
In AAAI 2007 Fall Symposium on Computational Approaches to Representation Change during Learning and Development,
Arlington, Virginia, November 2007.

Representation Transfer for Reinforcement Learning

Matthew E. Taylor and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{mtaylor, pstone}@cs.utexas.edu

Abstract

Transfer learning problems are typically framed as leveraging
knowledge learned on a source task to improve learning on a
related, but different, target task. Current transfer learning
methods are able to successfully transfer knowledge from a
source reinforcement learning task into a target task, reducing
learning time. However, the complimentary task of transfer-
ring knowledge between agents with different internal repre-
sentations has not been well explored The goal in both types
of transfer problems is the same: reduce the time needed to
learn the target with transfer, relative to learning the target
without transfer. This work definesrepresentation transfer,
contrasts it with task transfer, and introduces two novel al-
gorithms. Additionally, we show representation transfer al-
gorithms can also be successfully used for task transfer, pro-
viding an empirical connection between the two problems.
These algorithms are fully implemented in a complex multi-
agent domain and experiments demonstrate that transferring
the learned knowledge between different representations is
both possible and beneficial.

Introduction
Transfer learning is typically framed as leveraging knowl-
edge learned on asource taskto improve learning on a re-
lated, but different,target task. Past research has demon-
strated the possibility of achieving successful transfer be-
tweenreinforcement learning(RL) (Sutton & Barto 1998)
tasks. In this work we refer to such transfer learning prob-
lems astask transfer.

A key component of any reinforcement learning algo-
rithm is the underlyingrepresentationused by the agent for
learning (e.g. its function approximator or learning algo-
rithm), and transfer learning approaches generally assume
that the agent will use a similar (or even the same) represen-
tation to learn the target task as it used to learn the source.
However, this assumption may not be necessary or desirable.
This paper considers an orthogonal question: is it possible,
and desirable, for agents to use different representationsin
the target and source? This paper defines and provides algo-
rithms for this new problem ofrepresentation transfer(RT)
and contrasts it with the more typical task transfer.

The motivation for transferring knowledge between tasks
is clear: it may enable quicker and/or better learning on the

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

target task after having learned on the source. Our two mo-
tivations for representation transfer are similar, thoughper-
haps a bit more subtle.

One motivation for equipping an agent with the flexibility
to learn with different representations is procedural. Sup-
pose an agent has already been training on a source task
with a certain learning method and function approximator
(FA) but the performance is poor. A different representation
could allow the agent to achieve higher performance. If ex-
perience is expensive (e.g. wear on the robot, data collection
time, or cost of poor decisions) it is preferable to leverage
the agent’s existing knowledge to improve learning with the
new representation and minimize sample complexity.

A second motivating factor is learning speed: changing
representations partway through learning may allow agents
to achieve better performance in less time. SOAR (Laird,
Newell, & Rosenbloom 1987) can use multiple descriptions
of planning problems and search problems, generated by a
human user, for just this reason. We will show in this pa-
per that it is advantageous to change internal representation
while learning in some RL tasks, relative to using a fixed
representation, so that higher performance is achieved more
quickly.

Additionally, this study is inspired in part by human psy-
chological experiments. Agents’ representations are typi-
cally fixed when prototyped, but studies show (Simon 1975)
that humans may change their representation of a problem as
they gain more experience in a particular domain. While our
system does not allow for automatic generation of a learned
representation, this work addresses the necessary first step
of being able to transfer knowledge between two represen-
tations.

This paper’s main contributions are to introduce represen-
tation transfer, to provide two algorithms for RT, and to em-
pirically demonstrate the efficacy of these algorithms in a
complex multiagent RL domain. In order to test RT, we train
on the same tasks with different learning algorithms, func-
tions approximators, and parameterizations of these function
approximators, and then demonstrate that transferring the
learned knowledge among the representations is both possi-
ble and beneficial. We introduce two representation transfer
algorithms and implement them in the RL benchmark do-
main of robot soccer Keepaway (Stoneet al. 2006). Lastly,
we show that the algorithms can be used for successful task

transfer, underscoring the relatedness of representationand
task transfer.

RT Algorithms
In this work, we consider transfer in reinforcement learn-
ing domains. Following standard notation (Sutton & Barto
1998), we say that an agent exists in an environment and
at any given time is in some states ∈ S, beginning at
sinitial. An agent’s knowledge of the current state of its
environment,s ∈ S is a vector ofk state variables, so that
s = x1, x2, . . . , xk. The agent selects an action from avail-
able actions,a ∈ A. The agent then moves to a new state
based on the transition functionT : S×A 7→ S and is given
a real-valued reward for reaching the new stateR : S 7→ R.
Over time the agent learns a policy,π : S 7→ A, to maximize
the expected total reward. Common ways of learning the
policy are temporal difference (TD) (Sutton & Barto 1998)
methods and direct policy search.

