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Abstract
Transfer learning concerns applying knowledge learned in
one task (the source) to improve learning another related task
(the target). In this paper, we use structure mapping, a psy-
chological and computational theory about analogy making,
to find mappings between the source and target tasks and thus
construct the transfer functional automatically. Our structure
mapping algorithm is a specialized and optimized version of
the structure mapping engine and uses heuristic search to find
the best maximal mapping. The algorithm takes as input the
source and target task specifications represented as qualitative
dynamic Bayes networks, which do not need probability in-
formation. We apply this method to the Keepaway task from
RoboCup simulated soccer and compare the result from au-
tomated transfer to that from handcoded transfer.

Introduction
Transfer learning concerns applying knowledge learned in
one task (the source) to improve learning another related
task (the target). Human learning greatly benefits from
transfer. Feasible transfer often benefits from knowledge
about the structures of the tasks. Such knowledge helps
identifying similarities among tasks and suggests where to
transfer from and what to transfer. In this paper, we dis-
cuss how such knowledge helps transfer in reinforcement
learning (RL) by using structure mapping to find similarities.
Structure mapping is a psychological theory about analogy
and similarities (Gentner, 1983) and the structure mapping
engine (SME) is the algorithmic implementation of the the-
ory (Falkenhainer, Forbus, & Gentner, 1989). SME takes as
input a source and a target representated symbollically and
outputs a similarity score and a mapping between source
entities and target entities. To apply structure mapping to
transfer in RL, we need a symbolic representation of the RL
tasks, namely, the state space, the action space, and the dy-
namics (how actions change states). To this end, we adopt a
qualitative version of dynamic Bayes networks (DBNs). Dy-
namic Bayes networks are shown to be an effective represen-
tation for MDP-based probabilistic planning and reinforce-
ment learning (Boutilier, Dean, & Hanks, 1999; Guestrin
et al., 2003b; Kearns & Koller, 1999; Sallans & Hinton,
2004). Although the probabilities in DBNs are probably too
problem-specific to be relevent for transfer, the dependen-
cies represented as links are useful information. The qualita-
tive DBN (QDBN) representation thus ignores probabilities
but uses different types of links for different types of depen-
dencies. In this paper, we specialize and optimize SME to
work with QDBNs efficiently using heuristic search to find
the best maximal mapping, since QDBNs typically involve
at least an order of magnitude more entities than previous
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SME applications.
We recently proposed a value-function-based approach to

transfer in reinforcement learning and demonstrated its ef-
fectiveness (Taylor, Stone, & Liu, 2005). This approach uses
a transfer functional to transform the learned state-action
value function from the source task to a state-action value
function for the target task. However the transfer functional
is handcoded, based on a handcoded mapping of states and
actions between the source and the target tasks. As an app-
plication of the optimized SME for QDBNs, we generate
the mapping of states and actions and thus the transfer func-
tional automatically, using domain knowledge represented
as QDBNs.

Prior work considering transfer using DBN models
(Guestrinet al., 2003a; Mausam & Weld, 2003) assumes that
the source task is a planning problem represented as DBNs
(thus with probabilities). We only requre a weaker model
and consider source tasks that are reinforcement learning
problems.

The main contribution of this paper is to use structure
mapping to find similarities between the source and target
tasks based on domain knowledge about these tasks, in the
form of QDBNs in particular, and to automatically construct
mappings of state variables and actions for transfer.

Value-Function-Based Transfer
We recently developed the value-function-based transfer
methodology for transfer in reinforcement learning (Taylor,
Stone, & Liu, 2005). The methodology can transform the
state-action value function of the source task to the target
task with different state and action spaces, despite the fact
that value functions are tightly coupled to the state and ac-
tion spaces by definition. We analyze this approach and pro-
pose a refined framework for value-function-based transfer.
We start by reviewing some concepts and assumptions of
temporal-difference reforcement learning (Sutton & Barto,
1998). Reinforcement learning problems are often formu-
lated as Markov decision processes (MDPs) with unknown
parameters. The system of interest has a set of states of the
environment,S, and a set of actions the agent can take,A.
When the agent takes actiona ∈ A in states ∈ S, the sys-
tem transitions into states′ ∈ S with probabilityP (s′|s, a),
and the agent receives finite real-valued rewardr(s, a, s′) as
a function of the transition. In reinforcement learning prob-
lems, the agent typically knowsS andA, and can sense its
current states, but does not knowP norr.

