
In The Nineteenth National Conference on Artificial Intelligence (AAAI 2004),
pp. 611-616, San Francisco, CA, July 2004.

Machine Learning for Fast Quadrupedal Locomotion
Nate Kohl and Peter Stone

Department of Computer Sciences, The University of Texas atAustin
1 University Station C0500, Austin, Texas 78712–1188

{nate,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/˜{nate,pstone}

Abstract
For a robot, the ability to get from one place to another is
one of the most basic skills. However, locomotion on legged
robots is a challenging multidimensional control problem.
This paper presents a machine learning approach to legged
locomotion, with all training done on the physical robots.
The main contributions are a specification of our fully auto-
mated learning environment and a detailed empirical compar-
ison of four different machine learning algorithms for learn-
ing quadrupedal locomotion. The resulting learned walk is
considerably faster than all previously reported hand-coded
walks for the same robot platform.

Introduction
The ability to deploy a fully autonomous robot in an un-
structured, dynamic environment (the proverbialreal world)
over an extended period of time remains an open challenge
in the field of robotics. Considerable progress is being made
towards many components of this task including physical
agility, power management, and on-board sensor technol-
ogy. One such component that has drawn considerable in-
terest recently is the ability for a robot to autonomously
learn to improve its own performance (Nget al. 2004;
Bagnell & Schneider 2001; Zhang & Vadakkepat 2003). De-
spite this interest, considerable work remains due to the dif-
ficulties associated with machine learning in the real world.

Compared to other machine learning scenarios such as
classification or action learning in simulation, learning on
physical robots presents several formidable challenges, in-
cluding the following.
Sparse Training Data: It is often prohibitively difficult to

generate large amounts of data due to the maintenance
required on robots, such as battery changes, hardware re-
pairs, and, usually, constant human supervision. Thus,
learning methods designed for physical robots must be ef-
fective with small amounts of data.

Dynamical Complexity: The dynamics of many robotic
control tasks are too complex for faithful simulation to
be possible. Furthermore, robots are inherently situated
in an unstructured environment with unpredictable sen-
sor and actuator noise, namely the real world. Thus, even
when off-line simulation is possible, it can never be fully
reflective of the target environment.
In this paper, we overcome these challenges for one con-

crete complex robot task, namely legged locomotion. Using
a commercially available quadruped robot, we fully auto-
mate the training process (other than battery changes) and

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

employ machine learning algorithms that are sufficiently
data efficient to enable productive learning on physical
robots in a matter of hours. The resulting learned walk is
considerably faster than all previously reported hand-coded
walks for the same robot platform.

This paper contributes both a specification of our fully au-
tomated learning environment and a detailed empirical com-
parison of four different machine learning algorithms for
learning quadrupedal locomotion. The remainder of the pa-
per is organized as follows. First, we introduce the param-
eterized walk which our learning process seeks to optimize.
We then specify our four learning approaches, and follow
with detailed empirical results. We close with a discussion
of their implications and possible avenues for future work.

A Parameterized Walk
The Sony Aibo ERS-210A is a commercially available robot
that is equipped with a color CMOS camera and an optional
ethernet card that can be used for wireless communication.
The Aibo is a quadruped robot, and has three degrees of free-
dom in each of its four legs (Sony 2004).

At the lowest level, the Aibo’s gait is determined by a se-
ries of joint positions for the three joints in each of its legs.
An early attempt to develop a gait by Hornby et al. (1999)
involved using a genetic algorithm to learn a set of low-
level parameters that described joint velocities and body po-
sition.1 More recent attempts to develop gaits for the Aibo
have involved adopting a higher-level representation that
deals with the trajectories of the Aibo’s four feet through
three-dimensional space. An inverse kinematics calculation
is then used to convert these trajectories into joint angles.

Among higher-level approaches, most of the differences
between gaits that have been developed for the Aibo stem
from the shape of the loci through which the feet pass and
the exact parameterizations of those loci. For example, a
team from the University of New South Wales achieved
the fastest known hand-tuned gait using the high-level ap-
proach described above with trapezoidal loci. They sub-
sequently generated an even faster walk via learning (Kim
& Uther 2003). A team from Germany created a flexible
gait implementation that allows them to use a variety of
different shapes of loci (Roferet al. 2003), and the team
from the University of Newcastle was able to generate high-
velocity gaits using a genetic algorithm and loci of arbitrary
shape (Quinlan, Chalup, & Middleton 2003).

