
To appear in Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12),
Toronto, Ontario, Canada, July 2012.

Design and Optimization of an Omnidirectional Humanoid Walk: A Winning
Approach at the RoboCup 2011 3D Simulation Competition

Patrick MacAlpine and Samuel Barrett and Daniel Urieli and Victor Vu and Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX 78701, USA
{patmac, sbarrett, urieli, diragjie, pstone}@cs.utexas.edu

Abstract

This paper presents the design and learning architecture for
an omnidirectional walk used by a humanoid robot soccer
agent acting in the RoboCup 3D simulation environment. The
walk, which was originally designed for and tested on an ac-
tual Nao robot before being employed in the 2011 RoboCup
3D simulation competition, was the crucial component in the
UTAustin Villa teamwinning the competition in 2011. To the
best of our knowledge, this is the first time that robot behav-
ior has been conceived and constructed on a real robot for the
end purpose of being used in simulation. The walk is based on
a double linear inverted pendulum model, and multiple sets
of its parameters are optimized via a novel framework. The
framework optimizes parameters for different tasks in con-
junction with one another, a little-understood problem with
substantial practical significance. Detailed experiments show
that the UT Austin Villa agent significantly outperforms all
the other agents in the competition with the optimized walk
being the key to its success.

1 Introduction

While robots have been trained to capably perform specific
tasks in static or relatively simple environments, such as
navigating stairs (Shih 1999) or tracking and grabbing an
object (Allen et al. 1993), it is still a hard problem to de-
sign them to generalize well to dynamic and complex envi-
ronments. Designing intelligent behaviors for such environ-
ments by hand can be difficult, and thus it becomes desirable
to automatically learn these behaviors. When the learning
process is non-trivial, it can be beneficial to use some kind
of decomposition.
In this paper, we investigate learning a multi-purpose hu-

manoid walk in the robot soccer domain. We carefully de-
compose the agent’s behavior into a representative set of
subtasks, and then learn multiple walk engine parameter sets
in conjunction with each other. This results in a learning ar-
chitecture for a humanoid robot soccer agent, which is fully
deployed and tested within the RoboCup1 3D simulation en-
vironment, as a part of the champion UT Austin Villa team.
The research reported in this paper is performed within

a complex simulation domain, with realistic physics, state

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1
http://www.robocup.org/

noise, multi-dimensional actions, and real-time control. In
this test domain, teams of nine autonomous humanoid robots
play soccer in a physically realistic environment. Though no
simulation perfectly reflects the real world, the physical re-
alism of the RoboCup domain enables pertinent research on
realistic robotic tasks such as humanoid locomotion. An im-
portant advantage of working in simulation is that extensive
experimentation and learning is possible without risk of me-
chanical wear and tear on any physical device.

As each robot is controlled through low-level commands
to its joint motors, getting the robot to walk without falling
over is a non-trivial challenge. In this paper, we describe a
parameterized omnidirectional walk engine, whose parame-
ters directly affect the speed and stability of the robot’s walk,
such as step height, length, and timing. Optimal parameters
would allow the robot to stably walk as fast as possible in all
situations. However, the set of possible walking directions
is continuous, so it is infeasible to learn specific parame-
ters for each direction. Therefore, the robot learns param-
eters for common subtasks needed to play soccer such as
walking to a target and dribbling a soccer ball. In turn, these
subtasks are combined into higher-level behaviors such as
dribbling a ball to the goal. The primary contribution of this
paper is a methodology for splitting a high-level task, in our
case robust omnidirectional humanoid locomotion, into sim-
pler subtasks; and optimizing parameters for these subtasks
while respecting the coupling induced by the high-level task.

Additionally, we show evidence that conjunctive param-
eter set optimization can yield a very competitive soccer
agent. The starting point for this work was a competent,
but not championship-caliber agent from the 2010 RoboCup
competition, UT Austin Villa 2010. That agent finished just
outside the top 8 in the competition. Though a key research
component of the agent was a machine-learning-based walk,
the walk was not able to keep up with the top agents. As fully
described in (Urieli et al. 2011), UT Austin Villa 2010’s
walk was not omnidirectional and could only move in set di-
rections such as forward, sideways, and backwards. A main
contribution of this work is an extension and adaptation of
the approach from that research to a fully omnidirectional
walk engine. The UT Austin Villa 2011 agent described here
won the 2011 RoboCup 3D simulation competition by win-
ning all 24 matches it played, scoring 136 goals while con-
ceding none.