A policy π : S 7→ A is a mapping from states to ac-
tions. A temporal-difference reinforcement learning method
gradually improves a policy until it is optimal, based on
the agent’s experience. Value-function-based reinforcement
learning methods implicitly maintain the current policy in
the form of a state-action value function, or aq-function. A



q-functionq : S × A 7→ R maps from state-action pairs to
real numbers. The valueq(s, a) indicates how good it is to
take actiona in states. The q-function implicitly defines
a policyπq such thatπq(s) = arg maxa∈A q(s, a). More
precisely, the valueq(s, a) estimates the expected total (dis-
counted or undiscounted) reward if the agent takes actiona
in states then follows the implicit policy. The reinforcement
learning agent improves the current policy by updating the
q-function.

Consider the source task with statesS̊ and actions̊A and
the target task with statesS and actionsA, where̊ distin-
guishes the source from the target. The value-function-based
transfer method (Taylor, Stone, & Liu, 2005) can deal with
the general case̊S 6= S and/orÅ 6= A by using a transfer
functionalρ that maps theq-function of the source prob-
lem, q̊, to aq-function of the target problem,q = ρ(q̊), pro-
vided that the rewards in both problems have related mean-
ings. The transfer functionalρ is defined based on corre-
spondences of states and actions in the source and target
tasks, with the intuition that corresponding state-actionpairs
have values similar to each other. The transfer functionalρ
is specific to the source-target problems pair and specific to
the representation ofq-functions. As demonstrated by (Tay-
lor, Stone, & Liu, 2005), the functionalρ can be handcoded
based on human understanding of the problems and the rep-
resentation.

When the handcoded transfer functional is not read-
ily available, especially for cross-domain transfer where
straightfoward correspondences of states and actions do not
exist, it is desirable to construct the functional automatically
based on knowledge about the tasks. This paper introduces
one approach to doing so by using (1) source and target task
models represented as qualitative DBNs and (2) a structure
mapping procedure specialized and optimized for QDBNs.

To do this, we assume that the state has a representation
based on a vector of state variables (or variables for short),
that is,s = (x1, . . . , xm). Theq-functions are represented
using variables, that is,q(s, a) = q(x1, . . . , xm, a). In this
way, correspondences of states are reduced to correspon-
dences of variables. For the purpose of transfer, we define
correspondences of variables and actions between the source
and target tasks to be a mappingρX from target task vari-
ables to source task variables and a mappingρA from tar-
get task actions to source task actions. They are mappings
from the target task to the source task since the target task
is typically more difficult and has more variables and ac-
tions, and thus one entity (variable or action) in the source
task may correspond to several entities in the target task.
The transfer functionalρ then is fully specified by mappings
ρX andρA, as well as a representation-related mappingρR

that transforms values of theq-functions at the representa-
tion level based onρX and ρA. In fact, the work from
(Taylor, Stone, & Liu, 2005) follows this two-step model
of ρ: we first specify the mappingsρX andρA which are
the same for the transfer problem, and then specify differ-
ent representation-specific mappings for different represen-
tations we used, such as CMACs, RBFs, and neural net-
works.

We therefore assume that the representations forq-
functions are given for the source and target tasks and the
representation-specific mappingρR is known. The main

technical result of the paper is that we can find the mappings
ρX andρA automatically using structure mapping given task
models represented as QDBNs.