Our team (UT Austin Villa, Stoneet al. 2004) first ap-
proached the gait optimization problem by hand-tuning

1Developed on an earlier version of the Aibo.

a gait described by half-elliptical loci. This gait per-
formed comparably to those of other teams participating in
RoboCup 2003. The work reported in this paper uses the
hand-tuned UT Austin Villa walk as a starting point for
learning. Figure 1 compares the reported speeds of the gaits
mentioned above, both hand-tuned and learned, including
that of our starting point, the UT Austin Villa walk. The lat-
ter walk is described fully in a team technical report (Stone
et al. 2004). The remainder of this section describes those
details of the UT Austin Villa walk that are important to un-
derstand for the purposes of this paper.

Hand-tuned gaits Learned gaits
CMU Austin Villa UNSW Hornby UNSW NUBots
(2002) (2003) (2003) (1999) (2003) (2003)
200 245 254 170 270 296

Figure 1: Maximum forward velocities of the best gaits (in mm/s)
for different teams, both learned and hand-tuned.

The half-elliptical locus used by our team is shown in
Figure 2. By instructing each foot to move through a lo-
cus of this shape, with each pair of diagonally opposite legs
in phase with each other and perfectly out of phase with the
other two (a gait known as a trot), we enable the Aibo to
walk. Four parameters define this elliptical locus:

1. The length of the ellipse;
2. The height of the ellipse;
3. The position of the ellipse on thex axis; and
4. The position of the ellipse on they axis.

Since the Aibo is roughly sym-z

x

y

Figure 2: The elliptical
locus of one the Aibo’s
feet. The half-ellipse
is defined by length,
height, and position in
thex-y plane.

metric, the same parameters can be
used to describe loci on both the
left and right side of the body. To
ensure a relatively straight gait, the
length of the ellipse is the same for
all four loci. Separate values for
the elliptical height,x, and y po-
sitions are used for the front and
back legs. An additional parame-
ter which governs the turning rate
of the Aibo is used to determine
the skew of all four ellipses in the
x-y plane, a technique introduced
by the UNSW team (Hengstet al.

2001).2 The amount of skew is determined by the product
of the angle at which the Aibo wishes to move and this skew
multiplier parameter.

The following set of 12 parameters define the Aibo’s gait:
• The front locus (3 parameters: height,x-pos.,y-pos.)
• The rear locus (3 parameters)
• Locus length
• Locus skew multiplier in thex-y plane (for turning)
• The height of the front of the body
• The height of the rear of the body
• The time each foot takes to move through its locus
• The fraction of time each foot spends on the ground

2Even when walking directly forward, noise in an Aibo’s mo-
tions occasionally requires that the four ellipses be skewed to allow
the Aibo to execute small turns in order to stay on course.

During the American Open tournament in May of 2003,3

UT Austin Villa used a simplified version of the parameter-
ization described above that did not allow the front and rear
heights of the robot to differ. Hand-tuning these parameters
generated a gait with a velocity of 140 mm/s. After allow-
ing the front and rear height to differ, the Aibo was tuned to
walk at 245 mm/s in the RoboCup 2003 competition.4 Ap-
plying machine learning to this parameter optimization pro-
cess, however, allowed us to significantly improve the speed
of the Aibos, as described in the following section.

Learning the Walk
Given the parameterization of the walk defined in the pre-
vious section, our task amounts to a parameter optimization
problem in a continuous 12-dimensional space. For the pur-
poses of this paper, we adopt forward speed as the sole ob-
jective function. That is, as long as the robot does not ac-
tually fall over, we do not optimize for any form of stability
(for instance in the face of external forces from other robots).

This optimization is performed from a computer that is
connected via wireless ethernet to the Aibos. All of the
policy evaluations take place on actual robots, without the
use of a simulator. Previous attempts at learning Aibo
gaits involved running each experiment directly on the Aibo,
which imposed certain time limitations on the learning pro-
cess (Kim & Uther 2003). A more decentralized approach
allows us to distribute the learning process over multiple Ai-
bos and prevents the loss of data due to battery swaps and
mechanical failure. The only human intervention required
during an experiment is replacing discharged batteries, an
event which occurs about once an hour. We use three si-
multaneously walking Aibos for our experiments, but our
approach scales naturally to arbitrary numbers of robots.