2 Domain Description

Robot soccer has served as an excellent platform for testing
learning scenarios in which multiple skills, decisions, and
controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. There is a rich
literature based on this domain addressing a wide spectrum
of topics from low-level concerns, such as perception and
motor control (Behnke et al. 2006; Riedmiller et al. 2009), to
high-level decision-making problems (Kalyanakrishnan and
Stone 2010; Stone 1998).
The RoboCup 3D simulation environment is based on

SimSpark,2 a generic physical multiagent system simulator.
SimSpark uses the Open Dynamics Engine3 (ODE) library
for its realistic simulation of rigid body dynamics with col-
lision detection and friction. ODE also provides support for
the modeling of advanced motorized hinge joints used in the
humanoid agents.
The robot agents in the simulation are homogeneous and

are modeled after the Aldebaran Nao robot,4 which has a
height of about 57 cm and a mass of 4.5 kg. The agents in-
teract with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees
of freedom: six in each leg, four in each arm, and two in
the neck. In order to monitor and control its hinge joints, an
agent is equipped with joint perceptors and effectors. Joint
perceptors provide the agent with noise-free angular mea-
surements every simulation cycle (20ms), while joint effec-
tors allow the agent to specify the torque and direction in
which to move a joint. Although there is no intentional noise
in actuation, there is slight actuation noise that results from
approximations in the physics engine and the need to con-
strain computations to be performed in real-time. Visual in-
formation about the environment is given to an agent every
third simulation cycle (60ms) through noisy measurements
of the distance and angle to objects within a restricted vision
cone (120◦). Agents are also outfitted with noisy accelerom-
eter and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, a single
agent can communicate with the other agents every other
simulation cycle (40ms) by sending messages limited to 20
bytes. Figure 1 shows a visualization of the Nao robot and
the soccer field during a game.

3 Walk Engine

The UT Austin Villa 2011 team used an omnidirectional
walk engine based on one that was originally designed for
the real Nao robot (Graf et al. 2009). The omnidirectional
walk is crucial for allowing the robot to request continuous
velocities in the forward, side, and turn directions, permit-
ting it to approach continually changing destinations (often
the ball) more smoothly and quickly than the team’s previ-
ous year’s set of unidirectional walks (Urieli et al. 2011).
We began by re-implementing the walk for use on physi-

cal Nao robots before transferring it into simulation to com-
pete in the RoboCup 3D simulation league. Many people in

2
http://simspark.sourceforge.net/

3
http://www.ode.org/

4
http://www.aldebaran-robotics.com/eng/

the past have used simulation environments for the purpose
of prototyping real robot behaviors; but to the best of our
knowledge, ours is the first work to use a real robot to proto-
type a behavior that was ultimately deployed in a simulator.
Working first on the real robots lead to some important dis-
coveries. For example, we found that decreasing step sizes
when the robot is unstable increases its chances of catching
its balance. Similarly, on the robots we discovered that the
delay between commands and sensed changes is significant,
and this realization helped us develop a more stable walk in
simulation.

The walk engine, though based closely on that of Graf et
al. (2009), differs in some of the details. Specifically, unlike
Graf et al., we use a sigmoid function for the forward com-
ponent and use proportional control to adjust the desired step
sizes. Our work also differs from Graf et al. in that we opti-
mize parameters for a walk in simulation while they do not.
For the sake of completeness and to fully specify the seman-
tics of the learned parameters, we present the full technical
details of the walk in this section. Readers most interested in
the optimization procedure can safely skip to Section 4. The
walk engine uses a simple set of sinusoidal functions to cre-
ate the motions of the limbs with limited feedback control.
The walk engine processes desired walk velocities chosen by
the behavior, chooses destinations for the feet and torso, and
then uses inverse kinematics to determine the joint positions
required. Finally, PID controllers for each joint convert these
positions into torque commands that are sent to the simula-
tor. The workflow for generating joint commands from the
walk engine is shown in Figure 2.

