all of the performance di�erences we observe are
a result of di�ering behaviors of the players in supporting-
ball mode.
In all versions of the program described here, the move-

ments of the supporting-ball players are controlled by force
�elds | each supporting-ball player moves in the direction
of a sum of vector �elds. Players are kept in bounds with
a �eld that repels the players from the out of bounds lines.
This bounds-repellent �elds becomes in�nitely strong as a
player approaches an out-of-bounds line. More speci�cally,
the bounds-repellent �eld is de�ned as follows where Bx and
By are the x and y coordinates of the �eld, x and y are the
player's current x and y coordinates, and xmin, xmax, ymin

and ymax de�ne the in-bounds region.

Bx = 5=(x� xmin)� 5=(xmax � x)

By = 5=(y � ymin)� 5=(ymax � y)

In general we arrange that a given �eld will tend to dominate
other �elds if it has a magnitude large compared to 1. The
constant 5 in the above equation causes the out-of-bounds
�eld to become strong if a player is within �ve meters of the
edge of the playing �eld. At ten meters or further from any
edge the bounds-repellent �eld is weak.
There is also an o�sides-repellent �eld that operates much

like the bounds-repellent �eld to keep players onsides. This
o�sides-repellent �eld acts only on the x coordinate of the
player and is de�ned as follows where Ox is the x coordinate
of the force �eld and xo� is the x coordinate of the o�sides
line.

Ox � if
�((xo� � x) <1 5; �5; 0)

This fairly complex formula expresses a rather simple idea.
If the player is signi�cantly less than �ve meters from the
o�sides line then the force �eld pushes the player away with
a force of �ve. If the player is signi�cantly more than �ve
meters from the o�sides line then the force �eld is negligible.
The �eld varies continuously from a negligible value to a
value near 5 as the player crosses a line �ve meters from the
o�sides line.

In general, we decided to try to make all �elds continuous
functions of the game situation and many of our �elds are
written in terms of soft Boolean expressions such as x <Æ y
and if�(p; x; y) as described in Section 2.1.
In addition to the bounds-repellent and o�sides-repellent

force �elds, there are force �elds between players. For a
given o�ensive player, there is a strategic inter-player force
due to teammate i, denoted Si, and de�ned as follows where
di is the distance (in meters) to teammate i and Ui is the
unit vector pointing in the direction to teammate i (all from
the perspective of a player calculating forces on itself due to
its teammates).

Si � [(di =
10 20) � 2(di <

10 20)]Ui

(x =Æ y) � e�(x�y)2=Æ2

The above is a limited range force �eld | the strategic
force is negligible when signi�cantly further away than 20
meters. The strategic force is attractive between players
slightly more than 20 meters apart and repulsive for players
closer than 20 meters apart. The basic idea is that play-
ers should be within passing distance of each other but far
enough apart so that a pass between them would move the
ball a signi�cant distance. Note that Si is a continuous
function of di and Ui.
Players near the ball are inuenced by two tactical inter-

player force �elds. The �rst, Ti, is a purely repulsive force
between the o�ensive players. The second tactical force �eld,
the get-clear force, denoted C, pushes a potential receiver
away from defenders. The force Ti is de�ned as follows where
again di is the distance to teammate i and Ui is the unit
vector in the direction of teammate i.

Ti � if
�(di <

3 8; �5; 0)Ui

Note that Ti is again a continuous function of di and Ui.
The get-clear force is calculated by �rst selecting a \key de-
fender" | the defensive player most likely to intercept a
pass from the current pall position. The get-clear force is in
the direction orthogonal to the line from the ball to the key
defender. The strength of the force is governed by an esti-
mate of the probability that the key defender would actually
intercept the pass. The precise magnitude and direction for
the get-clear force is somewhat complex and could proba-
bly be simpli�ed without inuencing the performance of the
program. We do not present it here. It is worth noting, how-
ever, that since the choice of the key defender can suddenly
switch as the game con�guration changes, the get-clear force
can suddenly switch directions. Attempts to make the get-
clear force continuous appeared to degrade performance.
Intuitively, the strategic forces apply to players far from

the ball and the tactical forces apply to players near the ball.
The shift from \near" to \far" is done smoothly. The overall
force on a supporting-ball player, denoted F is de�ned as
follows where S is the sum over teammates i of Si, T is the
sum over teammates i of Ti, and db is the distance of the
player from the ball.

F � B +O + if
�(db <

10 20; T + C; S)

The components of F are illustrated in Figure 1.
A supporting-ball player always tries to run, as fast as

possible, in the direction of the combined force F . If it
is not currently facing in a direction suÆciently near the
direction of F then the player turns toward the direction of

Offsides
line

B

B

BOB
T

C

Teammate Opponent

S

Figure 1: The component forces of F .