We evaluate the
Landmarks

A

B
C

A’

C’

B’

Landmarks

Figure 3: The training environment for
our experiments. Each Aibo times it-
self as it moves back and forth between
a pair of landmarks (A and A’, B and B’,
or C and C’).

efficacy of a set
of parameters by
sending those pa-
rameters to an Aibo
and instructing it
to time itself as it
walks between two
fixed landmarks
(Figure 3). More
efficient parameters
result in a faster gait,
which translates into
a lower time and a
better score. After
completing a trial, the Aibo sends the resulting score back
to the host computer and prepares itself for a new set of
parameters to evaluate. Since there is significant noise in
each trial, each set of parameters is evaluated three times.
The resulting score for that set of parameters is computed
by taking the average of the three trials.5

3http://www.cs.cmu.edu/˜AmericanOpen03/
4Thanks to Daniel Stronger for hand-tuning the walks to

achieve these speeds.
5There is video of the training process at:

www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/

The following sections describe four machine learning al-
gorithms that were implemented to perform the learning for
this parameter optimization problem: a hill climbing algo-
rithm, the amoeba algorithm, a genetic algorithm, and a pol-
icy gradient algorithm. For ease of comparison, we use some
common notation in their presentation. Policies, denoted as
π, are vectors of 12 parameters{θ1, . . . , θ12}. Each algo-
rithm evaluatest policies per iteration of that algorithm, and
will typically change thejth parameter of any policy by at
mostǫj during any iteration.

Hill Climbing
A hill climbing algorithm is one of the simplest ways
to approach a parameter optimization problem. The
N -dimensional hill climbing algorithm implemented for
this work starts from an initial parameter vectorπ =

{θ1, . . . , θN} (where N = 12 in this case) and gener-
atest random policies in the vicinity ofπ. Each of these
policies {R1, R2, . . . , Rt} is chosen such that eachRi =

{θ1 + ∆1, . . . , θN + ∆N} and each∆j is chosen randomly
to be either+ǫj , 0, or −ǫj . After evaluating eachRi, the
highest-scoringRi is chosen as a new starting point and the
process is repeated. Pseudocode for this algorithm is pro-
vided in Figure 4.

π ← InitialPolicy
while !donedo
{R1, R2, . . . , Rt} = t random perturbations ofπ
evaluate({R1, R2, . . . , Rt})
π ← getHighestScoring({R1, R2, . . . , Rt})

end while

Figure 4: Pseudocode for the hill climbing algorithm. During
each iteration of the main loopt policies are sampled nearπ. The
highest-scoring policy is chosen as a new starting point, and the
process is repeated.

Amoeba
The downhill simplex (or “amoeba”) algorithm is a multidi-
mensional optimization method that involves moving a sim-
plex of points through a high-dimensional space via a series
of geometrical transformations (Press 1988). Asimplexis a
geometrical figure consisting ofN + 1 points in anN di-
mensional space. For example, in two dimensions a simplex
is a triangle. The simplex of the amoeba algorithm is ini-
tially composed ofN + 1 random policies in the vicinity of
an initial policyπ. These initial policies are generated in the
same manner as the policies for the Hill Climbing algorithm,
described above.

Multiple contractionsInitial Simplex Reflection Reflection and expansion Contraction

Figure 5: An example of the geometric transformations that would
be used by the amoeba algorithm in three dimensions.

The amoeba algorithm then takes a series of steps, most
of which simply reflect the lowest-scoring point of the sim-
plex through the opposite face of the simplex. Most of these
reflections preserve the volume of the simplex, which helps
prevent the search process from stagnating around one pol-
icy. When possible, the amoeba algorithm expands the sim-
plex. When the algorithm is faced with a narrow valley

through which it must pass, all of the points of the sim-
plex are contracted around its best point. After it has been
contracted past a certain point, the simplex is re-initialized
around the best point in a manner similar to how it is initial-
ized at the start of the algorithm. An example of the geomet-
ric manipulations that would be performed on the simplex
in three dimensions is given in Figure 5, and pseudocode for
the amoeba algorithm is shown in Figure 6.