In this section we present two algorithms for addressing
RT problems, where the source and target representations
differ. We define an agent’srepresentationas the learning
method used, the FA used, and the FA’s parameterization. As
an example, suppose an agent in the source uses Q-Learning
with a neural network FA that has 20 hidden nodes. The first
algorithm, Complexification, is used to:
1. Transfer between different parameterizations (e.g. change

to 30 hidden nodes)
The second, Offline RT, may be used for:
2. Transfer between different FAs (e.g. change to a radial

basis function FA)
3. Transfer between different learning methods (e.g. change

to policy search)
4. Transfer between tasks with different actions and state

variables
We refer to scenarios 1 and 2 asintra-policy-class trans-
fer because the policy representation remains constant. Sce-
nario 3 is a type ofinter-policy-class transfer, and Scenario
4 is task transfer.

Complexification
Complexificationis a type of representation transfer where
the function approximator is changed over time to allow for
more representational power. Consider, for instance, the de-
cision of whether to represent state variables conjunctively
or independently. A linear interpolation of different state
variables may be faster to learn, but a conjunctive represen-
tation has more descriptive power. Using Complexification,
the agent can learn with a simple representation initially and
then switch to a more complex representation later. Thus
the agent can reap the benefits of fast initial training without
suffering decreased asymptotic performance.

Algorithm 1 describes the process for transferring be-
tween value function representations with different parame-
terizations of state variables, e.g. FAs with different dimen-
sionalities. The weights (parameters) of a learned FA are
used as needed when the agent learns a target value func-
tion representation. If the target representation must calcu-
lateQ(s, a) using a weight which is set to the default value

rather than a learned one, the agent uses the source represen-
tation to set the weight. Using this process, a single weight
from the source representation can be used to set multiple
weights in the target representation.

Algorithm 1 Complexification
1: Train with a source representation and save the learned

FAsource

2: while target agent trains on a task withFAtarget do
3: if Q(s, a) needs to use at least one uninitialized weight in

FAtarget then
4: Find the set of weightsW that would be used to calculate

Q(s, a) with FAsource

5: Set any remaining uninitialized weight(s) inFAtarget

needed to calculateQ(s, a) to the average ofW

Note that this algorithm makes the most sense when used
for FAs that exhibitlocality: step 5 would execute once and
initialize all weights when using a fully connected neural
network. Thus we employ Algorithm 1 when using a FA
which has many weights but only a subset are used to cal-
culate eachQ(s, a) (e.g. a CMAC, as discussed later in this
paper).

We will utilize this algorithm on a task which requires a
conjunctive representation for optimal performance. This
provides an existence proof that Complexification can be
effective at reducing both the target representation training
time and the total training time.

Offline RT
The key insight forOffline RT(ORT) is that an agent using a
source representation can record some information about its
experience using the learned policy. The agent may record
s, the perceived state;a, the action taken;r, the immediate
reward; and/orQ(s, a), the long-term expected return. Then
the agent can learn to mimic this behavior in the target rep-
resentation without the use of on-line training (i.e. without
more interactions with the environment). The agent is then
able able to learn better performance faster than if it had
learned the target representation without transfer. We con-
sider three distinct scenarios where ORT algorithms could
be utilized:
1. Intra-policy-class RT (Algorithm 2a): The representation

differs by function approximator.
2. Inter-policy-class RT (Algorithms 2b & 2c): The repre-

sentation changes from a value function learner to a policy
search learner, or vice versa.

3. Task transfer (Algorithm 2d): The representation remains
constant but the tasks differ.

Note that this is not an exhaustive list; it contains only
the variants which we have implemented. (For instance,
intra-policy-class RT for policy learners is similar to Algo-
rithm 2a, and task transfer combined with inter-policy-class
transfer is likewise a straightforward extension of the ORT
method.) The ORT algorithms presented are necessarily de-
pendant on the details of the representation used. Thus they
may be appropriately thought of as meta-algorithms and we
will show in later sections how they may be instantiated for
specific learning methods and specific FAs.

Algorithm 2a describes intra-policy-class transfer for
value function methods with different FAs. The agent saves
n (state, action, Q-value) tuples and then trains offline with
the target representation to predict those saved Q-values,
given the corresponding state. Here offline training still uti-
lizes a TD update, but the target Q-values are set by the
recorded experience.

Algorithm 2a ORT: Value Functions
1: Train with a source representation
2: Recordn (s, a, q(si, ai)) tuples while the agent acts
3: for all n tuplesdo
4: Train offline with target representation, learning to predict

Qtarget(si, ai) = q(si, ai) for all a ∈ A
5: Train on-line using the target representation

When considering inter-policy-class transfer between a
value function and a policy search method, the primary chal-
lenge to overcome is that the learned FAs represent differ-
ent concepts: a value function by definition contains more
information because it represents not only the best action,
but also its expected value. However, the method described
above for intra-policy-class transfer also generalizes tointer-
policy-class transfer.