Program Possession Time Mean Ball x Position
CMUnited 5.7-6.6 -19.5

S 16.9-18.7 -33.6

S + Sb 24.8-27.9 -35.9

S + Sd 22.2-25.2 25.7

S + Sb + Sd 23.7-26.8 26.6

Table 1: O�ensive possession time and average x po-
sition of the ball when the o�ensive team is CMU-
nited and four variations of the basic program. The
defensive team is CMUnited in all cases.

F . It turns out that when F is smaller, its direction changes
more rapidly and the player spends more time turning and
less time running.

4.3 Variations on the Basic Program
Here we consider two additional strategic force �elds for

controlling the supporting-ball players. The toward-ball strate-
gic force Sb is a force of unit magnitude directly toward the
ball. This force pushes supporting-ball players that are far
from the ball toward the ball. The forces repelling play-
ers from each other, S and T , keep them from bunching
up around the ball. The down-�eld strategic force, Sd, is a
force of unit magnitude directly toward the opponents end
of the �eld. In all of the variations of the program consid-
ered here, the total �eld controlling a supporting-ball player
has the following form where the strategic �eld S� is one of
the �elds, S, S + Sb, S + Sd or S + Sb + Sd.

F � B +O + if
�(db <

10 20; T + C; S�)

The possession time and average x position of the ball
for CMUnited and the four variations of the basic program
are shown in table 1. The possession time is given as a
\95% con�dence interval" de�ned by the mean possession
time over a sequence of trials plus or minus 2�=

p
n where

� is the observed standard deviation of the possession time
of a trial and n is the number of trials in the run. Since
the trials are not really independent, these intervals should
perhaps be somewhat wider.
The results show that the choice of �elds controlling the

supporting players can have a dramatic e�ect on perfor-
mance. Furthermore, force �eld control seems e�ective on

the keepaway task. Our full game implementation divides
supporting players into those moving directly to the front of
the goal in anticipation of receiving a cross, and those pro-
viding \generic support". The generic support players are
controlled by the �eld S + Sb + Sd.

5. RELATED WORK
Previous research has explored action generation via vec-

tor sums. For example, the Samba control architecture [3]
uses two behavior layers: the reactive layer which de�nes
action maps from sensory input to actuator output; and the
task layer which selects from among the action maps. In the
robotic soccer application, a vector sum of action maps is
used to determine the player's actual motion. In this case,
the vector sum is not of forces, but of low-level actions.
A previous force-�eld approach considering sums of at-

tractive and repulsive forces among players and the ball is
called strategic positioning using attraction and repulsion,
or SPAR [10]. In contrast to our work reported here, these
forces were only active over limited regions of the �eld, and
boundaries, such as out-of-bounds and o�sides, were treated
as hard constraints. SPAR was implemented both in simu-
lation and on real robots.
A di�erent variant of the keepaway task, involving just

3 o�enders and 2 defenders, was reported in [6]. In that
case, the actions of the o�enders were successfully learned
via reinforcement learning.

6. CONCLUSION
Innovations in ATT-CMUnited-2000 include

� a general method for considering and selecting from
among options when in possession of the ball;

� the ability to pass the ball at an oblique angle to the
intended receiver (as opposed to passing only directly
to the receiver);

� an eÆcient numerical algorithm for computing the time
required for a given player to intercept a ball at a given
position and velocity; and

� force-�elds for governing player motion when they are
not in possession of the ball.

These innovations enable ATT-CMUnited-2000 to improve
signi�cantly over the performance of the team on which it
is based, CMUnited-99. While the action selection archi-
tecture played a big role in this improvement, it required a
tedious manual parameter-tuning phase.
The architecture was motivated by a desire to facilitate

reinforcement learning over a larger, more exible action
space than has previously been considered in the simulated
robotic soccer task [4]. Our future research agenda includes
the exploration of on-line reinforcement learning techniques
for combining several di�erent types of action options in a
consistent manner using this novel action-selection architec-
ture.

7. REFERENCES
[1] H.-D. Burkhard, M. Hannebauer, and J. Wendler. AT

Humboldt | development, practice and theory. In
H. Kitano, editor, RoboCup-97: Robot Soccer World

Cup I, pages 357{372. Springer Verlag, Berlin, 1998.

[2] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer
server: A tool for research on multiagent systems.
Applied Arti�cial Intelligence, 12:233{250, 1998.

[3] J. Riekki and J. Roening. Playing soccer by modifying
and combining primitive reactions. In H. Kitano,
editor, RoboCup-97: Robot Soccer World Cup I, pages
74{87. Springer Verlag, Berlin, 1998.