π ← InitialPolicy
Simplex← N + 1 random perturbations ofπ
while !donedo

bestPoint← determineBestPoint(Simplex)
secondWorst← determineSecondWorst(Simplex)
score← reflect(Simplex)
if score> bestPoint.score // good reflection, extend
then

reflectAndExpand(Simplex)
else if score< secondWorst.score// bad reflection, contract
then

score← contract(Simplex)
if score< secondWorst.score // still bad, contract
then

if numContractions< MAX then
contractAll(Simplex)
numContractions++

else
Simplex= N + 1 perturbations of bestPoint//or reset
numContractions= 0

end if
end if

end if
end while

Figure 6: Pseudocode for the amoeba algorithm. A simplex under-
goes various transformations in the search for an optimal policy.

Genetic Algorithm
The standard genetic algorithm searches for an optimal pol-
icy by applying genetic operators to a population of poli-
cies. Policies that perform well are rewarded and proliferate
through the population, whereas policies that perform poorly
are removed from the population (Mitchell 1996). Our ge-
netic algorithm maintains a population oft policies, and uses
the genetic operators of mutation and multi-point crossover
to manipulate the policies in the population.

The population of policies is divided into a fixed num-
ber of species, where each species contains policies that are
similar to each other. This technique, calledspeciation, al-
lows the genetic algorithm to performexplicit fitness shar-
ing (Goldberg & Richardson 1987). Explicit fitness sharing
forces similar members of the same species to “share” one
representative score, thereby penalizing species with a large
number of policies. This allows new species to form even if
they do not perform as well as other, larger, species.

The mutation operator acts on a policyπ by randomly al-
tering each parameter of that policyθj with some probability
ρ. The actual amount by which any parameter is altered is
determined by drawing a number from a Gaussian distribu-
tion cut off after three standard deviations. The distribution
is scaled to generate values between−ǫj and+ǫj .

The crossover operator generates a new policy from two
“parent” policies by performing multi-point recombination

on the parameter strings of the two parents. An example of
the crossover process is given in Figure 7.

4.2 2.8 4.9 5.6 0.0 −2.8 4.893 0.035 7.7 11.2 0.704 0.5

0.430.67910.847.4830.0495.285−2.980.2176.025.1520.5744.081

4.2 2.8 4.9 6.02 0.0 −2.98 5.285 0.035 7.7 10.84 0.704 0.43

π2

π3

π1

Figure 7: An example of the crossover operator for the genetic
algorithm. A new policy (π3) is created through multi-point re-
combination of two parent policies (π1 andπ2).

Policy Gradient Algorithm
Our implementation of theN -dimensional policy gradient
algorithm builds on the hill climbing algorithm described
above. Initially, a collection oft policies is generated in the
vicinity of an initial policy,π. Instead of focusing the search
on the best policy at each step, however, the policy gradient
algorithm estimates the gradient of the objective functionin
the parameter space and follows it towards a local optimum.

Since we do not know anything about the true functional
form of the policy, we cannot calculate the gradient ex-
actly. Furthermore, empirically estimating the gradient by
sampling can be computationally expensive if done naively,
given the large size of the search space and the temporal cost
of each evaluation. Given the lack of accurate simulators for
the Aibo, we are forced to perform the learning entirely on
real robots, which makes efficiency a prime concern.

These concerns prompted us to develop an efficient
method of estimating the policy gradient. This method can
be considered a degenerate form of standard policy gradi-
ent reinforcement learning techniques (Suttonet al. 2000;
Baxter & Bartlett 2001) in that the control policy is purely
open loop and not a function of the robot’s sensory input.
Like these more general techniques, our approach will only
converge towards a local optimum. In contrast, some action-
value reinforcement learning algorithms, such as Q-learning
provably converge to the globally optimal policy (Watkins
1989). However, Q-learning, which is designed for Markov
decision processes, is not directly applicable to our problem,
which features open-loop control and no notion of “state”.