The walk first selects a trajectory for the torso to follow,
and then determines where the feet should be with respect to
the torso location. We use x as the forwards dimension, y as
the sideways dimension, z as the vertical dimension, and θ
as rotating about the z axis. The trajectory is chosen using a
double linear inverted pendulum, where the center of mass is
swinging over the stance foot. In addition, as in Graf et al.’s
work (2009), we use the simplifying assumption that there is
no double support phase, so that the velocities and positions
of the center of mass must match when switching between
the inverted pendulums formed by the respective stance feet.

We now describe the mathematical formulas that calculate
the positions of the feet with respect to the torso. More than
40 parameters were used but only the most important ones
are described in Table 1. Note that many, but not all of these

Figure 1: A screenshot of theNao humanoid robot (left), and
a view of the soccer field during a 9 versus 9 game (right).



Figure 2: Workflow for generating joint commands from the
walk engine.

parameters’ values were optimized as described in Section 5.
To smooth changes in the velocities, we use a simple pro-

portional controller to filter the requested velocities com-
ing from the behavior module. Specifically, we calculate
stepi,t+1 = stepi,t + δ(desiredi,t+1 − stepi,t)∀i ∈ {x, y, θ}.
In addition, the value is cropped within the maximum step
sizes so that −maxStepi ≤ stepi,t+1 ≤ maxStepi.

The phase is given by φstart ≤ φ ≤ φend, and t =
φ − φstart

φend − φstart

is the current fraction through the phase. At

each time step, φ is incremented by ∆seconds/φlength, un-
til φ ≥ φend. At this point, the stance and swing feet
change and φ is reset to φstart. Initially, φstart = −0.5 and
φend = 0.5. However, the start and end times will change to
match the previous pendulum, as given by the equations

k =
√

9806.65/ztorso

α = 6 − cosh(k − 0.5φ)

φstart =







cosh−1(α)

0.5k
if α ≥ 1.0

−0.5 otherwise

φend = 0.5(φend − φstart)

The stance foot remains fixed on the ground, and the
swing foot is smoothly lifted and placed down, based on a
cosine function. The current distance of the feet from the
torso is given by

zfrac =







0.5(1 − cos(2π
t − fg

fa

)) if fg ≤ t ≤ fa

0 otherwise

zstance = ztorso

zswing = ztorso − zstep ∗ zfrac

It is desirable for the robot’s center of mass to steadily shift
side to side, allowing it to stably lift its feet. The side to side

Notation Description

maxStep∗i Maximum step sizes allowed for x, y, and θ
y∗

shift Side to side shift amount with no side velocity

z∗torso Height of the torso from the ground

z∗step Maximum height of the foot from the ground

f∗

g
Fraction of a phase that the swing

foot spends on the ground before lifting

fa Fraction that the swing foot spends in the air

f∗

s Fraction before the swing foot starts moving

fm Fraction that the swing foot spends moving

φ∗

length Duration of a single step

δ∗ Factors of how fast the step sizes change

ysep Separation between the feet

x∗

offset Constant offset between the torso and feet

x∗

factor
Factor of the step size applied to
the forwards position of the torso

err∗norm Maximum COM error before the steps are slowed

err∗max Maximum COM error before all velocity reach 0

Table 1: Parameters of the walk engine with the optimized
parameters starred.

component when no side velocity is requested is given by

ystance = 0.5ysep + yshift(−1.5 + 0.5 cosh(0.5kφ))

yswing = ysep − ystance

If a side velocity is requested, ystance is augmented by

yfrac =







0 if t < fs

0.5(1 + cos(π t−fs

fm

)) if fs ≤ t < fs + fm

1 otherwise

∆ystance = stepy ∗ yfrac

These equations allow the y component of the feet to
smoothly incorporate the desired sideways velocity while
still shifting enough to remain dynamically stable over the
stance foot.