[4] P. Stone. Layered Learning in Multiagent Systems: A
Winning Approach to Robotic Soccer. MIT Press,
2000.

[5] P. Stone, P. Riley, and M. Veloso. The CMUnited-99
champion simulator team. In M. Veloso, E. Pagello,
and H. Kitano, editors, RoboCup-99: Robot Soccer
World Cup III, pages 35{48. Springer Verlag, Berlin,
2000.

[6] P. Stone, R. S. Sutton, and S. Singh. Reinforcement
learning for 3 vs. 2 keepaway. In P. Stone, T. Balch,
and G. Kraetszchmar, editors, RoboCup-2000: Robot
Soccer World Cup IV, Berlin, 2001. Springer Verlag.
To appear.

[7] P. Stone, M. Veloso, and P. Riley. The CMUnited-98
champion simulator team. In M. Asada and
H. Kitano, editors, RoboCup-98: Robot Soccer World
Cup II. Springer Verlag, Berlin, 1999.

[8] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press,
Cambridge,Massachusetts, 1998.

[9] M. Veloso, E. Pagello, and H. Kitano, editors.
RoboCup-99: Robot Soccer World Cup III. Springer
Verlag, Berlin, 2000.

[10] M. Veloso, P. Stone, and M. Bowling. Anticipation as
a key for collaboration in a team of agents: A case
study in robotic soccer. In Proceedings of SPIE Sensor
Fusion and Decentralized Control in Robotic Systems

II, volume 3839, Boston, September 1999.

APPENDIX

A. INTERCEPTION TIME CALCULATIONS
In this section we detail an eÆcient numerical algorithm

for computing the time it will take an agent to intercept a
moving target assuming that time is continuous and that the
agent moves at a �xed velocity. We prove that the algorithm
converges to the correct interception time.
For an arbitrary ball position B0, initial ball velocity V0

and receiver position R0, we de�ne the interception time
I(B0; V0; R0) to be the least time required for the receiver
to reach the ball assuming the receiver can run at a �xed
velocity of VR starting immediately and that the ball contin-
ues in its current direction with instantaneous velocity after
time t from the initial position given by V = V0e

�t=� . The
receiver velocity Vr is taken to be the maximum player veloc-
ity in the simulator | 1m=s. The velocity decay parameter
� is adjusted to match the soccer server at the discrete sim-
ulation times | � � 2s. This de�nition of I(B0; V0; R0)
abstracts away from the discrete time nature of the soccer
server and also abstracts away from the turning and accel-
eration time of the receiver. However, this abstraction al-
lows I(B0; V0; R0) to be calculated eÆciently using relatively
simple oating point numerical methods. Furthermore, it
is possible to compensate in various heuristic ways for the
turning and acceleration time required by the receiver.

To calculate I(B0; V0; R0) we �rst note that position of
the ball after time t, which we will denote as P (t), can be
written as follows.

P (t) = B0 + V0� (1� e�t=�) (1)

The interception time satis�es the condition that the dis-
tance the receiver can travel during the interception time
equals the distance between the initial receiver position and
the ball position at the interception time. This condition
can be written as follows where jjXjj denotes the length of
vector X.

Vrt = jjR0 � P (t)jj (2)

We wish to calculate the least value of t satisfying condi-
tion (2). The basic idea is to use Newton's method to �nd
a root of (2). The problem is that condition (2) often has
three di�erent roots. More speci�cally, for a fast moving ball
passing nearby there is an earliest and a latest time the ball
can be reached as it passes. There is also the earliest time
the ball can be reached if we let it pass and then catch up
with it as it slows down. All three of these times satisfying
condition (2) and we want to �nd the earliest time satisfying
the condition.
Our numerical algorithm is a Modi�cation of Newton's

method in which we start with a value of t0 and iteratively
compute ti+1 from ti. Our rule for computing ti+1 from
ti ensures that if t0 is no larger than the interception time
then the in�nite sequence t0, t1, t2, : : : is monotonically
increasing and converges to the interception time, i.e., the
least solution to (2). In practice, however, we can stop the
iteration as soon as the two distances in equation (2) agree to
within, say, a tenth of a meter. In general, this termination
condition will be reached within three or four iterations |
the calculation is quite fast and can therefore be used many
times per simulation cycle.
We set t0 to be the d=Vr where d is the distance from

R0 to the line de�ned by the point B0 and the vector V0.
Clearly the receiver cannot reach the ball any sooner than
the time required for the receiver to reach the line on which
the ball travels.
To formulate the problem in a way appropriate for New-

ton's method we �rst de�ne g(t) as follows.

g(t) = jjP (t)�R0jj � Vrt (3)