Our approach starts from an initial parameter vectorπ =

{θ1, . . . , θN} (whereN = 12 in our case) and proceeds to
estimate the partial derivative ofπ’s objective function with
respect to each parameter. We do so by first evaluatingt
randomly generated policies{R1, R2, . . . , Rt} nearπ, such
that eachRi = {θ1 + ∆1, . . . , θN + ∆N} and each∆j is
chosen randomly to be either+ǫj , 0, or −ǫj . Eachǫj is a
fixed value that is small relative toθj .

After evaluating the speed of eachRi, we estimate the
partial derivative in each of theN dimensions. This is ac-
complished by grouping eachRi into one of three sets for
each dimensionn:

Ri ∈

S+ǫ,n if the nth parameter ofRi is θn + ǫn

S+0,n if the nth parameter ofRi is θn + 0

S−ǫ,n if the nth parameter ofRi is θn − ǫn

We then compute an average scoreAvg+ǫ,n, Avg+0,n,
and Avg

−ǫ,n for S+ǫ,n, S+0,n, and S
−ǫ,n, respectively.

These three averages give us an estimate of the benefit of
altering thenth parameter by+ǫn, 0, or −ǫn. Note that in
expectation, there will bet/3 of the t policies with each of
the three possible parameter settings, though there will be
some random variation. We use these scores to construct an
adjustment vectorA of sizeN , where

An =

0 if Avg+0,n > Avg+ǫ,n and

Avg+0,n > Avg−ǫ,n,

Avg+ǫ,n −Avg−ǫ,n otherwise

We normalizeA and multiply it by a scalar step-sizeη (we
used a value ofη = 2 to offset the relatively small values
of eachǫj) so that our adjustment will remain a fixed size
each iteration. Finally, we addA to π, and begin the next
iteration. Pseudocode for this policy gradient algorithm is
shown in Figure 8.

π ← InitialPolicy
while !donedo
{R1, R2, . . . , Rt} = t random perturbations ofπ
evaluate({R1, R2, . . . , Rt})
for n = 1 to N do

Avg+ǫ,n ← average score for allRi that have
a positive perturbation in dimensionn

Avg+0,n ← average score for allRi that have a zero
perturbation in dimensionn

Avg−ǫ,n ← average score for allRi that have a
negative perturbation in dimensionn

if Avg+0,n > Avg+ǫ,n andAvg+0,n > Avg−ǫ,n then
An ← 0

else
An ← Avg+ǫ,n −Avg−ǫ,n

end if
end for
A← A

|A|
∗ η

π ← π + A
end while

Figure 8: Pseudocode for theN -dimensional policy gradient algo-
rithm. During each iteration of the main loopt policies are sam-
pled nearπ to estimate the gradient aroundπ, thenπ is moved by
an amount ofη in the most favorable direction.

Results
Figure 9 shows the progress of the four algorithms during
training. Each curve is an average over 2 runs, and rep-
resents the best policy found at each instant in time. The
genetic algorithm and amoeba algorithm were able to ac-
complish some learning and improve on the initial hand-
tuned gait. The hill climbing and policy gradient algorithms
yielded much better results, and both of these methods were
able to offer better performance than our best hand-tuned
walk. After 350 evaluations the policy gradient algorithm
generated a gait that moved at 291 mm/s, faster than all cur-
rent hand-tuned gaits and among the fastest learned gaits (in
parallel with our work, a learned gait has been reported at
296 mm/s by Quinlan, Chalup, & Middleton, 2003).

Both the genetic algorithm and the amoeba algorithm per-
formed fairly poorly, despite the fact that by many standards
they would be considered to be more sophisticated algo-
rithms than the hill climbing and policy gradient algorithms.
To investigate this surprising result, we analyzed each algo-
rithm in terms of the amount of the search space that each al-

180

200

220

240

260

280

300

0 50 100 150 200 250 300 350

V
el

oc
ity

 (
m

m
/s

)

Number of evaluations

Velocity of Learned Gait during Training

Genetic Algorithm

Policy Gradient Algorithm
Hill Climbing Algorithm

Amoeba

Velocity of Learned Gait during Training

Hill Climbing Policy Gradient

GA

Amoeba

V
el

oc
ity

 (
m

m
/s

)