Inter-policy-class transfer between a value function and a
policy search learner (Algorithm 2b) first recordsn (s, a)
tuples and then trains a direct policy search learner offline
so thatπtarget can behave similarly to the source learner.
Here offline training simply means using the base learning
algorithm to learn a policy that will take the same action
from a given state as was taken in the saved experience.

Algorithm 2b ORT: Value Functions to Policies
1: Train with a source representation
2: Recordn (s, a) tuples while the agent acts
3: for all n tuplesdo
4: Train offline with target representation, learning

πtarget(si) = ai

5: Train on-line using the target representation

Inter-policy-class transfer from a policy to a value func-
tion (Algorithm 2c) works by recordingn (s, a, r) and
then training a TD learner offline by (in effect) replaying
the learned agent’s experience, similar to Algorithm 2a.
Step 4 uses the history to calculateqi. In the undiscounted
episodic case, the optimal predicted return from timet0, qi,
is

∑
t0<t≤tEpisodeEnd

rt, and can thus be found by summing
recorded rewards until the end of the episode is reached.
Similarly, the discounted non-episodic case would sum re-
wards, multiplied by a discount factor. Steps 6 & 7 are
used to generate some initial Q-values for actions not taken.
If an action was not taken, we know that its Q-value was
lower, but cannot know its exact value since the source pol-
icy learner does not estimate Q-values.

Lastly, we present an algorithm for inter-task transfer us-
ing a value function approximator (Algorithm 2d). Specifi-
cally, we assume that we have a pair of tasks that have dif-
ferent action and state variable spaces, but are related by two
inter-task mappings. One mapping defines the relationship

Algorithm 2c ORT: Policies to Value Functions
1: Train with a source representation
2: Recordn (s, a, r) tuples while the agent acts
3: for all n tuplesdo
4: Use history to calculate the return,qi, from si

5: Train offline with target representation, learning to predict
Qtarget(si, ai) = qi

6: for all aj ∈ A s.t.aj 6= ai do
7: Train to predictQtarget(aj) < qi

8: Train on-line using the target representation

between state variables:ρX(xi,target) = xj,source, and a
second defines the relationship between actions in the two
tasks: ρA(ai,target) = aj,source. This assumption is the
same as used in past task transfer work (Maclinet al. 2005;
Soni & Singh 2006; Taylor, Stone, & Liu 2005) for transfer
between tasks with different state and action spaces.

Algorithm 2d ORT: Task Transfer for Value Functions
1: Train on a source task
2: Recordn (s, a, q(si, ai)) tuples while the agent acts
3: for all n tuplesdo
4: Constructs′ in the target task so that every state variable,s′j ,

is set by the corresponding source task state variablek in si:
ρX(j) = k

5: Train offline in target task, learning to predict
Qtarget(s

′, a′) = q(s′, ρA(a′

i)) for all a′ ∈ Atarget

6: Train on-line using the target task

Keepaway

Figure 1: 3 Keepers play against
2 Takers. A Keeper’s state is com-
posed of 11 distances to players and
the center of the field as well as 2
angles along passing lanes.

To test the efficacy
of RT we con-
sider the RoboCup
simulated soccer
Keepaway domain,
a multiagent domain
with. We use setups
similar to past re-
search (Stone, Sut-
ton, & Kuhlmann
2005) and agents
based on ver-
sion 0.6 of the
benchmark play-
ers distributed by
UT-Austin (Stone
et al. 2006). This
section details the
Keepaway domain
and the RL methods used in our experiments.

This multiagent domain has noisy sensors and actuators,
and enforces a hidden state so that agents can perceive only
a partial world view at any time. InKeepaway, one team
of keepersattempt to possess a ball on a field, while an-
other team oftakersattempt to steal the ball or force it out
of bounds. Keepers that make better decisions about their
actions are able to maintain possession of the ball longer. In
3 vs. 2 Keepaway, three keepers are initially placed in three
corners of a 20m× 20m field with a ball near one of the

keepers. Two takers are located in the fourth corner. The
keeper’s world state is defined by 13 variables, as shown in
Figure 1. The keepers receive a +1 reward for every time
step the ball remains in play.

Keepers chose from the high level macro actions: Hold
Ball, Get Open, Receive, and Pass. A keeper in 3 vs. 2
Keepaway with the ball may either hold the ball or pass it
to a teammate:A = {hold, passToTeammate1, passToTeam-
mate2}. Otherwise, keepers execute Receive to chase loose
balls and get open for passes. Takers follow a hand-
coded policy. Full details for Keepaway can be found else-
where (Stone, Sutton, & Kuhlmann 2005).