Qualitative Dynamic Bayes Networks
We consider problems whose state spaces have a represen-
tation with a finite number of variables and whose action
spaces consist of a finite number of classes of actions (al-
though each class can have an infinite number of actions or
be a continuous action space). In such problems, a state
is a tuple of valuess = (x1, . . . , xm), wherexj ∈ Xj

for j = 1, . . . , m, andXj are sets of values of the vari-
ables. An action often affects only a small number of vari-
ables, and the values of other variables remain unchanged
or change following a default dynamics not affected by the
action. For example, for an office robot whose responsi-
bilities include delivering mail and coffee, the variablesare
its position, whether it has the mail and/or coffee, to whom
to deliver, and its power level. Moving around changes its
position and power level but not what it has nor to whom
to deliver, and picking up mail does not change its posi-
tion. Dynamic Bayes networks (Dean & Kanazawa, 1989;
Boutilier, Dean, & Hanks, 1999) capture such phenomena
by using a two-tiered Bayes network to represent an action,
where the first tier nodes indicate values of variables at the
current time step (before the action is executed) and the sec-
ond tier nodes indicate values of variables at the next time
step (after the action is executed). Links in the network in-
dicate dependencies among the values of variables. A link
is diachronic if each node belongs to different tiers and syn-
chronic if both nodes are in the same tier. The transition
probabilities,P (s′|s, a), if known, are represented as con-
ditional probability tables. For reinforcement learning prob-
lems, the probabilities are unknown. However, the graph-
ical structure of the network captures important qualitative
properties of the problem, and can often be determined using
domain knowledge (Kearns & Koller, 1999).

We define qualitative
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Figure 1: An example quali-
tative DBN

DBNs as an enhancement
to the underlying graphical
structure of DBNs by assign-
ing types to nodes and links.
These types can be defined
in any convenient way to
capture important qualitative
differences of the nodes and
links, for example, to indicate
whether a node has continu-
ous (the robot’s power level) or discrete values (to whom to
deliver), or to indicate types of dependencies such as no-
change, increasing/descreasing, deterministic (functional)
changes. The QDBN representation is similar to qualitative
probabilisitic networks (Wellman, 1990) or causal networks
(Pearl, 2000) in this aspect. An example QDBN is shown
in Figure 1 along with its node and link types, where the
next time step nodes are denoted with a prime. Generic
links simply indicate dependency. We also use generic links
when their types of dependency are unknown. A node can
also be generic for the same reason. A descrease link exists
only between nodes for the same variable at different time
steps to indicate that the value decreases. A functional link
indicates that the value of a node is a function of the values



of its parents. For example, there exists a functionf such
thatC′ = f(B′, C, D′). A no-change link indicate a special
dependency between nodes for the same variable such that
the value does not change. Note that with a slight abuse of
notation, we useXj to denote (1) the variable, (2) the set
of values of the variable, and (3) nodes in QDBNs (Xj and
X ′j) corresponding to the variable. Its meaning should be
evident by context.

A qualitative model of a reinforcement learning problem
consists of a set of QDBNs, one for each action (or each
class of actions). Actions can also have types like nodes
and links. Since we ignore (or are ignorant of) probabilities,
this model is the same for all problems with the same set of
variables and with actions of the same type. It is often not
unreasonable to assume that we have the domain knowledge
to specify QDBNs for the tasks at hand.

Structure Mapping for QDBNs
With knowledge about the source and the target tasks in the
form of QDBNs, finding their similarities will help spec-
ify ρX andρA, the mappings of variables and actions, for
transfer. We do this using structure mapping. According
to the structure mapping theory (Gentner, 1983), an analogy
should be based on a system of relations that hold in both
the source and the target tasks. Entities are mapped based
on their roles in these relations, instead of based on their sur-
face similarity such as names. The structure mapping engine
(SME) is a general procedure for making analogies (Falken-
hainer, Forbus, & Gentner, 1989) and leaves several compo-
nents to be specified in particular applications. A (global)
mapping between the source and target consists of a set of
local matches. A local matchM = 〈E̊, E〉 is a pair with a
source entityE̊ and a target entityE, a global mapping is
a set of consistent (to be explained shortly) local matches,
and a maximal global mapping is a global mapping where
no more local matches can be added. The SME procedure
starts with local matches and gradually merges consistent
local matches into maximal global mappings. Each global
mapping is assigned a score and we seek a maximal global
mapping with the highest score. The high-level steps of
SME are shown in Algorithm 1.1

Algorithm 1 Structure Mapping Engine

1: generate local matches and calculate the conflict set for each local match;
2: generate initial global mappings based on immediate relations of local matches;
3: selectively merge global mappings with common structures;
4: search for a maximal global mapping with the highest score, using only global

mappings resulting from Step 3;