Number of Evaluations

1e-36

1e-34

1e-32

1e-30

1e-28

1e-26

1e-24

1e-22

1e-20

1e-18

1e-16

0 50 100 150 200 250 300 350

V
ol

um
e

Number of evaluations

Volume Explored during Initial Training

Genetic Algorithm

Amoeba

Policy Gradient Algorithm

Hill Climbing

GA

V
ol

um
e

Number of Evaluations

Volume Explored during Initial Training

Hill Climbing

Amoeba

Policy Gradient

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

Amount of Noise

Simulated Performance with respect to Noise

Genetic Algorithm

Policy Gradient Algorithm

Hill Climbing Algorithm

Amoeba Algorithm

GA

Amount of Noise

Hill Climbing

Policy Gradient

Amoeba

P
er

fo
rm

an
ce

Simulated Performance with respect to Noise

Figure 9: The velocity of the best gait from
each iteration during training for the four
methods. The policy gradient method was
able to generate a gait that is faster than
current hand-coded gaits and among the
fastest learned gaits.

Figure 10: The amount of volume of the
search space that each method explored
during training. The genetic algorithm and
the amoeba algorithm encompass much
less volume than the hill climbing and pol-
icy gradient algorithms.

Figure 11: The performance of the four
learning algorithms in a simulated domain.
The performance of the amoeba algorithm
is high when there is little noise in the ob-
jective function, but decreases rapidly as
noise increases.

gorithm encompassed at each instant in time during training.
This value was measured for each algorithm by computing
the volume of a convex hull around all of the policies at a
given point in time. The results of this analysis, which are
shown in Figure 10, indicate that both the genetic algorithm
and the amoeba algorithm suffer from rather low coverage
rates, compared to the more successful hill climbing and pol-
icy gradient algorithms. In an effort to increase coverage for
these two algorithms, we increased the mutation rate of the
genetic algorithm and increased the rate at which the sim-
plex was re-centered around the best policy for the amoeba
algorithm. After these modifications, the performance of the
genetic algorithm increased slightly and the performance of
the amoeba algorithm improved to a level comparable to that
of the hill climbing and policy gradient algorithms.

Despite these improvements, our results indicate that sim-
pler algorithms perform as well as, or better than, more com-
plicated algorithms in this domain. To further understand
this phenomenon, we compared the four algorithms in an
abstract simulation. We replaced our original objective func-
tion of maximizing forward velocity with an average over a
set of ten mathematical functions with a variable amount of
noise. Each of these functions had the same dimensionality
as the original objective function (12 inputs and 1 output)
and consisted of an arbitrarily chosen mix of constant, lin-
ear, trigonometric, and sigmoidal components. This set of
functions was meant to represent a variety of different opti-
mization problems, with the hope that lessons learned from
the relative performance of algorithms on this simulated set
of functions would translate to our target domain of velocity
maximization for the Aibo. The results of this comparison,
shown in Figure 11, show that while the amoeba algorithm
performs well when there is little noise present, its perfor-
mance drops sharply as the level of noise increases. This
analysis suggests that our domain may be too noisy for the
amoeba algorithm to perform at its best.

Note in Figure 9 that we stopped training each method af-
ter 350 evaluations, which amounted to just over 1000 field
traversals in about 3 hours. Subsequent evaluations showed
no further improvement, suggesting that the learning had
plateaued in all cases.

Discussion and Future Work
One of the useful aspects of automating the gait optimiza-
tion process is that search algorithms often possess less bias
than human engineers. For example, our gait was designed
after a trot gait, where diagonally opposite legs strike the
ground simultaneously. We assumed that the ideal trot gait
would keep two feet on the ground at all times. Interestingly
enough, the best learned gait defied our expectations by at-
tempting to keep each foot on the ground only 43% of the
time. By allowing the learning process to affect a large por-
tion of the gait, we were able to discover parameter settings
that we would not have likely found through hand-tuning.

On a similar note, recent work has suggested that due to
mechanical limitations and environmental noise, the actual
locus that each foot follows is significantly different than
the requested half-elliptical locus (Stronger & Stone 2005).
Given this discrepancy between the ideal locus and the real
locus, a change in parameters describing the ideal locus may
not have the intended effect on the real locus. This discrep-
ancy could make hand-tuning difficult for humans, who ex-
pect a certain correspondence between parameters and their
effects on the gait. Since the learning process is unaware of
the semantics of the parameters, it might not suffer as much
from discrepancies between the expected loci and the actual
loci.