XOR Keepaway
This section describes a modification to the 3 vs. 2 Keep-
away task so that the agent’s representation must be capable
of learning an “exclusive or” to achieve top performance.
This is one instance of a task where a linear representa-
tion can learn quickly but is eventually outperformed by a
more complex representation and is thus a prime candidate
for Complexification1.

In XOR Keepaway, the 3 vs. 2 Keepaway task is modified
to change the effect of agents’ actions.Good pass, executes
the pass action and additionally disables the takers for 2 sec-
onds. Bad passcauses the keeper’s pass to travel directly
to the closest taker. These effects are triggered based on the
agent’s chosen pass action and 4 state variables: the distance
to the closest taker,d(K1, T1), the distance from the clos-
est teammate to a taker,d(K2, T), the passing angle to the
closest teammate,ang(K2), and the distance to the closest
teammate,d(K1, K2). Thus agents which lack the represen-
tational power to express an XOR can learn but are unable to
achieve optimal performance. This modification to the task
changes the effects of the agents’ decisions but leaves the
rest of the task unchanged. Details appear in Figure 2.

if Keeper attempts pass to closest teammatethen
if (4m < d(K1, T1) < 6m) XOR (9m < d(K2, T) <
12m) then

Executegood pass
else

Executebad pass
else ifKeeper attempts pass to furthest teammatethen

if (9m < d(K1, K2) < 12m) OR (450 < ang(K2) <
900) then

Executegood pass
else

Executebad pass
else

if Keeper would have executedgood passif it had decided
to passthen

Executebad pass
else

Executehold ball

Figure 2: XOR Keepaway changes the effects of agent’s actions
but leave the rest of the task unchanged from 3 vs. 2.

1In informal experiments, Complexification did not improve 3
vs. 2 Keepaway performance, likely because it can be learnedwell
when all state variables are considered independently (Stone, Sut-
ton, & Kuhlmann 2005).

4 vs. 3 Keepaway
4 vs. 3 Keepaway has been used in the past for task trans-
fer (Soni & Singh 2006; Taylor, Stone, & Liu 2005) be-
cause adding more players changes the state representation
and available actions. In 4 vs. 3 Keepaway,A = {hold,
passToTeammate1, passToTeammate2, passToTeammate3},
and the state is composed of 19 state variables due to added
players.

4 vs. 3 is more difficult for keepers to learn due to the
extra players and asymptotic performance is lowered. The
addition of an extra taker and keeper to the 3 vs. 2 task also
results in a qualitative change because of the taker behavior.
In 3 vs. 2, both takers must charge the ball, but in 4 vs. 3
one taker is free to roam the field and attempts to intercept
passes.

Learning with Sarsa
To learn Keepaway, we use setups similar to past research
in this domain (Stone, Sutton, & Kuhlmann 2005), and
in particular use Sarsa (Rummery & Niranjan 1994; Singh
& Sutton 1996), a well understood TD method. Because
Keepaway is continuous, some sort of function approxima-
tion is necessary. Cerebellar model articulation controllers
(CMACs), Radial basis functions (RBFs), and neural net-
works have been used successfully for TD function approx-
imation in the Keepaway domain (Stoneet al. 2006).

CMACs (Albus 1981) use multiple linear tilings to ap-
proximate a continuous value function. There can either be
a separate CMAC for each state feature so that each is in-
dependent, or the CMACs can tile multiple state features
together conjunctively, as will be done in XOR Keepaway.
RBFs generalize tile coding so that instead of linearly sum-
ming tile weights, each “tile” is represented by a continuous
bias function which weights the tile’s contribution by the
distance of a state from the center of the tile. The neural
network FA allows a learner to calculate a value from a set
of continuous, real-valued state variables. Each input to the
neural network is set to the value of a state variable and each
output corresponds to an action. Activations of the output
nodes correspond to Q values. We define our representa-
tion as a feedforward network with a single hidden layer of
20 units, again consistent with past research in this domain.
CMAC and RBF FAs have their weights initially set to zero
and neural networks are initialized so that weights are near
zero. In all cases, a Sarsa update is used to change weights
over time to approximate an action-value function.

Learning with NEAT
Policy search methods have had significant empirical suc-
cess learning policies to solve RL tasks. NeuroEvolution of
Augmenting Topologies (NEAT) (Stanley & Miikkulainen
2002) is one such method that evolves populations of neu-
ral networks. NEAT is an appropriate choice for this paper
due to past empirical successes on difficult RL tasks such as
double pole balancing (Stanley & Miikkulainen 2002) and 3
vs. 2 Keepaway (Taylor, Whiteson, & Stone 2006).

NEAT evolves network topology by combining the search
for network weights with evolution of network structure.

NEAT starts with a population of networks without any hid-
den nodes: inputs are connected directly to outputs. Two
mutation operators introduce new structure incrementallyby
adding hidden nodes or adding links to a network. Structural
mutations that improve performance tend to survive evolu-
tion, and NEAT generally searches through lower weight di-
mensions before exploring more complex topologies. NEAT
is a general purpose optimization technique, but when ap-
plied to RL problems, it typically evolves action selectors.
Inputs describe the agent’s current state and there is one out-
put for each action. The agent executes whichever action has
the highest activation.