Next, the forwards component is given by

s = sigmoid(10(−0.5 +
t − fs

fm

))

xfrac =

{

(−0.5 − t + fs) if t < fs

(−0.5 + s) if fs ≤ t < fs + fm

(0.5 − t + fs + fm) otherwise

xstance = 0.5 − t + fs

xswing = stepx ∗ xfrac

These functions are designed to keep the robot’s center of
mass moving forwards steadily, while the feet quickly, but
smoothly approach their destinations. Furthermore, to keep
the robot’s center of mass centered between the feet, there
is an additional offset to the forward component of both the
stance and swing feet, given by

∆x = xoffset + −stepxxfactor

After these calculations, all of the x and y targets are cor-
rected for the current position of the center of mass. Finally,
the requested rotation is handled by opening and closing the



groin joints of the robot, rotating the foot targets. The de-
sired angle of the groin joint is calculated by

groin =











0 if t < fs

1

2
stepθ(1 − cos(π

t − fs

fm

)) if fs ≤ t < fs + fm

stepθ otherwise

After these targets are calculated for both the swing and
stance feet with respect to the robot’s torso, the inverse kine-
matics module calculates the joint angles necessary to place
the feet at these targets. Further description of the inverse
kinematic calculations is given in (Graf et al. 2009).
To improve the stability of the walk, we track the desired

center of mass as calculated from the expected commands.
Then, we compare this value to the sensed center of mass af-
ter handling the delay between sending commands and sens-
ing center of mass changes of approximately 80ms. If this
error is too large, it is expected that the robot is unstable,
and action must be taken to prevent falling. As the robot is
more stable when walking in place, we immediately reduce
the step sizes by a factor of the error. In the extreme case,
the robot will attempt to walk in place until it is stable. The
exact calculations are given by

err = max
i

(abs(comexpected,i − comsensed,i))

stepFactor = max(0,min(1,
err− errnorm

errmax − errnorm

))

stepi = stepFactor ∗ stepi ∀i ∈ {x, y, θ}

This solution is less than ideal, but performed effectively
enough to stabilize the robot in many situations.

4 Walk Movement and Control of Walk

Engine

Before describing the procedure for optimizing the walk pa-
rameters in Section 5, we provide some brief context for how
the agent’s walk is typically used. These details are impor-
tant for motivating the optimization procedure’s fitness func-
tions.
During gameplay the agent is usually either moving to a

set target position on the field or dribbling the ball toward the
opponent’s goal and away from the opposing team’s players.
Given that an omnidirectional walk engine can move in any
direction as well as turn at the same time, the agent has mul-
tiple ways in which it can move toward a target. We chose
the approach of both moving and turning toward a target at
the same time as this allows for both quick reactions (the
agent is immediately moving in the desired direction) and
speed (where the bipedal robot model is faster when walk-
ing forward as opposed to strafing sideways). We validated
this design decision by playing our agent against a version
of itself which does not turn to face the target it is moving
toward, and found our agent that turns won by an average
of .7 goals across 100 games. Additionally we played our
agent against a version of itself that turns in place until its
orientation is such that it is able to move toward its target
at maximum forward velocity, and found our agent that im-
mediately starts moving toward its target won by an average

of .3 goals across 100 games. All agents we compared used
walks optimized by the process described in Section 5.
Dribbling the ball is a little different in that the agent

needs to align behind the ball, without first running into the
ball, so that it can walk straight through the ball, moving it in
the desired dribble direction. When the agent circles around
the ball, it always turns to face the ball so that if an opponent
approaches, it can quickly walk forward to move the ball and
keep it out of reach of the opponent.