Another benefit of automated learning can arise in situa-
tions such that the robots are required to repeatedly switch
surfaces. In RoboCup, the surfaces of different playing
fields can vary widely in hardness and friction. Repeatedly
tuning parameters by hand for each surface could consume a
great deal of time from human engineers, whereas automati-
cally learning parameters for various surfaces would require
significantly less human effort.

One of the benefits of simple algorithms like the pol-
icy gradient algorithm and the hill climbing algorithm is
that they could be considered a form of multi-robot learn-
ing, in that it would be relatively straightforward to imple-
ment these algorithms without the use of a central controller.
Since the evaluations that each Aibo performs are gener-
ated randomly, the algorithm that each Aibo executes could
be run almost completely independently of the other Aibos.
The only requirement would be that each Aibo communicate
the results of the evaluations that it performs to the other Ai-

bos and that they have a common notion of the parameter
t which governs the number of policies evaluated per itera-
tion. After finding out the results oft evaluations, each robot
could then independently perform the calculation to deter-
mine the next policyπ and continue with the next iteration.
In contrast, more complicated algorithms like the amoeba
algorithm require much stricter control over which policies
are evaluated. Thus the robots would need to explicitly co-
ordinate which policies they are to evaluate, and find a way
to re-do evaluations that are interrupted by battery changes.

It is important to note that our implementations of all of
the algorithms mentioned above require reasonable starting
policies. Since we are not explicitly trying to find a stable
gait, starting from an unstable gait can lead to mechanical
failures that can make it difficult for the Aibos to make much
progress. As a result, our method is probably not yet directly
applicable to the problem of finding an initial stable walk
(e.g. for a bipedal robot).

The fact that the amoeba algorithm performs relatively
well given an absence of noise in our simulated experiments
suggests that we could improve its performance on the Ai-
bos by finding a way to reduce the noise associated with each
evaluation. Possible methods to decrease the noise level in-
clude using more sensory input to determine the Aibo’s lo-
cation and averaging over more trials.

Since we distributed the learning process over multiple
robots, the policies that we discovered were not tuned to any
particular robot. While the hardware that the Aibos are made
up of is theoretically homogeneous, cumulative wear and
tear over time can lead to significant differences between
robots. It is therefore possible that we could achieve fur-
ther increases in performance by training individual Aibos
to fine-tune their parameters.

Another possible avenue for future work involves broad-
ening our analysis to include more existing optimiza-
tion algorithms. Of particular interest are algorithms like
Q2 (Moore et al. 1998) and PB1 (Anderson, Moore, &
Cohn 2000) which were designed to work well in domains
with sparse and noisy data. It would also be interesting to
optimize fast omni-directional gaits. While the work pre-
sented in this paper has focused on maximizing velocity in
a forward direction, methods similar to those presented here
could be used to optimize turning gaits or gaits for move-
ment in other directions.

Conclusion
In this paper, we presented a comparison of four algorithms
for learning a fast walk on a quadruped robot, namely the
Aibo ERS-210A. All of the algorithms were able to improve
over initial hand-tuned gaits, and the policy gradient algo-
rithm was able to generate one of the fastest known walks
on the Aibo: 291 mm/s. These algorithms allow distributed,
efficient policy evaluation in the real world, with all learning
happening on the robots. Video of the initial results, training
process, and final results are all available on-line.6

Acknowledgments
We would like to thank the members of the UT Austin Villa team,
and Daniel Stronger in particular, for their efforts in developing

6
www.cs.utexas.edu/˜AustinVilla/legged/learned-walk/

the gaits and software mentioned in this paper. This research was
supported in part by NSF CAREER award IIS-0237699.

References
Anderson, B.; Moore, A.; and Cohn, D. 2000. A nonparametric approach to noisy

and costly optimization. InInternational Conference on Machine Learning.

Bagnell, J. A., and Schneider, J. 2001. Autonomous helicopter control using rein-

forcement learning policy search methods. InInternational Conference on Robotics

and Automation, 1615–1620. IEEE Press.

Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon policy-gradient estimation.

Journal of Artificial Intelligence Research15:319–350.