Results
In this section we present empirical results showing that
Complexification and the four variations of ORT can suc-
cessfully transfer knowledge. Specifically, we test:
1. Complexification in XOR Keepaway with a Sarsa learner

utilizing a CMAC FA
2. ORT for Value Functions in 3 vs. 2 Keepaway between

RBF and neural network Sarsa learners
3. ORT for Value Functions in 3 vs. 2 Keepaway between

neural network and RBF Sarsa learners
4. ORT for Policies to Value Functions in 3 vs. 2 Keepaway

between NEAT and Sarsa learners
5. ORT for Value Functions to Policies in 3 vs. 2 Keepaway

between Sarsa and NEAT learners
6. ORT for Task Transfer with Value Functions between 3

vs. 2 and 4 vs. 3 Keepaway

We consider two related goals for both representation and
task transfer problems. This section shows that all of the
methods presented can reduce the training time in the tar-
get. Additionally, experiments 1, 5, and 6 show that the total
training time may also be reduced, a significantly more dif-
ficult goal. For RT, that means that an agent can improve
performance on a single task by switching internal represen-
tations partway through learning, rather than using a single
representation for an equivalent amount of time.

Learning curves presented in the section each average ten
independent trials. The x-axis shows the number of Soccer
Server simulator hours, where wall clock time is roughly
half of the simulator time. The y-axis shows the average
performance of the keepers by showing the average episode
length in simulator seconds. Error bars show one standard
deviation. (Note that we only show error bars on alternating
curves for readability.) All parameters chosen in this section
were selected via experimentation with a small set of initial
test experiments.

Complexification in XOR Keepaway
To master the XOR Keepaway task we use Sarsa to learn
with CMAC FAs, with both independently and conjunc-
tively tiled parameterizations. The independently tiled play-
ers use 13 separate CMACs, one for each state feature. The
conjunctively tiled players use 10 separate CMACs, 9 of
which independently tile state features. The last CMAC
is a conjunctive tiling of the remaining 4 state features:
d(K1, T1), d(K2, T), ang(K2), andd(K1, K2). We train
the independently tiled players for 20 hours and then save

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Complexification

Complexification

Conjunctively Tiled

Individually Tiled

Figure 3: Learning with Complexification outperforms learning
with individually tiled CMACs without transfer and partially con-
junctive CMACs without transfer.

the weights in their CMAC FAs. To get a small performance
improvement, we set all zero weights to the average weight
value, a method previously shown to improve CMAC per-
formance (Taylor, Stone, & Liu 2005). We then train con-
junctively tiled CMAC players, using the previously learned
weights as needed as per Algorithm 1.

Agents learn best when the four relevant state features
are conjunctively tiled: Figure 3 shows that players learning
with conjunctive FAs outperform the players using indepen-
dently tiled FAs. However, initially, agents using indepen-
dently tiled state features are able to learn faster. Agents
trained with independent CMACs for 20 hours can then
transfer to a conjunctive representation via Algorithm 1, sig-
nificantly outperforming players that only use the indepen-
dent representation. A Student’s t-test confirms that this
performance increase is statistically different from learning
without transfer with independently tiled CMACs after 40
of total training time.

Additionally, the total training time required is decreased
by Complexification relative to learning only the conjunc-
tive tiling. Even when source agent training time is also
taken into account, Complexification significantly outper-
forms learning without transfer with the conjunctive repre-
sentation until 55 hours of training time has elapsed. Exam-
ined differently, learning without transfer with a conjunctive
tiling takes 55 hours to reach a 6.0 second hold time, while
an agent using both source and target representations take a
total of only 45 hours, an 18% reduction in learning time.

Thus, in the XOR Keepaway task, using Complexification
to transfer knowledge between two different representations
outperforms using either representation alone for the equiv-
alent amount of time.

Offline RT in 3 vs. 2 Keepaway
When learning 3 vs. 2 Keepaway, ORT algorithms may be
used to transfer knowledge between different FAs and be-
tween different policy representations. The next section
presents two experiments to show that if a source represen-
tation has been learned and a target representation utilizes a
different FA, ORT can successfully reduce the target’s train-

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: RBFs

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: RBFs

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: RBFs

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: RBFs

ORT

4a

Without Transfer

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Neural Networks

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Neural Networks

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Neural Networks

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Intra-Policy Transfer: Neural Networks

ORT

4b

Without Transfer

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: TD

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: TD

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: TD

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 2 4 6 8 10 12 14E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: TD

ORT

4c

Without Transfer

Figure 4: a) RBF players utilize ORT from neural networks to outperform RBF players without transfer. b) Neural network players utilize
ORT from RBF players to outperform neural network players without transfer. c) RBF players using ORT from NEAT players outperform
RBF players without transfer.

ing time. The subsequent section shows two experiments
where the source and target differ both by FA and by type
of learning method. In one experiment the target’s training
time is reduced while the second experiment shows transfer
benefit in both learning scenarios: both the target’s training
time and the total training time are reduced.