The SME procedure specifies in detail how to check con-
sistency and merge global mappings, but does not specify
how to form local matches and initial global mappings, nor
how to calculate similarity scores. The original SME also
generates all possible maximal global mappings and then
evalutes them in step 4. This approach does not work for
QDBNs since QDBNs typically consist of many more enti-
ties than representations used in previous SME applications
and thus generating all mappings results in combinatorial
explosion. We next present a specialized and optimized ver-
sion of SME for task models represented as QDBNs. It does

1We slightly altered the description of SME to better suit our
presentation, but did not change how it works.

not only specify the missing parts of the orginal SME but
also optimizes existing steps for QDBNs. We therefore refer
to it as the SME-QDBN method.
Step 1: Generate Local Matches Entities in QDBNs are
variables, actions, and links. We allow only variables to
match variables, actions to match actions, and links to match
links. We also require that an entity can only match an en-
tity of the same type or of the generic type. For example, a
decrease link can match another decrease link or a generic
link, but not a no-change link. In addition, a diachronic link
matches only diachronic links and a synchronic link matches
only synchronic links. Note that a node is not considered an
entity for matching since it is only a replication of a variable.
We generate all possible pairwise local matches.

Two local mapsM1 = 〈E̊1, E1〉 and M2 = 〈E̊2, E2〉
are consistent iff(E̊1 = E̊2) ⇔ (E1 = E2). In other words,
SME enforces a 1-1 mapping of entities of the source and
target tasks. The set of inconsistent local matches, or the
conflict set, of a local matchM , denoted asM.Conflicts, is
calculated after all local matches are generated.
Step 2: Generate Initial Global Mappings Initial global
mappings are formed based on relations that entities partic-
ipate in for their respective tasks. Since relations are essen-
tial for structure mapping, this step encodes constraints from
these domain-specific relations, in addition to the 1-1 con-
straints from step 1. For QDBNs, the central relation is that
a link belongs to an action and connects a pair of variables
(which may be the same but at different time steps). Each
initial global mapping thus consists of a link match, an ac-
tion match, and one or two variable matches. For example, if
Å, B̊ are variables in the source task such that the diachronic
link Å → B̊′ belongs to action̊a andA, B are variables in
the target task such that the diachronic linkA → B′ belongs
to actiona, then an initial global mapping is

G =
n

〈Å
å
→ B̊

′
, A

a
→ B

′〉, 〈Å, A〉, 〈B̊, B〉, 〈̊a, a〉
o

,

where we annotate the links with actions. Such rela-
tional constraints will rule out global mappings such as
n

〈Å
å
→B̊′, A

a
→B′〉, 〈̊a, a1〉

o

wherea16=a.
For a global mappingG, its set of inconsistent local

matches, or local conflict set, is
G.lConflicts =

[

M∈G

M.Conflicts.

The set of all initial global mappings is denoted asG0. For
later convenience, we defineG.V , G.A, and G.L to be
the subset ofG that contains only variable matches, ac-
tion matches, and link matches, respectively. Since they are
still global mappings, the notation such asG.V.lConflicts is
well-defined. SinceG is a 1-1 mapping, we can use the no-
tationsG(E̊) to denote the matched target entity ofE̊ and
G−1(E) to denote the matched source entity ofE.

Step 3: Selectively Merge Some Global Mappings Con-
sistent global mappings can be merged into larger global
mappings, which indicate more similarities than smaller
ones. Two global mappingsG1 andG2 are consistent iff

`

G1 ∩ G2.lConflicts = ∅
´

∧
`

G1.lConflicts∩ G2 = ∅
´

.

The merged global mapping is simplyG = G1 ∪ G2 and
its local conflict set isG.lConflicts = G1.lConflicts ∪
G2.lConflicts.

We can form maximal global mappings directly usingG0.



A direct approach requires trying a factorial number of com-
binations, a prohibitive procedure. A more tractable way is
to use a guided search process in the space of all global map-
pings. However, the initial global mappings are too small
and do not have much information about their potential for
forming large global maps. Therefore the search essentially
starts at random. To give the search a better starting po-
sition, we perform preliminary merges of the initial global
mappings as follows.