5 Optimization of Walk Engine Parameters

As described in Section 3, the walk engine is parameterized
using more than 40 parameters. We initialize these parame-
ters based on our understanding of the system and by testing
them on an actual Nao robot. We refer the agent that uses
this walk as the Initial agent.
The initial parameter values result in a very slow, but sta-

ble walk. Therefore, we optimize the parameters using the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm (Hansen 2009), which has been successfully
applied previously to a similar problem in (Urieli et al.
2011). CMA-ES is a policy search algorithm that succes-
sively generates and evaluates sets of candidates sampled
from a multivariate Gaussian distribution. Once CMA-ES
generates a group of candidates, each candidate is evaluated
with respect to a fitness measure. When all the candidates in
the group are evaluated, the mean of the multivariate Gaus-
sian distribution is recalculated as a weighted average of the
candidates with the highest fitnesses. The covariance ma-
trix of the distribution is also updated to bias the genera-
tion of the next set of candidates toward directions of pre-
viously successful search steps. As CMA-ES is a parallel
search algorithm, we were able to leverage the department’s
large cluster of high-end computers to automate and paral-
lelize the learning. This allowed us to complete optimization
runs requiring 210,000 evaluations in less than a day. This is
roughly a 150 times speedup over not doing optimization
runs in parallel which would have taken over 100 days to
complete.
As optimizing 40 real-valued parameters can be impracti-

cal, a carefully chosen subset of 14 parameters was selected
for optimization while fixing all other parameters. The cho-
sen parameters are those that seemed likely to have the high-
est potential impact on the speed and stability of the robot.
The 14 optimized parameters are starred in Table 1. Note
that maxStepi represents 3 parameters. Also, while fg and
fs where chosen to be optimized, their complements fa and
fm were just set to (1 − fg) and (1 − fm) respectively.
Similarly to a conclusion from (Urieli et al. 2011), we

have found that optimization works better when the agent’s
fitness measure is its performance on tasks that are executed
during a real game. This stands in contrast to evaluating it on
a general task such as the speed walking straight. Therefore,
we break the agent’s in-game behavior into a set of smaller
tasks and sequentially optimize the parameters for each one
of these tasks. Videos of the agent performing optimization
tasks can be found online.5

5
www.cs.utexas.edu/˜AustinVilla/sim/



5.1 Drive Ball to Goal Optimization

We start from a task called driveBallToGoal,6 which has
been used in (Urieli et al. 2011). In this task, a robot and
a ball are placed on the field, and the robot must drive the
ball as far as it can toward the goal within 30 simulated sec-
onds. The fitness of a given parameter set is the distance the
ball travels toward the goal during that time. The agent thus
optimized, which we refer to as the DriveBallToGoal agent,
shows remarkable improvement in the robot’s performance
as the distance the ball was dribbled increased by a factor
of 15 over the Initial agent. This improvement also showed
itself in actual game performance as when the DriveBall-
ToGoal agent played 100 games against the Initial agent, it
won on average by 5.54 goals with a standard error of .14.

5.2 Multiple Subtasks Optimization

While optimizing walk engine parameters for the driveBall-
ToGoal task improved the agent substantially, we noticed
that the agent was unstable when stopping at a target position
on the field or circling around the ball to dribble. We believe
the reason for this is that the driveBallToGoal task was not
very representative of these situations frequently encoun-
tered in gameplay. When dribbling a ball toward the goal,
the agent never stops as it often does in regular gameplay.
Additionally, good runs of the driveBallToGoal task receiv-
ing a high fitness occur when the agent perfectly dribbles
the ball toward the goal without losing it and being forced to
approach and circle the ball once more.

Go to Target Parameter Set To better account for com-
mon situations encountered in gameplay, we replaced the
driveBallToGoal task in the optimization procedure with a
new goToTarget subtask. This task consists of an obstacle
course in which the agent tries to navigate to a variety of tar-
get positions on the field. Each target is active, one at a time
for a fixed period of time, which varies from one target to the
next, and the agent is rewarded based on its distance traveled
toward the active target. If the agent reaches an active target,
the agent receives an extra reward based on extrapolating the
distance it could have traveled given the remaining time on
the target. In addition to the target positions, the agent has
stop targets, where it is penalized for any distance it travels.
To promote stability, the agent is given a penalty if it falls
over during the optimization run.