Intra-policy ORT To demonstrate intra-policy transfer,
we first train Sarsa players using a neural network on 3 vs. 2
Keepaway for 20 simulator hours and then record 20,000 tu-
ples, which took roughly 1.0 simulator hour. TD-RBF play-
ers are then trained offline by iterating over all tuples 5 times
and updatingQ(si, a), wherea ∈ A, via Sarsa with a learn-
ing rate of 0.001 (set after trying 4 different common param-
eter values). Thus the agent is able to learn in the new repre-
sentation by replaying data gathered when training with the
old representation. Using Algorithm 2a, this process takes
roughly 8 minutes of wall clock time. Figure 4a shows that
RT from neural network players outperforms RBF players
learning without transfer. Differences graphed are statisti-
cally significant for times less than 11 simulator hours.

The reverse experiment trains RBF players for 20 simula-
tor hours and then saves 20,000 tuples. We train the neural
network players offline by iterating over all tuples five times.
We found that updatingQ(s, ai) for ai 6= a was not as ef-
ficient as updating only the Q-value for the action selected
in a state. This is likely because of the non-locality effect
of neural networks where changing a single weight may af-
fect all output values. Figure 4b shows how RT helps im-
prove the performance of the neural network players. The
differences are statistically significant for times less than 8
simulator hours and the offline RT training took less than 1
minute of wall clock time.

Inter-policy ORT To demonstrate value function to direct
policy search transfer, we first train NEAT keepers for 500
simulator hours in the 3 vs. 2 Keepaway task and then use
RT to initialize RBF players via offline Sarsa training. We
found that the value-function learners needed to learn a more
complex representation and thus used 50,000 tuples (which
takes roughly 2.6 simulator hours to record). IfQ(si, a

′) >
Q(si, ai), wherea′ was an action not chosen by the source

agent, we set a target value2 of Q(si, a
′) = 0.9 × Q(si, ai).

The offline training, as described previously, takes roughly
4 minutes of wall clock time.

Figure 4c shows that the RBF players using RT from
learned NEAT representations initially have a much higher
performance. Training causes an initial drop in perfor-
mance as the Q-values, and therefore the current policy, are
changed to more accurately describe the task. However,
performance of the players using RT is statistically better
than those learning without transfer until 7 simulator hours
of training has occurred. After 7 simulator hours, the per-
formance difference between using RT and learning with-
out transfer is not significant. This shows that if one has
trained policies, it is advantageous to use them to initialize
TD agents, particularly if the training time is short or if the
on-line reward is critical.

The reverse experiment trains 3 vs. 2 Keepaway using the
value function RBF players for 20 simulator hours. After
learning, one of the keepers saves 1,000 tuples, and we use
inter-policy RT to initialize a population of 100 policies of-
fline for 100 generations3. After the target keepers have fin-
ished learning, we evaluate the champion from each genera-
tion for 1,000 episodes to more accurately graph the learned
policy performances. Figure 5 shows that NEAT players uti-
lizing RT outperform NEAT players learning without trans-
fer. This result is particularly dramatic because TD-RBF
players initially train much faster than NEAT players. The
20 hours of simulator time spent training the RBF players
and the roughly 0.1 simulator hours to collect the 1,000 tu-
ples are not reflected in this graph.

The difference between learning with and without trans-
fer is statistically significant for all points graphed (except
for 490 simulator hours) and the total training time needed
to reach a pre-determined performance threshold in the tar-

2Recall that the only information we have regarding the value
of non-chosen actions are that they should be lower valued than
than selected actions. However, setting those values too low may
disrupt the FA so that it does not generalize well to unseen states.
0.9 was chosen after informally testing three different parameter
values.

3NEAT trains offline with a fitness function that sums the num-
ber of times the action predicted by NEAT from a given state
matches that action that had been recorded.

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: Policy Search

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: Policy Search

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: Policy Search

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: Policy Search

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

Inter-Policy Transfer: Policy Search

ORT

Without Transfer

Figure 5: ORT can initialize NEAT players from RBF players to
significantly outperforms learning without transfer.

get task has been reduced. For instance, if the goal is to
train a set of agents to hold the ball in 3 vs. 2 Keepaway
for 14.0 seconds via NEAT, it takes approximately 700 sim-
ulator hours to learn without transfer (not shown). The to-
tal simulator time needed to reach the same threshold using
ORT is less than 100 simulator hours. Additionally, the best
learned average performance of 15.0 seconds is better than
the best performance achieved by NEAT learning without
transfer in 1000 simulator hours (Taylor, Whiteson, & Stone
2006).