Goldberg, D. E., and Richardson, J. 1987. Genetic algorithms with sharing for

multimodal function optimization. In Grefenstette, J. J., ed.,Proceedings of the 2nd

International Conference on Genetic Algorithms, 148–154.

Hengst, B.; Ibbotson, D.; Pham, S. B.; and Sammut, C. 2001. Omnidirectional

motion for quadruped robots. In Birk, A.; Coradeschi, S.; and Tadokoro, S., eds.,

RoboCup International Symposium, Lecture Notes in Computer Science, Lecture

Notes in Artificial Intelligence LNAI 2377, 368. Springer.

Hornby, G. S.; Fujita, M.; Takamura, S.; Yamamoto, T.; and Hanagata, O. 1999. Au-

tonomous evolution of gaits with the sony quadruped robot. In Banzhaf, W.; Daida,

J.; Eiben, A. E.; Garzon, M. H.; Honavar, V.; Jakiela, M.; and Smith, R. E., eds.,

Proceedings of the Genetic and Evolutionary Computation Conference, volume 2,

1297–1304. Orlando, Florida, USA: Morgan Kaufmann.

Kim, M. S., and Uther, W. 2003. Automatic gait optimisation for quadruped robots.

In Australasian Conference on Robotics and Automation.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.

Moore, A.; Schneider, J.; Boyan, J.; and Lee, M. S. 1998. Q2: Memory-based active

learning for optimizing noisy continuous functions. In Shavlik, J., ed., Proceedings

of the Fifteenth International Conference of Machine Learning, 386–394. 340 Pine

Street, 6th Fl., San Francisco, CA 94104: Morgan Kaufmann.

Ng, A. Y.; Kim, H. J.; Jordan, M. I.; and Sastry, S. 2004. Autonomous helicopter

flight via reinforcement learning. InAdvances in Neural Information Processing

Systems 17. MIT Press. To Appear.

Press, W. H. 1988.Numerical Recipes in C: the art of scientific computing. Cam-

bridge: Cambridge University Press.

Quinlan, M. J.; Chalup, S. K.; and Middleton, R. H. 2003. Techniques for im-

proving vision and locomotion on the sony aibo robot. InProceedings of the 2003

Australasian Conference on Robotics and Automation.

Rofer, T.; Burkhard, H.-D.; Duffert, U.; Hoffman, J.; Gohring, D.; Jungel,M.;

Lotzach, M.; v. Stryk, O.; Brunn, R.; Kallnik, M.; Kunz, M.; Petters, S.;Risler,

M.; Stelzer, M.; Dahm, I.; Wachter, M.; Engel, K.; Osterhues, A.; Schumann, C.;

and Ziegler, J. 2003. Germanteam robocup 2003. Technical report.

Sony. 2004. Aibo robot.www.sony.net/Products/aibo .

Stone, P.; Dresner, K.; Erdoğan, S. T.; Fidelman, P.; Jong, N. K.; Kohl, N.;

Kuhlmann, G.; Lin, E.; Sridharan, M.; Stronger, D.; and Hariharan, G. 2004.The

UT Austin Villa 2003 four-legged team. In Polani, D.; Browning, B.; Bonarini,

A.; and Yoshida, K., eds.,RoboCup-2003: Robot Soccer World Cup VII. Berlin:

Springer Verlag.

Stronger, D., and Stone, P. 2005. A model-based approach to robot joint control.

In Nardi, D.; Riedmiller, M.; and Sammut, C., eds.,RoboCup-2004: Robot Soccer

World Cup VIII. Berlin: Springer Verlag. 297–309.

Sutton, R.; McAllester, D.; Singh, S.; and Mansour, Y. 2000. Policy gradient meth-

ods for reinforcement learning with function approximation. In Solla, S. A.; Leen,

T. K.; and Muller, K.-R., eds.,Advances in Neural Information Processing Systems,

volume 12, 1057–1063. The MIT Press.

Watkins, C. J. C. H. 1989.Learning from Delayed Rewards. Ph.D. Dissertation,

King’s College, Cambridge, UK.

Zhang, R., and Vadakkepat, P. 2003. An evolutionary algorithm for trajectory based

gait generation of biped robot. InProceedings of the International Conference on

Computational Intelligence, Robotics and Autonomous Systems.