In the following equations specifying the agent’s rewards
for targets, Fall is 5 if the robot fell and 0 otherwise, dtarget

is the distance traveled toward the target, and dmoved is the
total distance moved. Let ttotal be the full duration a target
is active and ttaken be the time taken to reach the target or

3dsimulation/AustinVilla3DSimulationFiles/

2011/html/walk.html
6Note that we use three types of notation for each of drive-

BallToGoal,DriveBallToGoal, driveBallToGoal, to distinguish be-
tween an optimization task, an agent created by this optimization
task and a parameter set. Similarly for “goToTarget”, “sprint” and
“initial”.

• Long walks forward/backwards/left/right

• Walk in a curve

• Quick direction changes

• Stop and go forward/backwards/left/right

• Switch between moving left-to-right and right-to-left

• Quick changes of target to simulate a noisy target

• Weave back and forth at 45 degree angles

• Extreme changes of direction to check for stability

• Quick movements combined with stopping

• Quick alternating between walking left and right

• Spiral walk both clockwise and counter-clockwise

Figure 3: GoToTarget Optimization walk trajectories

ttotal if the target is not reached.

rewardtarget = dtarget

ttotal

ttaken

− Fall

rewardstop = −dmoved − Fall

The goToTarget optimization includes quick changes of
target/direction for focusing on the reaction speed of the
agent, as well as targets with longer durations to improve
the straight line speed of the agent. The stop targets ensure
that the agent is able to stop quickly, while remaining stable.
The trajectories that the agent follows during the optimiza-
tion are described in Figure 3. After running this optimiza-
tion seeded with the initial walk engine parameter values we
saw another significant improvement in performance. Using
the parameter set optimized for going to a target, the GoTo-
Target agent was able to beat the DriveBallToGoal agent by
an average of 2.04 goals with a standard error of .11 across
100 games. Although the goToTarget subtask is used in the
driveBallToGoal task, varying its inputs directly was more
representative of the large set of potential scenarios encoun-
tered in gameplay.

Sprint Parameter Set To further improve the forward
speed of the agent, we optimized a parameter set for walking
straight forwards for ten seconds starting from a complete
stop. The robot was able to learn parameters for walking .78
m/s compared to .64 m/s using the goToTarget parameter set.
Unfortunately, when the robot tried to switch between the
forward walk and goToTarget parameter sets it was unstable
and usually fell over. This instability is due to the param-
eter sets being learned in isolation, resulting in them being
incompatible.
To overcome this incompatibility, we ran the goToTarget

subtask optimization again, but this time we fixed the goTo-
Target parameter set and learned a new parameter set. We
call these parameters the sprint parameter set, and the agent
uses them when its orientation is within 15◦ of its target.
The sprint parameter set was seeded with the values from
the goToTarget parameter set. This approach to optimization
is an example of layered learning (Stone 1998) as the out-
put of one learned subtask (the goToTarget parameter set)
is fed in as input to the learning of the next subtask (the
learning of the sprint parameter set). By learning the sprint



Figure 4: UT Austin Villa walk parameter optimization pro-
gression. Circles represent the set(s) of parameters used by
each agent during the optimization progression while the ar-
rows and associated labels above them indicate the optimiza-
tion tasks used in learning. Parameter sets are the following:
I = initial, T = goToTarget, S = sprint, P = positioning.

parameter set in conjunction with the goToTarget parameter
set, the new Sprint agent was stable switching between the
two parameter sets, and its speed was increased to .71 m/s.
Adding the sprint parameter set also improved the game per-
formance of the agent slightly; over 100 games, the Sprint
agent was able to beat the GoToTarget agent by an average
of .09 goals with a standard error of .07.

Positioning Parameter Set Although adding the goToTar-
get and sprint walk engine parameter sets improved the sta-
bility, speed, and game performance of the agent, the agent
was still a little slow when positioning to dribble the ball.
This slowness is explained by the fact that the goToTarget
subtask optimization emphasizes quick turns and forward
walking speed while positioning around the ball involves
more side-stepping to circle the ball. To account for this dis-
crepancy, the agent learned a third parameter set which we
call the positioning parameter set. To learn this set, we cre-
ated a new driveBallToGoal27 optimization in which the
agent is evaluated on how far it is able to dribble the ball
over 15 seconds when starting from a variety of positions
and orientations from the ball. The positioning parameter
set is used when the agent is .8 meters from the ball and
is seeded with the values from the goToTarget parameter set.
Both the goToTarget and sprint parameter sets are fixed and
the optimization naturally includes transitions between all
three parameter sets, which constrained them to be compati-
ble with each other. As learning of the positioning parameter
set takes the two previously learned parameter sets as input,
it is a third layer of layered learning. Adding the position-
ing parameter set further improved the agent’s performance
such that it, our Final agent, was able to beat the Sprint agent
by an average of .15 goals with a standard error of .07 across
100 games. A summary of the progression in optimizing the
three different walk parameter sets can be seen in Figure 4.
The results reported throughout this section are summarized
in Table 2.