First, for all global mappingsG ∈ G0, we calculate
G.Commons=

{

G′ ∈ G0 G′ 6= G, G ∩ G′ 6= ∅, consistent(G, G′)
}

.

The setG.Commonscontains all consistent global map-
pings that share structures withG. We also calculate the
global conflict set forG as

G.gConflicts=
˘

G
′ ∈ G0 ¬consistent(G, G

′)
¯

.

Based on this information, we use the recursive merge algo-
rithm shown in Algorithm 2.
Algorithm 2 Selectively merge initial global mappings

1: G1 ← ∅;
2: for all G ∈ G0 do
3: G1 ← BasicMergeRecursive(G, G.Commons,G1);

G′ = BasicMergeRecursive(G, C, G)

1: if C = ∅ then
2: return CheckedInsert(G, G);
3: for all G′ ∈ C do
4: G ← BasicMergeRecursive(G ∪G′, (C \ {G}) \ G′.gConflicts,G);
5: return G;

The merge starts with initial global mappings and uses
consistent global mappings in theirCommonssets as can-
didates.BasicMergeRecursive does the main work. The
parameterC is the set of candidates to be merged withG,
andG is used to collect all merged global mappings. We
record the result when no more global mapping can be
merged, and recurse otherwise using a reduced candidate
set. CheckedInsert is a modified insertion procedure that
avoids having two global mappings such that one contains
or equals to the other. The merge generates another set of
global mappingsG1.

Step 4: Search for Best Maximal Global Mapping We
start with the set of global mappingsG1 to find the maximal
global mapping with the highest similarity score, where a
higher score indicates greater similarity. The original SME
strategy of generating all maximal global mappings is in-
tractable since the time complexity is factorial in the number
of global mappings inG1. We instead use a depth-first heur-
sitic search method to cope with the complexity. We first
describe how to calculate the similarity scores. Suppose that
the target task hasm variablesX1, X2, . . . , Xm andn ac-
tions a1, a2, . . . , an. Let Gai

be the restriction ofG onto
actionai such that all members ofGai

are relevent toai:

Gai
= G.V ∪

n

〈•, •
a
→ •〉 ∈ G.L a = ai

o

,

where• indicates “don’t care” values. We refer toGai
as an

action mapping since it concerns only one action in the target
domain (also one action in the source domain). LetGa be
an action mapping and letGa,Xj

be the restriction ofGa to
nodeXj such that all members ofGa,Xj

are outgoing links
from nodeXj in the QDBN ofa (thus a set of diachronic
links):

Ga,Xj
=

n

〈•, X
a
→ •〉 ∈ G.L X = Xj

o

.

Similarly, letGa,X′

j
be the restriction ofGa to nodeX ′j (thus

a set of synchronic links):

Ga,X′

j
=

n

〈•, X ′ a
→ •〉 ∈ G.L X = Xj

o

.

We refer toGa,Xj
andGa,X′

j
as node mappings. We define

the score of a global mapping as the sum of the scores of all
valid node mappings, and the score of a node mapping as the
ratio of the number of matched links to the number of total
links in the source and target QDBN while counting matched
links only once. Formally, letGa be an action mapping ofG
andGa,X be a node mapping ofGa, and letO(X, a) denote
the set of outgoing links from nodeX in the QDBN ofa.
We have

score(G) =
Pn

i=1 score(G[ai])

score(Ga) =
Pm

j=1 (score(Ga[Xj ]) + score(Ga[Xj
′]))

score(Ga,X) =

8

<

:

1 if O(G−1
a (X), G−1(a)) = O(X, a) = ∅

|Ga,X |
˛

˛O(G−1
a (X), G−1(a))

˛

˛ + |O(X, a)| − |Ga,X |
.