Now condition (2) can be written as g(t) = 0. Note that g(t)
is the distance between the receiver and the ball at time t
if the receiver were to run directly toward the point P (t).
The standard Newton's method update sets ti+1 to be si+1

as de�ned by the following equation.

si+1 = ti � g(ti)=g0(ti) (4)

Note that if g(ti) is positive and g(t) is decreasing as t in-
creases then the derivative g0(ti) is negative and this update
yields si+1 � ti. Unfortunately, for the particular function g
under consideration, it is possible that there is a local mini-
mum of g(t) prior to the desired interception time. Past this
local minimum it is possible that both g(ti) and g0(ti) are
positive in which case the update (4) yields si+1 < ti. If we
always set ti+1 equal to si+1 we might oscillate about this
non-root local minimum. If the interception occurs as the
receiver is overtaking a ball that is slowing down, it is also
possible for the standard Newton iteration de�ned by (4)

to overshoot, i.e., we get an si+1 larger than the desired
interception time.
Before giving a modi�ed update with the desired conver-

gence properties we �rst give an expression for the derivative
g0(t). Di�erentiating (3) yields the following where U(t) is
the unit vector in the direction from R0 to P (t).

g0(t) =
P 0(t) � (P (t)�R0)

jjP (t)�R0jj � Vr

= (e�t=�V0 � U(t)� Vr) (5)

If jjP (t)� R0jj is zero then the ball has reached the initial
position of the receiver. This cannot happen before the in-
terception time. Hence, before interception we can assume
that jjP (t)�R0jj is nonzero and hence U(t) is a well de�ned
unit vector. We can now rewrite equation (4) as follows.

si+1 = ti + g(ti)=(Vr � e�ti=�V0 � U(ti)) (6)

Our update rule is the following where si+1 is de�ned by
equation (6).

ti+1 =

8>>>><
>>>>:

ti + g(ti)=(Vr � e�ti=�V0 � U(ti)) if V0 � U(t) < 0

ti + g(ti)=(Vr � e�ti=�V0 � U(si+1)) if V0 � U(t) > 0 and g0(ti) < 0

ti + g(ti)=Vr otherwise

We now prove that ti+1 � ti, ti � I(B0; V0; R0), and ti

converges to I(B0; V0; R0). If V0 equals zero then we take
the last condition in the update equation which computes
the interception time in a single step (all further iterations
do nothing). So we can now assume without loss of gener-
ality that V0 is nonzero. Let R? be the point on the line
on which the ball is traveling that is nearest to the initial
receiver position R0. Recall that the time t0 is the time
required for the receiver to move from R0 to R?. First we
consider the case where the ball has not yet reached R? at
the time t0. This occurs if and only if V0 � U(t0) < 0. In
this case the receiver can reach the ball before it reaches
R?. As long as the ball has not passed the R? the quantity
V0 �U(t) is negative and adds to magnitude (absolute value)
of g0(t). Furthermore, in this case the magnitude of the term
V0�U(t) is getting smaller with time. This implies that, when
the interception point is prior to R? the magnitude of g0(t)
is decreasing with time over the region preceding the root
but is never smaller than Vr. When the magnitude of the
derivative is decreasing as we move toward the root, but
is still bounded away from zero, Newton's method has all
the desired properties mentioned above. When the inter-
ception point is before R? the update rule always uses the
�rst clause and corresponds exactly to the classical Newton's
method and hence all the desired properties hold.
If V0 �U(t0) = 0 then the receiver and the ball reach R? at

the same time. In this case t0 is the interception time and we
are done. Now suppose that V0 � U(t0) > 0. In this case the
ball is past the point R? by the time it takes the receiver to
reach R?. In this case the interception point is beyond R?

and, intuitively, the receiver must catch up with the ball as
it slows down. In this case V0 �U(t) > 0 is an invariant of the
updates and the derivative g0(t) is always greater than �Vr.
So in the case where the ball is past R? at t0 the third clause
of the update rule can never overshoot the interception time.
Furthermore, if we always used the third update rule we

would converge on the interception time. This is because
the steps are always positive and, since we never passed the
interception time, the step size must approach zero. But the
step size can only approach zero if g(t) approaches zero so
we must approach the interception time. The second clause
always takes a step as least as large as the last clause. So as
long as the second clause never overshoots the interception
time, the sequence must converge on the interception time.
Note that for V0 � U(t) > 0, this quantity monotonically
increases with time. The fact that V0 � U(t) is increasing
implies that in the case where the second clause is selected
we have ti+1 � si+1. Furthermore, for t 2 [ti; si+1] we have
the following.

�g0(t) � Vr � e�ti=�V0 � U(si+1) (7)

Since equation (7) bounds g0(t) over the interval of the up-
date, we have that the update of the second clause cannot
overshoot the root.