6 Results

The results we present highlight the substantial increase in
game performance achieved through optimizing the agent’s

7The ’2’ at the end of the name driveBallToGoal2 is used to
differentiate it from the driveBallToGoal optimization that was
used in Section 5.1.

Table 2: Game results of agents with different walk param-
eter sets. Entries show the average goal difference (row −
column) from 100 ten minute games. Values in parentheses
are the standard error.

Initial DriveBallToGoal GoToTarget

Final 8.84(.12) 2.21(.12) .24(.08)

GoToTarget 8.82(.11) 2.04(.11)
DriveBallToGoal 5.54(.14)

omnidirectional walk. As can be inferred by the data pre-
sented earlier in Section 5, and seen in Table 2, optimiza-
tion continually improves the agent’s performance from the
Initial agent on up through our Final agent. This result ac-
centuates the utility of using machine learning techniques
for optimization (going from the initial to driveBallToGoal
parameter sets), the importance of finding a subtask that is
best representative of scenarios encountered in the domain
(improvement in play from driveBallToGoal to goToTarget
parameter sets), and the benefit of combining and switching
between parameters learned for multiple subtasks (increase
in performance from adding two additional parameter sets
to the goToTarget parameter set).
The Final agent was the one that we entered as UT

Austin Villa in the RoboCup 2011 3D simulation compe-
tition, which consisted of 22 teams from around the world.
UT Austin Villa 2011 won all 24 of its games in the com-
petition, scoring 136 goals and conceding none. Even so,
competitions of this sort do not consist of enough games to
validate that any team is better than another by a statistically
significant margin.
As an added validation of our approach, in Table 3 we

show the performance of our Final agent when playing 100
games against each of the other 21 teams’ released binaries
from the competition. UT Austin Villa won by at least an
average goal difference of 1.45 against every team. Further-
more, of these 2100 games played to generate the data for
Table 3, our agent won all but 21 of them which ended in ties
(no losses). The few ties were all against three of the better
teams: apollo3d, boldhearts, and robocanes. We can there-
fore conclude that UT Austin Villa was the rightful cham-
pion of the competition.
While there were multiple factors and components that

contributed to the success of the UT Austin Villa team in
winning the competition, its omnidirectional walk was the
one which proved to be the most crucial. When switching
out the omnidirectional walk developed for the 2011 compe-
tition with the fixed directional walk used in the 2010 com-
petition, and described in (Urieli et al. 2011), the team did
not fare nearly as well. The agent with the previous year’s
walk had a negative average goal differential against nine of
the teams from the 2011 competition, suggesting a probable
tenth place finish. Also this agent lost to our Final agent by
an average of 6.32 goals across 100 games with a standard
error of .13.

7 Summary and Discussion

We have presented an optimization framework and method-
ology for learning multiple parameter sets for an omnidirec-



Table 3: Full game results, averaged over 100 games. Each
row corresponds to an agent from the RoboCup 2011 com-
petition, with its rank therein achieved. Entries show the goal
difference from 10 minute games versus our final optimized
agent. Values in parentheses are the standard error.