The score of a node mapping is between zero and one. The
score is one if the source and target nodes match completely,
and the score is zero if no links are matched at all. The
score should satisfy an intuitive property of monotonicity,
that is, if G ⊂ G′, then score(G) ≤ score(G′). Note
that if G ⊂ G′ thenGai

⊆ G′ai
for all i = 1, . . . , n, and

if Ga ⊆ G′a thenGa,Xj
⊆ G′a,Xj

for all j = 1, . . . , m.
Therefore, to show that the property holds, it is sufficient
to show that it holds for node mappings. The number of
matched links cannot be greater than the number of outgoing
links of the corresponding nodes in the source or the target
tasks, that is,
|Ga,X | ≤

˛

˛O(G−1
a (X), G−1(a))

˛

˛ and |Ga,X | ≤ |O(X, a)| .

Since forx, y ≥ 0 with max(x, y) > 0, and forz, z′ satis-
fying 0 ≤ z ≤ z′ ≤ min(x, y), it holds that

z

x + y − z
≤

z

x + y − z′
≤

z′

x + y − z′
,

the monotonicity property holds for node mappings, and
thus for global mappings.

To find the maximal global mapping with the best score,
we perform heuristic search in the space of all possible
global mappings. Since the search objective is maximization
and there are more choices earlier than later (since merging
reduces the possible number of global mappings to merge),
we choose to use a depth-first search strategy. Assume that
we can also calculate an upper bound of the score of a global
mapping. The search records the best score encountered
and uses the upper bounds to prune: if the upper bound is
lower than the current best score, we do not need to consider
further merging. The search procedure is shown in Algo-
rithm 3, wherescore+ is the upper bound of the score.
Algorithm 3 Depth-first search

1: return DfsRecursive(∅,G1, 0);

best′ = DfsRecursive(G, C, best)

1: if C = ∅ then
2: if score(G) > bestthen
3: best← score(G);
4: recordG as the best maximal global mapping;
5: return bestScore;
6: for all G′ ∈ C do
7: if score+(G ∪G′) > bestthen
8: best← DfsRecursive(G ∪G′, (C \ {G′}) \G′.Conflicts, best);



Now we define the upper bound of the score of a global
mapping. First note that once the mapping of an action is
fixed, merging another global mapping cannot change this
mapping. Similarly merging does not change the mapping
of a variable either. Therefore for an existing node map-
ping Ga,X , the inverse mappingsG−1(a) andG−1

a (X) do
not change. The upper bound of a global mapping can again
be calculated by summing up the upper bounds of all node
mappings. Since the numbers of outgoing links are fixed
for the source and target nodes, the upper bound of an ex-
isting node mappingGa,X is reached by considering all un-
matched outgoing links matched, except for two cases: (1) if
an outgoing link does not have a match to any outgoing link
in the other domain such that the match is consistent with the
global mapping and (2) if the numbers of remaining outgo-
ing links (not counting matched and inconsistent ones) are
different and such we can only use the smaller number. The
upperbounds for unmatched variables and actions are calcu-
lated similarly.

Constructing ρ Automatically
We now can find the mappingsρX and ρA automatically
given task models represented as QDBNs. In fact, the SME-
QDBN method does almost that, except that some target ac-
tions and variables are not mapped due to the 1-1 constraint
of structure mapping. We fill this gap also using structure
mapping. Since actions play a central role in reinforcement
learning tasks, we first considerρA. Suppose that the SME-
QDBN method produces a global mappingG, but G does
not contain a mapping for a target actiona. We findρA(a),
the corresponding source action, using the score for an ac-
tion mapping. For source action̊a and target actiona, the
mapping for variables ofG, G.V , induces a mapping of
links in å anda as follows: two links are mapped together if
they can form a local match (with consistent types) and their
head and tail nodes (variables) are mapped together inG.V .
This mapping of links together withG.V forms an induced
action mapping, denoted asGa[̊a]. Notice that if〈̊a, a〉 ∈ G,
thenGa[̊a] = Ga. We thus define

ρA(a) =

8

<

:

G−1(a), a appears inG,

arg max
å∈Å

score(Ga[̊a]), otherwise.