This paper focuses on sample complexity, assuming that
agents operating in a physical world are most affected by
slow sample gathering. If computational complexity were
taken into account, RT would still show significant improve-
ment. Although we did not optimize for it, the wall clock
time for RT’s offline training was only 4.3 hours per trial.
Therefore, RT would still successfully improve performance
if our goal had been to minimize wall clock time.

Offline RT for Task Transfer
ORT is able to meet both transfer scenario goals when the
source and target are 3 vs. 2 and 4 vs. 3 Keepaway, success-
fully performing task transfer. This result suggests both that
ORT is a general algorithm that may be applied to both RT
and task transfer and that other RT algorithms may work for
both types of transfer.

To transfer between 3 vs. 2 and 4 vs. 3, we useρX and
ρA used previously in this pair of tasks (Taylor, Stone, &
Liu 2005). 3 vs. 2 players learning with Sarsa and RBF FAs
are trained for 5 simulator hours. The final 20,000 tuples
are saved at the end of training (taking roughly 2 simula-
tor hours). 4 vs. 3 players, also using Sarsa and RBF FAs,
are initialized by training offline using Algorithm 2d, where
the inter-task mappings are used to transform the experience
from 3 vs. 2 so that the states and actions are applicable in 4
vs. 3. The batch training over all tuples is repeated 5 times.

Figure 6 shows that ORT reduces the target task training
time, meeting the goal of transfer in the first scenario. The
performance of the learners using ORT is better than that of
learning without transfer until a time of 31 simulator hours.
Furthermore, the total time is reduced when accounting for

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 5 10 15 20 25 30 35 40

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

4 vs. 3 Keepaway

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 5 10 15 20 25 30 35 40

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

4 vs. 3 Keepaway

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 5 10 15 20 25 30 35 40

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

4 vs. 3 Keepaway

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 5 10 15 20 25 30 35 40

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (simulator hours)

4 vs. 3 Keepaway

ORT

Without Transfer

Figure 6: ORT successfully reduces training time for task transfer
between 3 vs. 2 and 4 vs. 3 Keepaway.

the 5 hours of training in 3 vs. 2. In this case, the ORT
agents statistically outperform agents training without trans-
fer during hours 10 – 25. Put another way, it will take agents
learning without transfer an average of 26 simulator hours to
reach a hold time of 7.0 seconds, but agents using ORT will
use a total time of only 17 simulator hours to reach the same
performance level.

Related Work
Using multiple representations to solve a problem is not a
new idea. For instance, SOAR (Laird, Newell, & Rosen-
bloom 1987) uses multiple descriptions of planning prob-
lems to help with search and learning. Kaplan’s pro-
duction system (1989) was able to simulate the represen-
tation shift that humans often undergo when solving the
mutilated checkerboard(McCarthy 1964) problem. Other
work (Fink 1999) used libraries of problem solving and
“problem description improvement” algorithms to automat-
ically change representations in planning problems.Implicit
imitation (Price & Boutilier 2003) allows an RL agent to
train while watching a mentor with similar actions, but this
method does not directly address internal representation dif-
ferences. Additionally, all training is done on-line; agents
using imitation do not initially perform better than learning
without transfer.

None of these methods directly address the problem of
transferring knowledge between different representations in
an RL setting. By using RT methods like Complexification
and ORT, different representations can be leveraged so that
better performance can be more quickly learned, possibly in
conjunction with existing RL speedup methods.

Our work shows the application of ORT to task transfer
between 3 vs. 2 and 4 vs. 3. When the Complexification al-
gorithm is used for task transfer between 3 vs. 2 and 4 vs.
3, it can make use ofρX andρA analogously. However, our
previous value-function transfer algorithm (Taylor, Stone, &
Liu 2005) is very similar and has been shown to reduce to-
tal training time as well as target task training time. The
main difference is that we perform the weight transfer, via
Complexification, on-line while the agent interacts with the
target task, while they transferredafter learning the source
but beforelearning the target task. Other recent work (Ah-

madi, Taylor, & Stone 2007) uses an algorithm similar to
Complexification, but concentrates on adding state variables
over time, rather than shifting between different FA param-
eterizations.

Work by Maclin et. al. (2005) and Soni and Singh (2006)
address similar transfer learning problems with different
methods. Note that the change in state variables is neces-
sitated by differences in the source and target tasks, but such
an internal change could also be considered a type of repre-
sentation transfer.

Future Work
This paper presents algorithms for transfer between differ-
ent internal representations. We have presented five differ-
ent scenarios in which RT improves agent performance rel-
ative to learning without transfer. Two of these scenarios
show that RT can significantly reduce the total training time
as well. In addition to representation transfer, we show that
RT algorithms can be directly used to reduce both target and
total training times for task transfer, a related but distinct
problem. We have tested our algorithms in three versions
of robot soccer Keepaway, using Sarsa and NEAT as repre-
sentative learning algorithms and CMAC, RBFs, and neural
networks as representative function approximators.