Rank Team Goal Difference

3 apollo3d 1.45 (0.11)

5-8 boldhearts 2.00 (0.11)

5-8 robocanes 2.40 (0.10)

2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)

9-12 magmaoffenburg 4.77 (0.12)

9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)

9-12 dreamwing3d 6.22 (0.13)

5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)

9-12 beestanbul 7.12 (0.11)

13-18 nexus3d 7.35 (0.13)

13-18 hfutengine3d 7.37 (0.13)

13-18 futk3d 7.90 (0.10)

13-18 naoteamhumboldt 8.13 (0.12)

19-22 nomofc 10.14 (0.09)

13-18 kaveh/rail 10.25 (0.10)

19-22 bahia3d 11.01 (0.11)

19-22 l3msim 11.16 (0.11)

19-22 farzanegan 11.23 (0.12)

tional walk engine. The key to our optimization method is
learning different parameters in tandem, as opposed to in
isolation, for representative subtasks of the scenarios en-
countered in gameplay. This learned walk was crucial to
UT Austin Villa winning the 2011 RoboCup 3D simulation
competition.
Our ongoing research agenda includes applying what we

have learned in simulation to the actual Nao robots which we
use to compete in the Standard Platform league of RoboCup.
Additionally, we would like to learn and add further param-
eter sets to our team’s walk engine for important subtasks
such as goalie positioning to get ready to block a shot.
More information about the UT Austin Villa team, as well

as video highlights from the competition, can be found on-
line at the team’s website.8

Acknowledgements

This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. Thanks especially to
UT Austin Villa 2011 team members Shivaram Kalyanakr-
ishnan, Michael Quinlan, Francisco Barrera, Nick Collins,
Adrian Lopez-Mobilia, Art Richards, and Nicolae Ştiurcă.
Also thanks to Yinon Bentor and Suyog Dutt Jain for con-
tributions to early versions of the optimization framework
employed by the team. LARG research is supported in
part by NSF (IIS-0917122), ONR (N00014-09-1-0658), and

8
www.cs.utexas.edu/˜AustinVilla/sim/

3dsimulation/

the FHWA (DTFH61-07-H-00030). Patrick MacAlpine and
Samuel Barrett are supported by NDSEG fellowships.

References

Allen, P.; Timcenko, A.; Yoshimi, B.; and Michelman, P.
1993. Automated tracking and grasping of a moving object
with a robotic hand-eye system. Robotics and Automation,
IEEE Transactions on 9(2):152 –165.

Behnke, S.; Schreiber, M.; Stückler, J.; Renner, R.; and
Strasdat, H. 2006. See, walk, and kick: Humanoid robots
start to play soccer. In Proceedings of the Sixth IEEE-RAS
International Conference on Humanoid Robots (Humanoids
2006), 497–503. IEEE.

Graf, C.; Härtl, A.; Röfer, T.; and Laue, T. 2009. A ro-
bust closed-loop gait for the standard platform league hu-
manoid. In Zhou, C.; Pagello, E.; Menegatti, E.; Behnke,
S.; and Röfer, T., eds., Proceedings of the Fourth Workshop
on Humanoid Soccer Robots in conjunction with the 2009
IEEE-RAS International Conference on Humanoid Robots,
30 – 37.

Hansen, N. 2009. The CMA Evolution Strat-
egy: A Tutorial. http://www.lri.fr/˜hansen/

cmatutorial.pdf.

Kalyanakrishnan, S., and Stone, P. 2010. Learning comple-
mentary multiagent behaviors: A case study. In RoboCup
2009: Robot Soccer World Cup XIII, 153–165. Springer.

Riedmiller, M.; Gabel, T.; Hafner, R.; and Lange, S. 2009.
Reinforcement learning for robot soccer. Autonomous
Robots 27(1):55–73.

Shih, C.-L. 1999. Ascending and descending stairs for a
biped robot. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on 29(3):255 –268.

Stone, P. 1998. Layered Learning in Multi-Agent Systems.
Ph.D. Dissertation, School of Computer Science, Carnegie
Mellon Univerity, Pittsburgh, PA, USA.

Urieli, D.; MacAlpine, P.; Kalyanakrishnan, S.; Bentor, Y.;
and Stone, P. 2011. On optimizing interdependent skills: A
case study in simulated 3d humanoid robot soccer. In Tumer,
K.; Yolum, P.; Sonenberg, L.; and Stone, P., eds., Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), volume 2, 769–776. IFAAMAS.