Let Ḡ be the global mapping “enhanced” byρA and induced
mapping of links.Ḡ is in fact not consistent under the 1-1
requirement of SME, but we can imagine the source task
has a shadow action (and QDBN) for each additional ap-
pearance of a source action in̄G, and then the 1-1 constraint
is restored. AfterρA is defined, the case forρX is defined
similarly. Since additional variables are more likely associ-
ated with additional actions, we take into account all target
actions when definingρX . Unlike actions, a variable affects
all QDBNs of a task. We consider one QDBN at a time.
For source variable̊X and target variableX , the induced
mapping of links is the same as that for actions with the ad-
ditional variable match〈X̊, X〉 added toḠ.V . Let Ḡa,X[X̊]

be the induced node mapping. We now can define the score
of mapping target variableX to source variable̊X based on
G andρA to be

X

a∈A

score(Ḡa,X[X̊]),

where the definition of the score for a node mapping remains
the same. We then defineρX(X) to be the maximizing

source variable̊X, if X does not appear inG. Therefore,
we can put the automatically constructedρX and ρA to-
gether with the representation mappingρR to form the trans-
fer functionalρ. This approach is semi-automatic sinceρR

is still specified by hand.

Application to Keepaway
Now we apply
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Figure 2: Variables for Keepaway

this approach to the
Keepaway domain
and compare the auto-
matically constructed
transfer functional
ρauto to the handcoded
transfer functionalρhand.
From (Taylor, Stone, &
Liu, 2005), Keepaway
is a subtask of RoboCup
soccer and a publicly
available benchmark for reinforcement learning (Stone
et al., 2006), in which one team ofnK keepers must try
to keep possession of the ball within a small rectangular
region, while another team ofnT takers try to take the
ball away or force the ball out of the region. The keepers
learn how to keep the ball and the takers follow a fixed
strategy. The transfer problem of focus is to transfer from
3v2 Keepaway2 to 4v3 Keepaway.

For our purpose of exposition, we focus on the actions and
variables of Keepaway. Further details on Keepaway can
be found in (Stoneet al., 2006) and the references therein.
The keeper with the ball, referred to asK1, can choose from
Hold or Passk to teammateKk. There are 3 actions for 3v2
Keepaway and 4 for 4v3. The variables are distances and
angles based on the positions of the players and the center
of the playing regionC (see Figure 2):
• d(Ki, C) for i = 1, . . . , nK andd(Tj , C) for j = 1, . . . , nT ;
• d(K1, Ki) for i=2, . . . , nK andd(K1, Tj) for j = 1, . . . , nT ;
• d(Ki, T ) = minj=1,...,nT

d(Ki, Tj) for i = 2, . . . , nK ; and
• ∠KiK1T = minj=1,...,nT

∠KiK1Tj for i = 2, . . . , nK ,
where∠ indicates angles ranging[0◦, 180◦]. There are 13
variables for 3v2 Keepaway and 19 for 4v3.

We specify QDBNs based on knowledge about soccer, the
takers’ strategy, and the behavior of other keepers’ not with
the ball. Two of the closest takersT1 andT2 always move
toward the ball, and the remaining takers, if any, try to block
open pass lanes. Therefore, ifK1 doesHold, K1 does not
move,T1 andT2 will move towardsK1 directly, other keep-
ers try to stay open to a pass fromK1, and other takers move
to block pass lanes; and ifK1 doesPassk, Kk will move to-
wards the ball to receive it,K1 will not move until someone
blocks the pass lane,T1 andT2 now move towardsKk di-
rectly, and the remaining players move to get open (keepers)
or to block pass (takers).

Unfortunately, we found that the current set of variables is
not convenient for specifying the QDBNs, since (1) the set
of variables is not complete as they cannot completely de-
termine player positions and (2) changes in positions caused
by actions cannot be directly described in these variables.
We choose to add in some additional variables for the pur-
pose of specifying QDBNs only. These variables are (also
see Figure 2)
• ∡CK1Ki for i = 2, . . . , nK and∡CK1Tj for j = 1, . . . , nT ;

23 keepers and 2 takers. Similarly for 4v3.