In the future we would like to test RT in more domains
and with more representations. The experiments presented
in this paper were chosen to be representative of the power
of RT but are not exhaustive. For example, we would like to
show that ORT can be used to transfer between policy search
learners. We would also like to test ORT when the source
and targets differbothin representation and task. We believe
this will be possible as both Complexification and ORT may
effectively transfer between tasks as well as representations.

This paper has introduced three situations where transfer
reduces the total training time, but it would be useful to be
able toa priori know if a given task could be learned faster
by using multiple representations. We have also left open
the questions of how different amounts of saved experience
effect the efficacy of RT and if the initial dip in performance
(e.g. Figure 4c) is caused by overfitting. Lastly, we intend
to further explore the relationship between task and RT by
developing, and analyzing, more methods which are able to
perform both kinds of transfer.

Conclusion
This paper presents algorithms for RT to transfer knowledge
between internal representations. We have presented five
different scenarios in which RT improves agent performance
relative to learning from scratch. Two of these scenarios
show that RT can significantly reduce the total training time
as well. In addition to representation transfer, we show that
RT algorithms can be directly used to reduce both target and
total training times for task transfer, a related but distinct
problem. We have tested our algorithms in three versions
of robot soccer Keepaway, using Sarsa and NEAT as repre-
sentative learning algorithms and CMAC, RBFs, and neural
networks as representative function approximators.

Acknowledgments
We would like to thank Cynthia Matuszek, Shimon Wite-
son, Andrew Dreher, Bryan Klimt, and Nate Kohl for helpful

comments and suggestions. This research was supported in
part by DARPA grant HR0011-04-1-0035, NSF CAREER
award IIS-0237699, and NSF award EIA-0303609.

References
Ahmadi, M.; Taylor, M. E.; and Stone, P. 2007. IFSA: Incremen-
tal feature-set augmentation for reinforcement learning tasks. In
The Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems.
Albus, J. S. 1981.Brains, Behavior, and Robotics. Peterborough,
NH: Byte Books.
Fink, E. 1999. Automatic representation changes in problem
solving. Technical Report CMU-CS-99-150, Depart. of Computer
Science, Carnegie Mellon University.
Kaplan, C. A. 1989. Switch: A simulation of representational
change in the mutilated checkboard problem. Technical Report
C.I.P. 477, Department of Psychology, Carnegie Mellon Univer-
sity.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. SOAR:
An architecture for general intelligence.Artificial Intelligence
33(1):1–64.
Maclin, R.; Shavlik, J.; Torrey, L.; Walker, T.; and Wild, E.2005.
Giving advice about preferred actions to reinforcement learners
via knowledge-based kernel regression. InProceedings of the
20th National Conference on Artificial Intelligence.
McCarthy, J. 1964. A tough nut for proof procedures. Tech-
nical Report Sail AI Memo 16, Computer Science Department,
Stanford University.
Price, B., and Boutilier, C. 2003. Accelerating reinforcement
learning through implicit imitation.Journal of Artificial Intelli-
gence Research19:569–629.
Rummery, G., and Niranjan, M. 1994. On-line Q-learning using
connectionist systems. Technical Report CUED/F-INFENG-RT
116, Engineering Department, Cambridge University.
Simon, H. A. 1975. The functional equivalence of problem solv-
ing skills. Cognitive Psychology7:268–288.
Singh, S. P., and Sutton, R. S. 1996. Reinforcement learningwith
replaceing eligibility traces.Machine Learning22:123–158.
Soni, V., and Singh, S. 2006. Using homomorphisms to trans-
fer options across continuous reinforcement learning domains. In
Proceedings of the Twenty First National Conference on Artificial
Intelligence.
Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural net-
works through augmenting topologies.Evolutionary Computa-
tion 10(2):99–127.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006.
Keepaway soccer: From machine learning testbed to bench-
mark. In Noda, I.; Jacoff, A.; Bredenfeld, A.; and Takahashi, Y.,
eds.,RoboCup-2005: Robot Soccer World Cup IX, volume 4020.
Berlin: Springer Verlag. 93–105.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforce-
ment learning for RoboCup-soccer keepaway.Adaptive Behavior
13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998.Introduction to Reinforce-
ment Learning. MIT Press.
Taylor, M. E.; Stone, P.; and Liu, Y. 2005. Value functions for
RL-based behavior transfer: A comparative study. InProceedings
of the Twentieth National Conference on Artificial Intelligence.
Taylor, M. E.; Whiteson, S.; and Stone, P. 2006. Comparing
evolutionary and temporal difference methods in a reinforcement
learning domain. InProceedings of the Genetic and Evolutionary
Computation Conference, 1321–28.