• ∠KiK1Tj for i = 2, . . . , nK andj = 1, . . . , nT ; and

• d(Ki, Tj) for i = 2, . . . , nK andj = 1, . . . , nT ,

where ∡ indicates directed angles ranging[0◦, 360◦).
The players’ positions are completely specified mod-
ulo rotation aroundC and the set of variablesX =
{d(K1, C), d(K1, Ki), ∡CK1Ki, d(K1, Tj), ∡CK1Tj}
with i = 2, . . . , nK andj = 1, . . . , nT , is complete. We
can useX instead of the original set of variables in learning
algorithms. We however decide not to do that in favor of
comparing directly with the handcoded transfer functional,
which is defined for the original variables. Therefore, the
additional variables are hidden to the learning algorithm
and only the original ones are observable to the learning
agent. SinceX is complete, the original variables can be
determined usingX based on elementary geometry.

Now we specify
d(K1, C) d(K1, C)′

∡CK1T1 ∡CK1T1
′

d(K1, T1) d(K1, T1)
′

−

d(K1, C) d(K1, C)′

∡CK1K2 ∡CK1K2
′

d(K1, K2) d(K1, K2)
′

d(K2, T1) d(K2, T1)
′

−

−

Hold Pass2

Figure 3: QDBNs for 2v1 Keepaway

QDBNs for Hold
and Passk. First
considerHold. K1

does not move and
thus d(K1, C) is
unchanged.T1 and
T2 go toward K1

directly, therefore
∡CK1T1 and∡CK1T2 do not change andd(K1, T1) and
d(K1, T2) decrease. The remaining players’ moves are
based on their relative positions and we also encode changes
in the related variables in the QDBN. We omit the details
due to space limits. ForPassk, we consider the next time
step to be the point of time shortly after the ball is kicked.
Therefore,K1 does not move after the pass sod(K1, C)
is unchanged.Kk moves toward the ball to receive it, and
thus ∡CK1Kk does not change butd(K1, Kk) decrease.
T1 andT2 move towardsKk and therefored(Kk, T1) and
d(Kk, T2) decreases. The remaining players move in the
same way as in the case ofHold and we encode them in the
QDBN the same way. For illustration purposes, Figure 3
shows interesting parts of the QDBNs in 2v1 Keepaway
(dashed ovals indicate hidden variables), while the full
QDBNs are too complex to be included.

We perform SME-QDBN on various sizes of Keepaway
up to 4v3 starting from 2v1. We consider distances and an-
gles as different and we also distinguish observable and hid-
den variables. Thus we have four types of variables and only
variables of the same type match. We also have five types
of links: no-change, decrease, functional, minimum, and
generic. We show the similarity scores from SME-QDBN
in Table 1. To compare results for different target tasks, we
normalize the scores to be in[0, 1] by dividing them by2mn,
wherem is the number of variables andn is the number of
actions. Notice that the normalized score is not symmetric
since we normalize using parameters for the target task. We
also include self mapping to test the algorithm. SME-QDBN
takes less than half a minute on a Dell 360n running Linux
2.6 to find the optimal mapping for 2v1 to 2v2, and is also
quite fast for self mapping. However for larger problems
such as 3v2 to 4v3, it takes more than a day to complete.3

We also determineρA andρX for 3v2 to 4v3 transfer. The
result is however too large to be included. We observed that

3In fact, we performed additional optimizations to obtain the
aforementioned running time.

Table 1: Similarity scores for Keepaway

Source #var #link 2v1 2v2 3v2 3v3 4v3

2v1 11(7) 26,26 1.00 0.63 0.26 0.17 0.09
2v2 16(9) 42,46 0.92 1.00 0.38 0.24 0.13
3v2 25(13) 77, 81, 81 0.87 0.75 1.00 0.69 0.36
3v3 32(15) 124,124,124 0.76 0.69 0.88 1.00 0.51
4v3 43(19) 178,178,178,178 0.74 0.67 0.79 0.88 1.00

the result containing observable variables is exactly the same
as the handcoded one from (Taylor, Stone, & Liu, 2005). For
this reason, further experiments with Keepaway are not nec-
essary since the successful transfer results from there apply
directly.

Conclusion
In this paper, we propose to use structure mapping to study
transfer in reinforcement learning. This is possible sinceim-
portant information about the domain can be captured using
qualitative DBNs. Structure mapping can then find similar-
ities based on QDBNs and then mappings of state variables
and actions between the source and target tasks. Therefore
we can automate the construction of the transfer functional
for value-function-based transfer in reinforcement learning.
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